Chennai Mathematical Institute http://www.cmi.ac.in/ 1/12 #### **Vector Bundles over Real Abelian Varieties** Archana S. Morye To understand the following theorem **Theorem.** Let X be a real abelian variety, and let E be a real holomorphic vector bundle over X. Then the following are equivalent: To understand the following theorem **Theorem.** Let X be a real abelian variety, and let E be a real holomorphic vector bundle over X. Then the following are equivalent: • E admits a real flat holomorphic connection. To understand the following theorem **Theorem.** Let X be a real abelian variety, and let E be a real holomorphic vector bundle over X. Then the following are equivalent: - E admits a real flat holomorphic connection. - E is real homogeneous. To understand the following theorem **Theorem.** Let X be a real abelian variety, and let E be a real holomorphic vector bundle over X. Then the following are equivalent: - E admits a real flat holomorphic connection. - E is real homogeneous. - E is real semistable with $c_1(E) = c_2(E) = 0$. To understand the following theorem **Theorem.** Let X be a real abelian variety, and let E be a real holomorphic vector bundle over X. Then the following are equivalent: - E admits a real flat holomorphic connection. - E is real homogeneous. - E is real semistable with $c_1(E) = c_2(E) = 0$. **Definition.** A continuous map $\pi: E \to X$ of one Hausdorff space, E, onto another, X, is called a K- $vector\ bundle$, where K is \mathbf{R} or \mathbf{C} , if the following conditions are satisfied: **Definition.** A continuous map $\pi: E \to X$ of one Hausdorff space, E, onto another, X, is called a K- $vector\ bundle$, where K is \mathbf{R} or \mathbf{C} , if the following conditions are satisfied: 1. $E_p := \pi^{-1}(p)$, for $p \in X$, is a K-vector space $(E_p \text{ is called the } fiber \text{ over } p)$. **Definition.** A continuous map $\pi: E \to X$ of one Hausdorff space, E, onto another, X, is called a K- $vector\ bundle$, where K is \mathbf{R} or \mathbf{C} , if the following conditions are satisfied: - 1. $E_p := \pi^{-1}(p)$, for $p \in X$, is a K-vector space (E_p is called the \overline{fiber} over p). - 2. For every $p \in X$ there is a neighborhood U of p and a homeomorphism $h: \pi^{-1}(U) \to U \times K^r$ such that $h(E_p) \subset \{p\} \times K^r$, and h^p , defined by the composition $h^p: E_p \xrightarrow{h} \{p\} \times K^r \xrightarrow{\operatorname{pr}_2} K^r$, is a K-vector space isomorphism, for some integer r (the pair (U,h) is called a $local \ trivialization$). **Definition.** A continuous map $\pi: E \to X$ of one Hausdorff space, E, onto another, X, is called a K- $vector\ bundle$, where K is \mathbf{R} or \mathbf{C} , if the following conditions are satisfied: - 1. $E_p := \pi^{-1}(p)$, for $p \in X$, is a K-vector space $(E_p \text{ is called the } fiber \text{ over } p)$. - 2. For every $p \in X$ there is a neighborhood U of p and a homeomorphism $h: \pi^{-1}(U) \to U \times K^r$ such that $h(E_p) \subset \{p\} \times K^r$, and h^p , defined by the composition $h^p: E_p \xrightarrow{h} \{p\} \times K^r \xrightarrow{\operatorname{pr}_2} K^r$, is a K-vector space isomorphism, for some integer r (the pair (U,h) is called a $local \ trivialization$). If X is connected then the integer r above is independent of p, and called the rank of a vector bundle. **Definition.** A continuous map $\pi: E \to X$ of one Hausdorff space, E, onto another, X, is called a K-vector bundle, where K is \mathbf{R} or \mathbf{C} , if the following conditions are satisfied: - 1. $E_p := \pi^{-1}(p)$, for $p \in X$, is a K-vector space $(E_p \text{ is called the } fiber \text{ over } p)$. - 2. For every $p \in X$ there is a neighborhood U of p and a homeomorphism $h: \pi^{-1}(U) \to U \times K^r$ such that $h(E_p) \subset \{p\} \times K^r$, and h^p , defined by the composition $h^p: E_p \xrightarrow{h} \{p\} \times K^r \xrightarrow{\operatorname{pr}_2} K^r$, is a K-vector space isomorphism, for some integer r (the pair (U,h) is called a $local\ trivialization$). If X is connected then the integer r above is independent of p, and called the rank of a vector bundle. **Example.** Consider the unit sphere $\mathbf{S}^2 \subset \mathbf{R}^3$. For every point p in \mathbf{S}^2 , the plane in \mathbf{R}^3 consisting of all vectors which are orthogonal to p is the tangent space $T_p\mathbf{S}^2$ of \mathbf{S}^2 at a point p. Then the tangent bundle $T\mathbf{S}^2 = \coprod_{p \in S^2} T_p\mathbf{S}^2$ is a vector bundle of 3/12 rank 2. • **Definition.** A *ringed space* is a pair (X, \mathcal{O}_X) , where X is a topological space, and \mathcal{O}_X is a sheaf of rings on X. - **Definition.** A ringed space is a pair (X, \mathcal{O}_X) , where X is a topological space, and \mathcal{O}_X is a sheaf of rings on X. - Example. Let X be a \mathcal{C}^{∞} manifold, and let $\mathcal{C}_X^{\infty}(\mathbf{C})$ denote the sheaf of \mathcal{C}^{∞} complex valued functions on X, that is, for an open subset U of X $$\mathcal{C}_X^{\infty}(\mathbf{C})(U) = \{ f : U \to \mathbf{C} \mid f \text{ is } \mathcal{C}^{\infty} \}.$$ Then, $(X, \mathcal{C}_X^{\infty}(\mathbf{C}))$ is a ringed space. - **Definition.** A ringed space is a pair (X, \mathcal{O}_X) , where X is a topological space, and \mathcal{O}_X is a sheaf of rings on X. - Example. Let X be a \mathcal{C}^{∞} manifold, and let $\mathcal{C}_X^{\infty}(\mathbf{C})$ denote the sheaf of \mathcal{C}^{∞} complex valued functions on X, that is, for an open subset U of X $$\mathcal{C}_X^{\infty}(\mathbf{C})(U) = \{ f : U \to \mathbf{C} \mid f \text{ is } \mathcal{C}^{\infty} \}.$$ Then, $(X, \mathcal{C}_X^{\infty}(\mathbf{C}))$ is a ringed space. Similarly if X is a complex manifold then (X, \mathcal{O}_X) is a ringed space, where \mathcal{O}_X is the sheaf of holomorphic functions on X. - **Definition.** A ringed space is a pair (X, \mathcal{O}_X) , where X is a topological space, and \mathcal{O}_X is a sheaf of rings on X. - Example. Let X be a \mathcal{C}^{∞} manifold, and let $\mathcal{C}_X^{\infty}(\mathbf{C})$ denote the sheaf of \mathcal{C}^{∞} complex valued functions on X, that is, for an open subset U of X $$\mathcal{C}_X^{\infty}(\mathbf{C})(U) = \{ f : U \to \mathbf{C} \mid f \text{ is } \mathcal{C}^{\infty} \}.$$ Then, $(X, \mathcal{C}_X^{\infty}(\mathbf{C}))$ is a ringed space. Similarly if X is a complex manifold then (X, \mathcal{O}_X) is a ringed space, where \mathcal{O}_X is the sheaf of holomorphic functions on X. • **Definition.** Let (X, \mathcal{O}_X) be a ringed space. We say that an \mathcal{O}_X -module \mathcal{F} is locally free if for every $x \in X$, there exist an open neighborhood U of x, and a set I such that $\mathcal{F}|_U \cong \mathcal{O}_X^{(I)}|_U$ as an $\mathcal{O}_X|_U$ -module. - **Definition.** A *ringed space* is a pair (X, \mathcal{O}_X) , where X is a topological space, and \mathcal{O}_X is a sheaf of rings on X. - Example. Let X be a \mathcal{C}^{∞} manifold, and let $\mathcal{C}_X^{\infty}(\mathbf{C})$ denote the sheaf of \mathcal{C}^{∞} complex valued functions on X, that is, for an open subset U of X $$\mathcal{C}_X^{\infty}(\mathbf{C})(U) = \{ f : U \to \mathbf{C} \mid f \text{ is } \mathcal{C}^{\infty} \}.$$ Then, $(X, \mathcal{C}_X^{\infty}(\mathbf{C}))$ is a ringed space. Similarly if X is a complex manifold then (X, \mathcal{O}_X) is a ringed space, where \mathcal{O}_X is the sheaf of holomorphic functions on X. - **Definition.** Let (X, \mathcal{O}_X) be a ringed space. We say that an \mathcal{O}_X -module \mathcal{F} is locally free if for every $x \in X$, there exist an open neighborhood U of x, and a set I such that $\mathcal{F}|_U \cong \mathcal{O}_X^{(I)}|_U$ as an $\mathcal{O}_X|_U$ -module. - Let X be a connected manifold. Then, the category of K-vector bundles on X $(K = \mathbf{R} \text{ or } \mathbf{C})$, and the category of locally free sheaf of finite rank are equivalent categories. Let X be a complex manifold. Let X be a complex manifold. • **Definition.** Let E be a \mathcal{C}^{∞} complex vector bundle of rank r over X. A \mathcal{C}^{∞} connection ∇ in E is a \mathbf{C} -linear sheaf morphism, $$\nabla: A^0(E) \longrightarrow A^1(E)$$ which satisfies the Leibnitz identity, $\nabla(fs) = f\nabla(s) + df \cdot s$, for $f \in A^0$, $s \in A^0(E)$, where $A^p(E)$ denotes the sheaf of \mathcal{C}^{∞} p-forms with values in E. Let X be a complex manifold. • **Definition.** Let E be a \mathcal{C}^{∞} complex vector bundle of rank r over X. A \mathcal{C}^{∞} connection ∇ in E is a \mathbf{C} -linear sheaf morphism, $$\nabla: A^0(E) \longrightarrow A^1(E)$$ which satisfies the Leibnitz identity, $\nabla(fs) = f\nabla(s) + df \cdot s$, for $f \in A^0$, $s \in A^0(E)$, where $A^p(E)$ denotes the sheaf of \mathcal{C}^{∞} p-forms with values in E. • We extend a C^{∞} connection $\nabla: A^p(E) \to A^{p+1}(E)$ using the Leibnitz rule. Let X be a complex manifold. • **Definition.** Let E be a \mathcal{C}^{∞} complex vector bundle of rank r over X. A \mathcal{C}^{∞} connection ∇ in E is a \mathbf{C} -linear sheaf morphism, $$\nabla: A^0(E) \longrightarrow A^1(E)$$ which satisfies the Leibnitz identity, $\nabla(fs) = f\nabla(s) + df \cdot s$, for $f \in A^0$, $s \in A^0(E)$, where $A^p(E)$ denotes the sheaf of \mathcal{C}^{∞} p-forms with values in E. - We extend a \mathcal{C}^{∞} connection $\nabla: A^p(E) \to A^{p+1}(E)$ using the Leibnitz rule. - A $holomorphic\ connection\ D$ in a complex vector bundle E is also defined in the same way by replacing \mathcal{C}^{∞} forms by holomorphic p-forms with values in E. Let X be a complex manifold. • **Definition.** Let E be a C^{∞} complex vector bundle of rank r over X. A C^{∞} $connection \nabla$ in E is a \mathbf{C} -linear sheaf morphism, $$\nabla: A^0(E) \longrightarrow A^1(E)$$ which satisfies the Leibnitz identity, $\nabla(fs) = f\nabla(s) + df \cdot s$, for $f \in A^0$, $s \in A^0(E)$, where $A^p(E)$ denotes the sheaf of \mathcal{C}^{∞} p-forms with values in E. - We extend a \mathcal{C}^{∞} connection $\nabla: A^p(E) \to A^{p+1}(E)$ using the Leibnitz rule. - A $holomorphic\ connection\ D$ in a complex vector bundle E is also defined in the same way by replacing \mathcal{C}^{∞} forms by holomorphic p-forms with values in E. - We say a C^{∞} (respectively holomorphic) connection is flat if $\nabla^2 = 0$ (respectively $D^2 = 0$). Why such a map is called a **connection**? Why such a map is called a **connection**? • It connects fibre along curves or more precisely Why such a map is called a **connection**? - It connects fibre along curves or more precisely - **Definition.** Let E be a \mathcal{C}^{∞} complex vector bundle over X equipped with a \mathcal{C}^{∞} -connection ∇ , and a smooth curve $\alpha:[0,1]\to X$, with $\alpha(0)=a$, $\alpha(1)=b$. Then, there is an induced \mathbf{C} -linear map $P_{\alpha}:E_a\to E_b$ called a $parallel\ transport$ operator. Why such a map is called a **connection**? - It connects fibre along curves or more precisely - **Definition.** Let E be a \mathcal{C}^{∞} complex vector bundle over X equipped with a \mathcal{C}^{∞} -connection ∇ , and a smooth curve $\alpha:[0,1]\to X$, with $\alpha(0)=a$, $\alpha(1)=b$. Then, there is an induced **C**-linear map $P_{\alpha}:E_a\to E_b$ called a $parallel\ transport$ operator. - If the connection is flat, then a parallel transport is invariant under smooth homotopies. Why such a map is called a **connection**? - It connects fibre along curves or more precisely - **Definition.** Let E be a \mathcal{C}^{∞} complex vector bundle over X equipped with a \mathcal{C}^{∞} -connection ∇ , and a smooth curve $\alpha:[0,1]\to X$, with $\alpha(0)=a$, $\alpha(1)=b$. Then, there is an induced **C**-linear map $P_{\alpha}:E_a\to E_b$ called a $parallel\ transport$ operator. - If the connection is flat, then a parallel transport is invariant under smooth homotopies. - A vector bundle admits a flat connection if and only if it is defined by a representation of the fundamental group $\rho: \pi_1 \to \operatorname{GL}(r, \mathbf{C})$. ullet A \mathcal{C}^{∞} connection always exists in a \mathcal{C}^{∞} vector bundle. - ullet A \mathcal{C}^{∞} connection always exists in a \mathcal{C}^{∞} vector bundle. - But this is not true in general in the holomorphic category. - ullet A \mathcal{C}^{∞} connection always exists in a \mathcal{C}^{∞} vector bundle. - But this is not true in general in the holomorphic category. - The obstruction for E to have a holomorphic connection is in the Chern classes, $c_j(E),\ j>0.$ - A \mathcal{C}^{∞} connection always exists in a \mathcal{C}^{∞} vector bundle. - But this is not true in general in the holomorphic category. - The obstruction for E to have a holomorphic connection is in the Chern classes, $c_j(E)$, j > 0. - Let X be a connected complex manifold of Kähler type, and E be a holomorphic vector bundle over X. If E admits a holomorphic connection, then all $c_j(E) \in H^{2j}(X, \mathbf{C}) = 0$, for j > 0. - A \mathcal{C}^{∞} connection always exists in a \mathcal{C}^{∞} vector bundle. - But this is not true in general in the holomorphic category. - The obstruction for E to have a holomorphic connection is in the Chern classes, $c_j(E), j > 0.$ - Let X be a connected complex manifold of Kähler type, and E be a holomorphic vector bundle over X. If E admits a holomorphic connection, then all $c_i(E) \in$ $H^{2j}(X, \mathbf{C}) = 0$, for j > 0. - But the converse is not true in general. ### **Stable Vector Bundles** Let X be a Kähler manifold, and let Φ be its Kähler form. Then for any vector bundle E over X, $$degree(E) = \int_{M} c_1(E) \wedge \Phi^{n-1}.$$ ### **Stable Vector Bundles** Let X be a Kähler manifold, and let Φ be its Kähler form. Then for any vector bundle E over X, $$degree(E) = \int_M c_1(E) \wedge \Phi^{n-1}.$$ One can extend the definition of a degree for torsion free coherent sheaves. #### **Stable Vector Bundles** Let X be a Kähler manifold, and let Φ be its Kähler form. Then for any vector bundle E over X, $$degree(E) = \int_M c_1(E) \wedge \Phi^{n-1}.$$ One can extend the definition of a degree for torsion free coherent sheaves. **Definition.** A holomorphic vector bundle E over a compact Kähler manifold is said to be stable (respectively semistable) if for every proper holomorphic coherent subsheaf \mathcal{F} with $0 < \operatorname{rank}(\mathcal{F}) < \operatorname{rank}(E)$, we have $$\mu(\mathcal{F}) < \mu(E)$$ (respectively $\mu(\mathcal{F}) \le \mu(E)$), where $\mu(\mathcal{F}) = \frac{\text{degree}(\mathcal{F})}{\text{rank}(\mathcal{F})}$. ## **Stable Vector Bundles (Continued)** Stable vector bundles are important in physics, differential geometry. Stable vector bundles over Riemann surfaces are closely related to Yang-Mills theory. Narasimhan-Seshadri Theorem give this correspondence. **Theorem.** (Narasimhan-Seshadri) A stable holomorphic vector bundle over a Riemann surface admits a Einstein-Hermitian metric and conversely. • **Definition.** A real abelian variety is a real holomorphic manifold (X, σ) , where the underlying complex manifold is an abelian variety, and the antiholomorphic involution σ is compatible with the group operation, that is, $\sigma(x+y) = \sigma(x) + \sigma(y)$ for all $x, y \in X$. - **Definition.** A real abelian variety is a real holomorphic manifold (X, σ) , where the underlying complex manifold is an abelian variety, and the antiholomorphic involution σ is compatible with the group operation, that is, $\sigma(x+y) = \sigma(x) + \sigma(y)$ for all $x, y \in X$. - A $Real\ holomorphic\ vector\ bundle\ over\ (X,\sigma)$ is a pair (E,α^E) , where E is a holomorphic vector bundle, and α^E is an antiholomorphic involution compatible with σ . - **Definition.** A real abelian variety is a real holomorphic manifold (X, σ) , where the underlying complex manifold is an abelian variety, and the antiholomorphic involution σ is compatible with the group operation, that is, $\sigma(x+y) = \sigma(x) + \sigma(y)$ for all $x, y \in X$. - A $Real\ holomorphic\ vector\ bundle\ over\ (X,\sigma)$ is a pair (E,α^E) , where E is a holomorphic vector bundle, and α^E is an antiholomorphic involution compatible with σ . - A vector bundle over an abelian variety is called *homogeneous* if it is invariant under all translations. - **Definition.** A real abelian variety is a real holomorphic manifold (X, σ) , where the underlying complex manifold is an abelian variety, and the antiholomorphic involution σ is compatible with the group operation, that is, $\sigma(x+y) = \sigma(x) + \sigma(y)$ for all $x, y \in X$. - A $Real\ holomorphic\ vector\ bundle\ over\ (X,\sigma)$ is a pair (E,α^E) , where E is a holomorphic vector bundle, and α^E is an antiholomorphic involution compatible with σ . - A vector bundle over an abelian variety is called *homogeneous* if it is invariant under all translations. - **Definition.** If for all real point $x \in X$ (that is, $\sigma(x) = x$), $(\tau_x^*(E), \alpha^{\tau_x^*(E)})$ is isomorphic to (E, α^E) in the category of \mathcal{O}_X -mod^{real}, then (E, α^E) is said to be real homogeneous, where $\tau_x : X \to X$, $y \mapsto y + x$ is the translation of X by x ## **Vector Bundles over Real Abelian Variety (Continued)** ullet A $real\ holomorphic\ connection$ in a real holomorphic vector bundle is a holomorphic connection, which is compatible with the real structure on E. # Vector Bundles over Real Abelian Variety (Continued) - A $real\ holomorphic\ connection$ in a real holomorphic vector bundle is a holomorphic connection, which is compatible with the real structure on E. - **Definition.** A real holomorphic vector bundle (E, α^E) over a compact real Kähler manifold is said to be $real\ stable$ (respectively $real\ semistable$) if for every proper real holomorphic coherent subsheaf $\mathcal F$ with $0 < \operatorname{rank}(\mathcal F) < \operatorname{rank}(E)$, we have $\mu(\mathcal F) < \mu(E)$ (respectively $\mu(\mathcal F) \le \mu(E)$). **Theorem 1.** Let (X, σ) be a real abelian variety, and let (E, α^E) be a real holomorphic vector bundle over X. Then the following are equivalent: **Theorem 1.** Let (X, σ) be a real abelian variety, and let (E, α^E) be a real holomorphic vector bundle over X. Then the following are equivalent: 1. (E, α^E) admits a real holomorphic connection. **Theorem 1.** Let (X, σ) be a real abelian variety, and let (E, α^E) be a real holomorphic vector bundle over X. Then the following are equivalent: - 1. (E, α^E) admits a real holomorphic connection. - 2. (E, α^E) is real homogeneous. **Theorem 1.** Let (X, σ) be a real abelian variety, and let (E, α^E) be a real holomorphic vector bundle over X. Then the following are equivalent: - 1. (E, α^E) admits a real holomorphic connection. - 2. (E, α^E) is real homogeneous. - 3. (E, α^E) is real semistable with $c_1(E) = c_2(E) = 0$. **Theorem 1.** Let (X, σ) be a real abelian variety, and let (E, α^E) be a real holomorphic vector bundle over X. Then the following are equivalent: - 1. (E, α^E) admits a real holomorphic connection. - 2. (E, α^E) is real homogeneous. - 3. (E, α^E) is real semistable with $c_1(E) = c_2(E) = 0$. - 4. (E, α^E) admits a filtration $$E^{\bullet}: \quad 0=E_0\subset E_1\subset\cdots\subset E_n=E,$$ such that E_i is a real sub-bundle of (E, α^E) , $c_j(E_i) = 0$, for j = 1, 2 and i = 1, ..., n, and E_i/E_{i-1} is real polystable. **Theorem 1.** Let (X, σ) be a real abelian variety, and let (E, α^E) be a real holomorphic vector bundle over X. Then the following are equivalent: - 1. (E, α^E) admits a real holomorphic connection. - 2. (E, α^E) is real homogeneous. - 3. (E, α^E) is real semistable with $c_1(E) = c_2(E) = 0$. - 4. (E, α^E) admits a filtration $$E^{\bullet}: \quad 0=E_0\subset E_1\subset \cdots \subset E_n=E,$$ such that E_i is a real sub-bundle of (E, α^E) , $c_j(E_i) = 0$, for j = 1, 2 and i = 1, ..., n, and E_i/E_{i-1} is real polystable. 5. (E, α^E) admits a real flat holomorphic connection.