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Aim of the Talk

To understand the following theorem

Theorem. Let X be a real abelian variety, and let 2 be a real holomorphic

vector bundle over X. Then the following are equivalent:
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Aim of the Talk

To understand the following theorem

Theorem. Let X be a real abelian variety, and let 2 be a real holomorphic

vector bundle over X. Then the following are equivalent:
e I/ admaits a real flat holomorphic connection.

e I is real homogeneous.
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Vector Bundles

Definition. A continuous map 7 : £ — X of one Hausdorff space, E, onto another,
X, is called a K-vector bundle, where K is R or C, if the following conditions are

satisfied:
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Vector Bundles

Definition. A continuous map 7 : £ — X of one Hausdorff space, E, onto another,
X, is called a K-vector bundle, where K is R or C, if the following conditions are

satisfied:

1. E,:=71(p), for p € X, is a K-vector space (E, is called the fiber over p).
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Vector Bundles

Definition. A continuous map 7 : £ — X of one Hausdorff space, E, onto another,
X, is called a K-vector bundle, where K is R or C, if the following conditions are

satisfied:
1. E,:=71(p), for p € X, is a K-vector space (E, is called the fiber over p).

2. For every p € X there is a neighborhood U of p and a homeomorphism £ :
7 1(U) — U x K" such that h(E,) C {p} x K", and hP, defined by the

composition h? : E, LA {p} x K" "2 K7, is a K-vector space isomorphism, for

some integer 7 (the pair (U, h) is called a local trivialization).
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Definition. A continuous map 7 : £ — X of one Hausdorff space, E, onto another,
X, is called a K-vector bundle, where K is R or C, if the following conditions are

satisfied:
1. E,:=71(p), for p € X, is a K-vector space (E, is called the fiber over p).

2. For every p € X there is a neighborhood U of p and a homeomorphism £ :
7 1(U) — U x K" such that h(E,) C {p} x K", and hP, defined by the

composition h? : E, LA {p} x K" "2 K7, is a K-vector space isomorphism, for

some integer 7 (the pair (U, h) is called a local trivialization).

If X is connected then the integer r above is independent of p, and called the rank

of a vector bundle.
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Vector Bundles

Definition. A continuous map 7 : £ — X of one Hausdorff space, E/, onto another,
X, is called a K-vector bundle, where K is R or C, if the following conditions are

satisfied:
1. E,:=nY(p), for p€ X, is a K-vector space (E, is called the fiber over p).

2. For every p € X there is a neighborhood U of p and a homeomorphism £ :
7Y (U) — U x K" such that h(E,) C {p} x K", and h?, defined by the

composition h? : E, L {p} x K" ®2 K", is a K-vector space isomorphism, for

some integer r (the pair (U, h) is called a local trivialization).

If X is connected then the integer r above is independent of p, and called the rank

of a vector bundle.

Example. Consider the unit sphere S?> C R3. For every point p in S?, the plane
in R3 consisting of all vectors which are orthogonal to p is the tangent space TpS2

of S? at a point p. Then the tangent bundle TS? = H T,S? is a vector bundle of

peS?2
rank 2.
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Vector Bundles (Continued)

e Definition. A ringed space is a pair (X, Ox), where X is a topological space,
and Ox is a sheaf of rings on X.
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Vector Bundles (Continued)

e Definition. A ringed space is a pair (X, Ox), where X is a topological space,
and Ox is a sheaf of rings on X.

e Example. Let X be a C*° manifold, and let C$(C) denote the sheaf of C*

complex valued functions on X, that is, for an open subset U of X
CXC)U)={f:U—C|fisC>}.

Then, (X,C¥(C)) is a ringed space.
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e Definition. A ringed space is a pair (X, Ox), where X is a topological space,
and Ox is a sheaf of rings on X.

Example. Let X be a C* manifold, and let C$(C) denote the sheaf of C*°

complex valued functions on X, that is, for an open subset U of X
CXC)U)={f:U—C|fisC>}.

Then, (X,C¥(C)) is a ringed space.
Similarly if X is a complex manifold then (X, Ox) is a ringed space, where Ox

is the sheaf of holomorphic functions on X.

Definition. Let (X,Ox) be a ringed space. We say that an Ox-module F is
locally free if for every x € X, there exist an open neighborhood U of z, and a
set I such that Fly = Ogg)|U as an Ox |y-module.
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Vector Bundles (Continued)

e Definition. A ringed space is a pair (X, Ox), where X is a topological space,
and Ox is a sheaf of rings on X.

Example. Let X be a C*° manifold, and let C§(C) denote the sheaf of C*°

complex valued functions on X, that is, for an open subset U of X
CX(C)U)={f:U—=C|fisC>}.

Then, (X,C¥(C)) is a ringed space.

Similarly if X is a complex manifold then (X, Ox) is a ringed space, where Ox

is the sheaf of holomorphic functions on X.

Definition. Let (X,Ox) be a ringed space. We say that an Ox-module F is
locally free if for every x € X, there exist an open neighborhood U of x, and a
set I such that Fly = OE?‘U as an Ox |y-module.

Let X be a connected manifold. Then, the category of K-vector bundles on X
(K = R or C), and the category of locally free sheaf of finite rank are equivalent

categories.
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Connections

Let X be a complex manifold.
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Connections

Let X be a complex manifold.

e Definition. Let E be a C* complex vector bundle of rank r over X. A C*

connection V in E is a C-linear sheaf morphism,

V:AYE) — AY(E)

which satisfies the Leibnitz identity, V(fs) = fV(s) + df - s, for f € A",
s € A°(E), where AP(E) denotes the sheaf of C* p-forms with values in E.
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Connections

Let X be a complex manifold.

Definition. Let E be a C* complex vector bundle of rank r over X. A C*

connection V in E is a C-linear sheaf morphism,

V:AYE) — AY(E)

which satisfies the Leibnitz identity, V(fs) = fV(s) +df - s, for f € A°,
s € A°(E), where AP(E) denotes the sheaf of C*> p-forms with values in E.

We extend a C* connection V : AP(E) — APTL(E) using the Leibnitz rule.

A holomorphic connection D in a complex vector bundle E is also defined in

the same way by replacing C*° forms by holomorphic p-forms with values in E.

We say a C™ (respectively holomorphic) connection is flat if V2 = 0 (respectively
D2 =0).
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Connections (Continued)

Why such a map is called a connection?
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Connections (Continued)

Why such a map is called a connection?

e |t connects fibre along curves or more precisely

e Definition. Let E be a C* complex vector bundle over X equipped with a
C>°-connection V, and a smooth curve o : [0, 1] — X, with «(0) = a, a(1) = b.
Then, there is an induced C-linear map P, : E, — E} called a parallel transport

operator.
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Why such a map is called a connection?

e |t connects fibre along curves or more precisely

e Definition. Let E be a C* complex vector bundle over X equipped with a
C>°-connection V, and a smooth curve o : [0, 1] — X, with «(0) = a, a(1) = b.
Then, there is an induced C-linear map P, : E, — E} called a parallel transport

operator.

e If the connection is flat, then a parallel transport is invariant under smooth

homotopies.

©e
®Q



http://www.mri.ernet.in/

Connections (Continued)

Why such a map is called a connection?

It connects fibre along curves or more precisely

Definition. Let E be a C® complex vector bundle over X equipped with a
C>°-connection V, and a smooth curve o : [0, 1] — X, with «(0) = a, a(1) = b.
Then, there is an induced C-linear map P, : E, — E called a parallel transport

operator.

If the connection is flat, then a parallel transport is invariant under smooth

homotopies.

A vector bundle admits a flat connection if and only if it is defined by a repre-
sentation of the fundamental group p: 71 — GL(r, C).
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Connections (Continued)

e A C°° connection always exists in a C*° vector bundle.

©e
®Q


http://www.mri.ernet.in/

Connections (Continued)

e A C°° connection always exists in a C*° vector bundle.

e But this is not true in general in the holomorphic category.
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Connections (Continued)

e A C°° connection always exists in a C*° vector bundle.
e But this is not true in general in the holomorphic category.

e The obstruction for £ to have a holomorphic connection is in the Chern classes,
c;(E), 7> 0.
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Connections (Continued)

e A C°° connection always exists in a C*° vector bundle.
e But this is not true in general in the holomorphic category.

e The obstruction for £ to have a holomorphic connection is in the Chern classes,
Cj(E), 7> 0.

e Let X be a connected complex manifold of Kahler type, and E be a holomorphic

vector bundle over X. If E' admits a holomorphic connection, then all ¢;(E) €
H%(X,C) =0, for j > 0.
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Connections (Continued)

e A C°° connection always exists in a C*° vector bundle.
e But this is not true in general in the holomorphic category.

The obstruction for £/ to have a holomorphic connection is in the Chern classes,
Cj(E), 7> 0.

Let X be a connected complex manifold of Kahler type, and E be a holomorphic

vector bundle over X. If ' admits a holomorphic connection, then all ¢;(E) €
H%(X,C) =0, for j > 0.

But the converse is not true in general.
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Stable Vector Bundles

Let X be a Kahler manifold, and let & be its Kahler form. Then for any vector
bundle £ over X,

degree(E) = / ci(E) A O™,
M
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Stable Vector Bundles

Let X be a Kahler manifold, and let & be its Kahler form. Then for any vector
bundle £ over X,

degree(E) = / ci(E) A O™,
M

One can extend the definition of a degree for torsion free coherent sheaves.
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Stable Vector Bundles

Let X be a Kahler manifold, and let ® be its Kahler form. Then for any vector
bundle F over X,

degree(F) = / c1(E)A @™,
M

One can extend the definition of a degree for torsion free coherent sheaves.

Definition. A holomorphic vector bundle E over a compact Kahler manifold is
said to be stable (respectively semistable) if for every proper holomorphic coherent
subsheaf F with 0 < rank(F) < rank(E), we have

u(F) < u(E) (respectively u(F) < u(E)),

where ji(F) = Sl
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Stable Vector Bundles (Continued)

Stable vector bundles are important in physics, differential geometry. Stable vector
bundles over Riemann surfaces are closely related to Yang-Mills theory. Narasimhan-

Seshadri Theorem give this correspondence.

Theorem. (Narasimhan-Seshadri) A stable holomorphic vector bundle over a Rie-

mann surface admits a Einstein-Hermitian metric and conversely.
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Vector Bundles over Real Abelian Variety

e Definition. A real abelian variety is a real holomorphic manifold (X, o), where
the underlying complex manifold is an abelian variety, and the antiholomorphic
involution o is compatible with the group operation, that is, o(x 4+ y) = o(x) +
o(y) forall z,y € X.
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Vector Bundles over Real Abelian Variety

e Definition. A real abelian variety is a real holomorphic manifold (X, o), where
the underlying complex manifold is an abelian variety, and the antiholomorphic
involution o is compatible with the group operation, that is, o(x +y) = o(x) +
o(y) forall z,y € X.

e A Real holomorphic vector bundle over (X, o) is a pair (E,a), where E is a
holomorphic vector bundle, and o is an antiholomorphic involution compatible

with o.
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Vector Bundles over Real Abelian Variety

e Definition. A real abelian variety is a real holomorphic manifold (X, o), where
the underlying complex manifold is an abelian variety, and the antiholomorphic
involution o is compatible with the group operation, that is, o(x +y) = o(x) +
o(y) forall z,y € X.

A Real holomorphic vector bundle over (X, o) is a pair (E, o), where E is a
holomorphic vector bundle, and o is an antiholomorphic involution compatible

with o.

A vector bundle over an abelian variety is called homogeneous if it is invariant

under all translations.
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Vector Bundles over Real Abelian Variety

e Definition. A real abelian variety is a real holomorphic manifold (X, o), where
the underlying complex manifold is an abelian variety, and the antiholomorphic
involution o is compatible with the group operation, that is, o(z +vy) = o(x) +
o(y) forall z,y € X.

A Real holomorphic vector bundle over (X, o) is a pair (E,a”), where E is a
holomorphic vector bundle, and o is an antiholomorphic involution compatible

with o.

A vector bundle over an abelian variety is called homogeneous if it is invariant

under all translations.

Definition. If for all real point z € X (that is, o(z) = z), (7(E), ™= ) is
isomorphic to (E, o) in the category of Ox-mod™?!, then (E, o) is said to

be real homogeneous, where 7, : X — X, y — y + x is the translation of X
by x
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Vector Bundles over Real Abelian Variety (Continued)

e A real holomorphic connection in a real holomorphic vector bundle is a holo-

morphic connection, which is compatible with the real structure on E.
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Vector Bundles over Real Abelian Variety (Continued)

e A real holomorphic connection in a real holomorphic vector bundle is a holo-

morphic connection, which is compatible with the real structure on E.

e Definition. A real holomorphic vector bundle (E, %) over a compact real
Kahler manifold is said to be real stable (respectively real semistable) if for every
proper real holomorphic coherent subsheaf F with 0 < rank(F) < rank(FE), we
have u(F) < u(FE) (respectively u(F) < u(E)).
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Main Theorem

Theorem 1. Let (X, 0) be a real abelian variety, and let (E,a) be a real holo-

morphic vector bundle over X. Then the following are equivalent:
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Main Theorem

Theorem 1. Let (X, 0) be a real abelian variety, and let (E,a) be a real holo-

morphic vector bundle over X. Then the following are equivalent:

1. (E,a®) admits a real holomorphic connection.
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Main Theorem

Theorem 1. Let (X, 0) be a real abelian variety, and let (E,a) be a real holo-

morphic vector bundle over X. Then the following are equivalent:
1. (E,a®) admits a real holomorphic connection.

2. (E,a") is real homogeneous.
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Main Theorem

Theorem 1. Let (X, 0) be a real abelian variety, and let (E,a) be a real holo-

morphic vector bundle over X. Then the following are equivalent:
1. (E,a®) admits a real holomorphic connection.

2. (E,a") is real homogeneous.

3. (E,a®) is real semistable with c1(E) = c3(E) = 0.

©e
®Q


http://www.mri.ernet.in/

Main Theorem

Theorem 1. Let (X, 0) be a real abelian variety, and let (E,a) be a real holo-

morphic vector bundle over X. Then the following are equivalent:

1. (E, admits a real holomorphic connection.

EY s real homogeneous.

is real semistable with c1(F) = co(F) = 0.

o)
)
)
)

(E
. (B«
(E,a”) admits a filtration

E*: 0=FEyCFEiC---

such that E; is a real sub-bundle of (E,a%), ¢;(E;) = 0, for j = 1,2 and
i=1,...,n, and E;/E;_1 is real polystable.
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Main Theorem

Theorem 1. Let (X, 0) be a real abelian variety, and let (E, ") be a real holo-

morphic vector bundle over X. Then the following are equivalent:

1. (E,

admats a real holomorphic connection.

E

, ™) 18 real homogeneous.

is real semistable with c1(E) = c2(F) = 0.

o)
)
)
)

(E
. (B, a”
(E,a”) admits a filtration

E*: O0=EyCFE;C---

such that E; is a real sub-bundle of (E,a¥), ¢;(E;) =0, for j = 1,2 and
i=1,...,n, and E;/FE;_1 is real polystable.

. (E,a) admits a real flat holomorphic connection.
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