#### Chennai Mathematical Institute

http://www.cmi.ac.in/



1/12

#### **Vector Bundles over Real Abelian Varieties**

Archana S. Morye



To understand the following theorem

**Theorem.** Let X be a real abelian variety, and let E be a real holomorphic vector bundle over X. Then the following are equivalent:





To understand the following theorem

**Theorem.** Let X be a real abelian variety, and let E be a real holomorphic vector bundle over X. Then the following are equivalent:

• E admits a real flat holomorphic connection.





To understand the following theorem

**Theorem.** Let X be a real abelian variety, and let E be a real holomorphic vector bundle over X. Then the following are equivalent:

- E admits a real flat holomorphic connection.
- E is real homogeneous.





















To understand the following theorem

**Theorem.** Let X be a real abelian variety, and let E be a real holomorphic vector bundle over X. Then the following are equivalent:

- E admits a real flat holomorphic connection.
- E is real homogeneous.
- E is real semistable with  $c_1(E) = c_2(E) = 0$ .





















To understand the following theorem

**Theorem.** Let X be a real abelian variety, and let E be a real holomorphic vector bundle over X. Then the following are equivalent:

- E admits a real flat holomorphic connection.
- E is real homogeneous.
- E is real semistable with  $c_1(E) = c_2(E) = 0$ .





















**Definition.** A continuous map  $\pi: E \to X$  of one Hausdorff space, E, onto another, X, is called a K- $vector\ bundle$ , where K is  $\mathbf{R}$  or  $\mathbf{C}$ , if the following conditions are satisfied:























**Definition.** A continuous map  $\pi: E \to X$  of one Hausdorff space, E, onto another, X, is called a K- $vector\ bundle$ , where K is  $\mathbf{R}$  or  $\mathbf{C}$ , if the following conditions are satisfied:

1.  $E_p := \pi^{-1}(p)$ , for  $p \in X$ , is a K-vector space  $(E_p \text{ is called the } fiber \text{ over } p)$ .





















**Definition.** A continuous map  $\pi: E \to X$  of one Hausdorff space, E, onto another, X, is called a K- $vector\ bundle$ , where K is  $\mathbf{R}$  or  $\mathbf{C}$ , if the following conditions are satisfied:

- 1.  $E_p := \pi^{-1}(p)$ , for  $p \in X$ , is a K-vector space ( $E_p$  is called the  $\overline{fiber}$  over p).
- 2. For every  $p \in X$  there is a neighborhood U of p and a homeomorphism  $h: \pi^{-1}(U) \to U \times K^r$  such that  $h(E_p) \subset \{p\} \times K^r$ , and  $h^p$ , defined by the composition  $h^p: E_p \xrightarrow{h} \{p\} \times K^r \xrightarrow{\operatorname{pr}_2} K^r$ , is a K-vector space isomorphism, for some integer r (the pair (U,h) is called a  $local \ trivialization$ ).





















**Definition.** A continuous map  $\pi: E \to X$  of one Hausdorff space, E, onto another, X, is called a K- $vector\ bundle$ , where K is  $\mathbf{R}$  or  $\mathbf{C}$ , if the following conditions are satisfied:

- 1.  $E_p := \pi^{-1}(p)$ , for  $p \in X$ , is a K-vector space  $(E_p \text{ is called the } fiber \text{ over } p)$ .
- 2. For every  $p \in X$  there is a neighborhood U of p and a homeomorphism  $h: \pi^{-1}(U) \to U \times K^r$  such that  $h(E_p) \subset \{p\} \times K^r$ , and  $h^p$ , defined by the composition  $h^p: E_p \xrightarrow{h} \{p\} \times K^r \xrightarrow{\operatorname{pr}_2} K^r$ , is a K-vector space isomorphism, for some integer r (the pair (U,h) is called a  $local \ trivialization$ ).

If X is connected then the integer r above is independent of p, and called the rank of a vector bundle.





















**Definition.** A continuous map  $\pi: E \to X$  of one Hausdorff space, E, onto another, X, is called a K-vector bundle, where K is  $\mathbf{R}$  or  $\mathbf{C}$ , if the following conditions are satisfied:

- 1.  $E_p := \pi^{-1}(p)$ , for  $p \in X$ , is a K-vector space  $(E_p \text{ is called the } fiber \text{ over } p)$ .
- 2. For every  $p \in X$  there is a neighborhood U of p and a homeomorphism  $h: \pi^{-1}(U) \to U \times K^r$  such that  $h(E_p) \subset \{p\} \times K^r$ , and  $h^p$ , defined by the composition  $h^p: E_p \xrightarrow{h} \{p\} \times K^r \xrightarrow{\operatorname{pr}_2} K^r$ , is a K-vector space isomorphism, for some integer r (the pair (U,h) is called a  $local\ trivialization$ ).

If X is connected then the integer r above is independent of p, and called the rank of a vector bundle.

**Example.** Consider the unit sphere  $\mathbf{S}^2 \subset \mathbf{R}^3$ . For every point p in  $\mathbf{S}^2$ , the plane in  $\mathbf{R}^3$  consisting of all vectors which are orthogonal to p is the tangent space  $T_p\mathbf{S}^2$  of  $\mathbf{S}^2$  at a point p. Then the tangent bundle  $T\mathbf{S}^2 = \coprod_{p \in S^2} T_p\mathbf{S}^2$  is a vector bundle of



3/12

















rank 2.

• **Definition.** A *ringed space* is a pair  $(X, \mathcal{O}_X)$ , where X is a topological space, and  $\mathcal{O}_X$  is a sheaf of rings on X.





- **Definition.** A ringed space is a pair  $(X, \mathcal{O}_X)$ , where X is a topological space, and  $\mathcal{O}_X$  is a sheaf of rings on X.
- Example. Let X be a  $\mathcal{C}^{\infty}$  manifold, and let  $\mathcal{C}_X^{\infty}(\mathbf{C})$  denote the sheaf of  $\mathcal{C}^{\infty}$  complex valued functions on X, that is, for an open subset U of X

$$\mathcal{C}_X^{\infty}(\mathbf{C})(U) = \{ f : U \to \mathbf{C} \mid f \text{ is } \mathcal{C}^{\infty} \}.$$

Then,  $(X, \mathcal{C}_X^{\infty}(\mathbf{C}))$  is a ringed space.



















- **Definition.** A ringed space is a pair  $(X, \mathcal{O}_X)$ , where X is a topological space, and  $\mathcal{O}_X$  is a sheaf of rings on X.
- Example. Let X be a  $\mathcal{C}^{\infty}$  manifold, and let  $\mathcal{C}_X^{\infty}(\mathbf{C})$  denote the sheaf of  $\mathcal{C}^{\infty}$  complex valued functions on X, that is, for an open subset U of X

$$\mathcal{C}_X^{\infty}(\mathbf{C})(U) = \{ f : U \to \mathbf{C} \mid f \text{ is } \mathcal{C}^{\infty} \}.$$

Then,  $(X, \mathcal{C}_X^{\infty}(\mathbf{C}))$  is a ringed space.

Similarly if X is a complex manifold then  $(X, \mathcal{O}_X)$  is a ringed space, where  $\mathcal{O}_X$  is the sheaf of holomorphic functions on X.



















- **Definition.** A ringed space is a pair  $(X, \mathcal{O}_X)$ , where X is a topological space, and  $\mathcal{O}_X$  is a sheaf of rings on X.
- Example. Let X be a  $\mathcal{C}^{\infty}$  manifold, and let  $\mathcal{C}_X^{\infty}(\mathbf{C})$  denote the sheaf of  $\mathcal{C}^{\infty}$ complex valued functions on X, that is, for an open subset U of X

$$\mathcal{C}_X^{\infty}(\mathbf{C})(U) = \{ f : U \to \mathbf{C} \mid f \text{ is } \mathcal{C}^{\infty} \}.$$

Then,  $(X, \mathcal{C}_X^{\infty}(\mathbf{C}))$  is a ringed space.

Similarly if X is a complex manifold then  $(X, \mathcal{O}_X)$  is a ringed space, where  $\mathcal{O}_X$ is the sheaf of holomorphic functions on X.

• **Definition.** Let  $(X, \mathcal{O}_X)$  be a ringed space. We say that an  $\mathcal{O}_X$ -module  $\mathcal{F}$  is locally free if for every  $x \in X$ , there exist an open neighborhood U of x, and a set I such that  $\mathcal{F}|_U \cong \mathcal{O}_X^{(I)}|_U$  as an  $\mathcal{O}_X|_U$ -module.





















- **Definition.** A *ringed space* is a pair  $(X, \mathcal{O}_X)$ , where X is a topological space, and  $\mathcal{O}_X$  is a sheaf of rings on X.
- Example. Let X be a  $\mathcal{C}^{\infty}$  manifold, and let  $\mathcal{C}_X^{\infty}(\mathbf{C})$  denote the sheaf of  $\mathcal{C}^{\infty}$  complex valued functions on X, that is, for an open subset U of X

$$\mathcal{C}_X^{\infty}(\mathbf{C})(U) = \{ f : U \to \mathbf{C} \mid f \text{ is } \mathcal{C}^{\infty} \}.$$

Then,  $(X, \mathcal{C}_X^{\infty}(\mathbf{C}))$  is a ringed space.

Similarly if X is a complex manifold then  $(X, \mathcal{O}_X)$  is a ringed space, where  $\mathcal{O}_X$  is the sheaf of holomorphic functions on X.

- **Definition.** Let  $(X, \mathcal{O}_X)$  be a ringed space. We say that an  $\mathcal{O}_X$ -module  $\mathcal{F}$  is locally free if for every  $x \in X$ , there exist an open neighborhood U of x, and a set I such that  $\mathcal{F}|_U \cong \mathcal{O}_X^{(I)}|_U$  as an  $\mathcal{O}_X|_U$ -module.
- Let X be a connected manifold. Then, the category of K-vector bundles on X  $(K = \mathbf{R} \text{ or } \mathbf{C})$ , and the category of locally free sheaf of finite rank are equivalent categories.























Let X be a complex manifold.























Let X be a complex manifold.

• **Definition.** Let E be a  $\mathcal{C}^{\infty}$  complex vector bundle of rank r over X. A  $\mathcal{C}^{\infty}$  connection  $\nabla$  in E is a  $\mathbf{C}$ -linear sheaf morphism,

$$\nabla: A^0(E) \longrightarrow A^1(E)$$

which satisfies the Leibnitz identity,  $\nabla(fs) = f\nabla(s) + df \cdot s$ , for  $f \in A^0$ ,  $s \in A^0(E)$ , where  $A^p(E)$  denotes the sheaf of  $\mathcal{C}^{\infty}$  p-forms with values in E.





















Let X be a complex manifold.

• **Definition.** Let E be a  $\mathcal{C}^{\infty}$  complex vector bundle of rank r over X. A  $\mathcal{C}^{\infty}$  connection  $\nabla$  in E is a  $\mathbf{C}$ -linear sheaf morphism,

$$\nabla: A^0(E) \longrightarrow A^1(E)$$

which satisfies the Leibnitz identity,  $\nabla(fs) = f\nabla(s) + df \cdot s$ , for  $f \in A^0$ ,  $s \in A^0(E)$ , where  $A^p(E)$  denotes the sheaf of  $\mathcal{C}^{\infty}$  p-forms with values in E.

• We extend a  $C^{\infty}$  connection  $\nabla: A^p(E) \to A^{p+1}(E)$  using the Leibnitz rule.





















Let X be a complex manifold.

• **Definition.** Let E be a  $\mathcal{C}^{\infty}$  complex vector bundle of rank r over X. A  $\mathcal{C}^{\infty}$  connection  $\nabla$  in E is a  $\mathbf{C}$ -linear sheaf morphism,

$$\nabla: A^0(E) \longrightarrow A^1(E)$$

which satisfies the Leibnitz identity,  $\nabla(fs) = f\nabla(s) + df \cdot s$ , for  $f \in A^0$ ,  $s \in A^0(E)$ , where  $A^p(E)$  denotes the sheaf of  $\mathcal{C}^{\infty}$  p-forms with values in E.

- We extend a  $\mathcal{C}^{\infty}$  connection  $\nabla: A^p(E) \to A^{p+1}(E)$  using the Leibnitz rule.
- A  $holomorphic\ connection\ D$  in a complex vector bundle E is also defined in the same way by replacing  $\mathcal{C}^{\infty}$  forms by holomorphic p-forms with values in E.





















Let X be a complex manifold.

• **Definition.** Let E be a  $C^{\infty}$  complex vector bundle of rank r over X. A  $C^{\infty}$   $connection \nabla$  in E is a  $\mathbf{C}$ -linear sheaf morphism,

$$\nabla: A^0(E) \longrightarrow A^1(E)$$

which satisfies the Leibnitz identity,  $\nabla(fs) = f\nabla(s) + df \cdot s$ , for  $f \in A^0$ ,  $s \in A^0(E)$ , where  $A^p(E)$  denotes the sheaf of  $\mathcal{C}^{\infty}$  p-forms with values in E.

- We extend a  $\mathcal{C}^{\infty}$  connection  $\nabla: A^p(E) \to A^{p+1}(E)$  using the Leibnitz rule.
- A  $holomorphic\ connection\ D$  in a complex vector bundle E is also defined in the same way by replacing  $\mathcal{C}^{\infty}$  forms by holomorphic p-forms with values in E.
- We say a  $C^{\infty}$  (respectively holomorphic) connection is flat if  $\nabla^2 = 0$  (respectively  $D^2 = 0$ ).



















Why such a map is called a **connection**?























Why such a map is called a **connection**?

• It connects fibre along curves or more precisely























Why such a map is called a **connection**?

- It connects fibre along curves or more precisely
- **Definition.** Let E be a  $\mathcal{C}^{\infty}$  complex vector bundle over X equipped with a  $\mathcal{C}^{\infty}$ -connection  $\nabla$ , and a smooth curve  $\alpha:[0,1]\to X$ , with  $\alpha(0)=a$ ,  $\alpha(1)=b$ . Then, there is an induced  $\mathbf{C}$ -linear map  $P_{\alpha}:E_a\to E_b$  called a  $parallel\ transport$  operator.





















Why such a map is called a **connection**?

- It connects fibre along curves or more precisely
- **Definition.** Let E be a  $\mathcal{C}^{\infty}$  complex vector bundle over X equipped with a  $\mathcal{C}^{\infty}$ -connection  $\nabla$ , and a smooth curve  $\alpha:[0,1]\to X$ , with  $\alpha(0)=a$ ,  $\alpha(1)=b$ . Then, there is an induced **C**-linear map  $P_{\alpha}:E_a\to E_b$  called a  $parallel\ transport$  operator.
- If the connection is flat, then a parallel transport is invariant under smooth homotopies.





















Why such a map is called a **connection**?

- It connects fibre along curves or more precisely
- **Definition.** Let E be a  $\mathcal{C}^{\infty}$  complex vector bundle over X equipped with a  $\mathcal{C}^{\infty}$ -connection  $\nabla$ , and a smooth curve  $\alpha:[0,1]\to X$ , with  $\alpha(0)=a$ ,  $\alpha(1)=b$ . Then, there is an induced **C**-linear map  $P_{\alpha}:E_a\to E_b$  called a  $parallel\ transport$  operator.
- If the connection is flat, then a parallel transport is invariant under smooth homotopies.
- A vector bundle admits a flat connection if and only if it is defined by a representation of the fundamental group  $\rho: \pi_1 \to \operatorname{GL}(r, \mathbf{C})$ .





















ullet A  $\mathcal{C}^{\infty}$  connection always exists in a  $\mathcal{C}^{\infty}$  vector bundle.























- ullet A  $\mathcal{C}^{\infty}$  connection always exists in a  $\mathcal{C}^{\infty}$  vector bundle.
- But this is not true in general in the holomorphic category.























- ullet A  $\mathcal{C}^{\infty}$  connection always exists in a  $\mathcal{C}^{\infty}$  vector bundle.
- But this is not true in general in the holomorphic category.
- The obstruction for E to have a holomorphic connection is in the Chern classes,  $c_j(E),\ j>0.$























- A  $\mathcal{C}^{\infty}$  connection always exists in a  $\mathcal{C}^{\infty}$  vector bundle.
- But this is not true in general in the holomorphic category.
- The obstruction for E to have a holomorphic connection is in the Chern classes,  $c_j(E)$ , j > 0.
- Let X be a connected complex manifold of Kähler type, and E be a holomorphic vector bundle over X. If E admits a holomorphic connection, then all  $c_j(E) \in H^{2j}(X, \mathbf{C}) = 0$ , for j > 0.























- A  $\mathcal{C}^{\infty}$  connection always exists in a  $\mathcal{C}^{\infty}$  vector bundle.
- But this is not true in general in the holomorphic category.
- The obstruction for E to have a holomorphic connection is in the Chern classes,  $c_j(E), j > 0.$
- Let X be a connected complex manifold of Kähler type, and E be a holomorphic vector bundle over X. If E admits a holomorphic connection, then all  $c_i(E) \in$  $H^{2j}(X, \mathbf{C}) = 0$ , for j > 0.
- But the converse is not true in general.





















### **Stable Vector Bundles**

Let X be a Kähler manifold, and let  $\Phi$  be its Kähler form. Then for any vector bundle E over X,

$$degree(E) = \int_{M} c_1(E) \wedge \Phi^{n-1}.$$























### **Stable Vector Bundles**

Let X be a Kähler manifold, and let  $\Phi$  be its Kähler form. Then for any vector bundle E over X,

$$degree(E) = \int_M c_1(E) \wedge \Phi^{n-1}.$$

One can extend the definition of a degree for torsion free coherent sheaves.























#### **Stable Vector Bundles**

Let X be a Kähler manifold, and let  $\Phi$  be its Kähler form. Then for any vector bundle E over X,

$$degree(E) = \int_M c_1(E) \wedge \Phi^{n-1}.$$

One can extend the definition of a degree for torsion free coherent sheaves.

**Definition.** A holomorphic vector bundle E over a compact Kähler manifold is said to be stable (respectively semistable) if for every proper holomorphic coherent subsheaf  $\mathcal{F}$  with  $0 < \operatorname{rank}(\mathcal{F}) < \operatorname{rank}(E)$ , we have

$$\mu(\mathcal{F}) < \mu(E)$$
 (respectively  $\mu(\mathcal{F}) \le \mu(E)$ ),

where  $\mu(\mathcal{F}) = \frac{\text{degree}(\mathcal{F})}{\text{rank}(\mathcal{F})}$ .



















## **Stable Vector Bundles (Continued)**

Stable vector bundles are important in physics, differential geometry. Stable vector bundles over Riemann surfaces are closely related to Yang-Mills theory. Narasimhan-Seshadri Theorem give this correspondence.

**Theorem.** (Narasimhan-Seshadri) A stable holomorphic vector bundle over a Riemann surface admits a Einstein-Hermitian metric and conversely.





















• **Definition.** A real abelian variety is a real holomorphic manifold  $(X, \sigma)$ , where the underlying complex manifold is an abelian variety, and the antiholomorphic involution  $\sigma$  is compatible with the group operation, that is,  $\sigma(x+y) = \sigma(x) + \sigma(y)$  for all  $x, y \in X$ .























- **Definition.** A real abelian variety is a real holomorphic manifold  $(X, \sigma)$ , where the underlying complex manifold is an abelian variety, and the antiholomorphic involution  $\sigma$  is compatible with the group operation, that is,  $\sigma(x+y) = \sigma(x) + \sigma(y)$  for all  $x, y \in X$ .
- A  $Real\ holomorphic\ vector\ bundle\ over\ (X,\sigma)$  is a pair  $(E,\alpha^E)$ , where E is a holomorphic vector bundle, and  $\alpha^E$  is an antiholomorphic involution compatible with  $\sigma$ .























- **Definition.** A real abelian variety is a real holomorphic manifold  $(X, \sigma)$ , where the underlying complex manifold is an abelian variety, and the antiholomorphic involution  $\sigma$  is compatible with the group operation, that is,  $\sigma(x+y) = \sigma(x) + \sigma(y)$  for all  $x, y \in X$ .
- A  $Real\ holomorphic\ vector\ bundle\ over\ (X,\sigma)$  is a pair  $(E,\alpha^E)$ , where E is a holomorphic vector bundle, and  $\alpha^E$  is an antiholomorphic involution compatible with  $\sigma$ .
- A vector bundle over an abelian variety is called *homogeneous* if it is invariant under all translations.























- **Definition.** A real abelian variety is a real holomorphic manifold  $(X, \sigma)$ , where the underlying complex manifold is an abelian variety, and the antiholomorphic involution  $\sigma$  is compatible with the group operation, that is,  $\sigma(x+y) = \sigma(x) + \sigma(y)$  for all  $x, y \in X$ .
- A  $Real\ holomorphic\ vector\ bundle\ over\ (X,\sigma)$  is a pair  $(E,\alpha^E)$ , where E is a holomorphic vector bundle, and  $\alpha^E$  is an antiholomorphic involution compatible with  $\sigma$ .
- A vector bundle over an abelian variety is called *homogeneous* if it is invariant under all translations.
- **Definition.** If for all real point  $x \in X$  (that is,  $\sigma(x) = x$ ),  $(\tau_x^*(E), \alpha^{\tau_x^*(E)})$  is isomorphic to  $(E, \alpha^E)$  in the category of  $\mathcal{O}_X$ -mod<sup>real</sup>, then  $(E, \alpha^E)$  is said to be real homogeneous, where  $\tau_x : X \to X$ ,  $y \mapsto y + x$  is the translation of X by x





















## **Vector Bundles over Real Abelian Variety (Continued)**

ullet A  $real\ holomorphic\ connection$  in a real holomorphic vector bundle is a holomorphic connection, which is compatible with the real structure on E.





# Vector Bundles over Real Abelian Variety (Continued)

- A  $real\ holomorphic\ connection$  in a real holomorphic vector bundle is a holomorphic connection, which is compatible with the real structure on E.
- **Definition.** A real holomorphic vector bundle  $(E, \alpha^E)$  over a compact real Kähler manifold is said to be  $real\ stable$  (respectively  $real\ semistable$ ) if for every proper real holomorphic coherent subsheaf  $\mathcal F$  with  $0 < \operatorname{rank}(\mathcal F) < \operatorname{rank}(E)$ , we have  $\mu(\mathcal F) < \mu(E)$  (respectively  $\mu(\mathcal F) \le \mu(E)$ ).





















**Theorem 1.** Let  $(X, \sigma)$  be a real abelian variety, and let  $(E, \alpha^E)$  be a real holomorphic vector bundle over X. Then the following are equivalent:





**Theorem 1.** Let  $(X, \sigma)$  be a real abelian variety, and let  $(E, \alpha^E)$  be a real holomorphic vector bundle over X. Then the following are equivalent:

1.  $(E, \alpha^E)$  admits a real holomorphic connection.





**Theorem 1.** Let  $(X, \sigma)$  be a real abelian variety, and let  $(E, \alpha^E)$  be a real holomorphic vector bundle over X. Then the following are equivalent:

- 1.  $(E, \alpha^E)$  admits a real holomorphic connection.
- 2.  $(E, \alpha^E)$  is real homogeneous.





**Theorem 1.** Let  $(X, \sigma)$  be a real abelian variety, and let  $(E, \alpha^E)$  be a real holomorphic vector bundle over X. Then the following are equivalent:

- 1.  $(E, \alpha^E)$  admits a real holomorphic connection.
- 2.  $(E, \alpha^E)$  is real homogeneous.
- 3.  $(E, \alpha^E)$  is real semistable with  $c_1(E) = c_2(E) = 0$ .





**Theorem 1.** Let  $(X, \sigma)$  be a real abelian variety, and let  $(E, \alpha^E)$  be a real holomorphic vector bundle over X. Then the following are equivalent:

- 1.  $(E, \alpha^E)$  admits a real holomorphic connection.
- 2.  $(E, \alpha^E)$  is real homogeneous.
- 3.  $(E, \alpha^E)$  is real semistable with  $c_1(E) = c_2(E) = 0$ .
- 4.  $(E, \alpha^E)$  admits a filtration

$$E^{\bullet}: \quad 0=E_0\subset E_1\subset\cdots\subset E_n=E,$$

such that  $E_i$  is a real sub-bundle of  $(E, \alpha^E)$ ,  $c_j(E_i) = 0$ , for j = 1, 2 and i = 1, ..., n, and  $E_i/E_{i-1}$  is real polystable.



















**Theorem 1.** Let  $(X, \sigma)$  be a real abelian variety, and let  $(E, \alpha^E)$  be a real holomorphic vector bundle over X. Then the following are equivalent:

- 1.  $(E, \alpha^E)$  admits a real holomorphic connection.
- 2.  $(E, \alpha^E)$  is real homogeneous.
- 3.  $(E, \alpha^E)$  is real semistable with  $c_1(E) = c_2(E) = 0$ .
- 4.  $(E, \alpha^E)$  admits a filtration

$$E^{\bullet}: \quad 0=E_0\subset E_1\subset \cdots \subset E_n=E,$$

such that  $E_i$  is a real sub-bundle of  $(E, \alpha^E)$ ,  $c_j(E_i) = 0$ , for j = 1, 2 and i = 1, ..., n, and  $E_i/E_{i-1}$  is real polystable.

5.  $(E, \alpha^E)$  admits a real flat holomorphic connection.

















