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Abstract

We show birationality of the morphism associated to line bundles L of type

(1, ..., 1, 2, ..., 2, 4, ..., 4) on a generic g−dimensional abelian variety into its com-

plete linear system such that h0(L) = 2g. When g = 3, we describe the image of

the abelian threefold and from the geometry of the moduli space SUC(2) in the

linear system |2θC |, we obtain analogous results in IPH0(L).

Mathematics Classification Number: 14C20, 14J17, 14J30, 14K10, 14K25.

1 Introduction

Let L be an ample line bundle of type δ = (δ1, δ2, ..., δg) on a g-dimensional abelian

variety A. Consider the associated rational map φL : A −→ IPH0(A,L).

When g = 2, Birkenhake, Lange and van Straten ( see [3]) have studied line bundles

of type (1, 4) on abelian surfaces. Suppose L is an ample line bundle of type (1, 4) on

an abelian surface A. Then there is a cyclic covering π : A −→ B of degree 4 and a line

bundle M on B such that π∗M = L. Let X denote the unique divisor in |M | and put

Y = π−1(X). Their main theorem is
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Theorem 1.1 1) φL : A −→ A′ ⊂ IP 3 is birational onto a singular octic A′ in IP 3 if

and only if X and Y do not admit elliptic involutions compatible with the action of the

Galois group of π.

2)In the exceptional case φL : A −→ A′ ⊂ IP 3 is a double covering of a singular

quartic A′, which is birational to an elliptic scroll.

Here we generalise this situation to higher dimensions and show

Theorem 1.2 Suppose L is an ample line bundle of type δ = (1, ..., 1, 2, ..., 2, 4, ..., 4)

on a g-dimensional abelian variety A, g ≥ 3, such that 1 and 4 occur equally often and

atleast once in δ. Then, for a generic pair (A,L), the following holds.

a) The associated morphism φL : A −→ IPH0(A,L) is birational onto its image.

b) When g = 3, the image φL(A), can be described as follows,

there are 4 curves Ci on the image φL(A) such that the restricted morphism φL :

φ−1
L (Ci) −→ Ci ⊂ φL(A) is of degree 2.

Birkenhake et.al (see [3], Proposition 1.7, p.631) have shown the existence of the

following commutative diagram

A
φL−→ φL(A) ⊂ IP 3 = IPH0(L)

↓π ↓ ↓p

B
φ

M2

−→ K(B) ⊂ IP 3 = IPH0(M2)

where p(z0 : z1 : z1 : z3) = (z2
0 : z2

1 : z2
2 : z2

3) and the pair (B,M) is a principally

polarized abelian surface. This diagram explains the geometry of the image φL(A) from

the geometry of the Kummer surface K(B) and it also gives the explicit equation of the

surface φL(A) in IP 3.

Similarly, when g ≥ 3 and the pair (A,L) as in 1.2, we show that there is a commu-

tative diagram:

A
φL−→ φL(A) ⊂ IP 2g−1 = IPH0(L

↓π ↓ ↓p

B
φ

M2

−→ K(B) ⊂ IP 2g−1 = IPH0(M2)

where p(z0 : ... : z2g−1) = (z2
0 : ... : z2

2g−1) and π is an isogeny of degree 2g and the

pair (B,M) is a principally polarized abelian variety. This will explain the birationality

of the map φL and the geometry of the image φL(A), when g = 3, as asserted in 1.2.

Since deg(φM2 ◦π) = 2g+1 and from the birationality of φL, it follows that deg(p|φL(A)) =

2g+1. But since degp = 22g−1 the inverse image of the Kummer variety in IPH0(L) has
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components other than the image φL(A). Hence the image φL(A) will be defined by

forms other than those coming from those forms which define the variety K(B).

We study the situation when g = 3, in detail. Consider a pair (A,L), with L

being an ample line bundle of type (1, 2, 4) on an abelian threefold A. Consider an

isogeny A −→ B = A/G, where G is a maximal isotropic subgroup of K(L) of the type
ZZ
2ZZ

× ZZ
2ZZ

× ZZ
2ZZ

. Then B is a principally polarized abelian threefold. If B is isomorphic

to the Jacobian variety of C, J(C), where C is a smooth non-hyperelliptic curve of

genus 3, then the situation becomes interesting because of the following results due to

Narasimhan and Ramanan.

Theorem 1.3 (See [12], Main Theorem, p.416) If C is a non-hyperelliptic curve of

genus 3, then the moduli space SUC(2) is isomorphic to a quartic hypersurface in IP 7.

( Here IP 7 = |2θ|, where θ is the canonical principal polarization on the Jacobian J(C)

and SUC(2) is the moduli space of rank 2 semi-stable vector bundles with trivial deter-

minant on the curve C).

Theorem 1.4 ( See [11]) The Kummer variety K is precisely the singular locus of

SUC(2), if g(C) ≥ 3.

The quartic hypersurface, F = 0, is classically called the Coble quartic and is G(2θ)-

invariant in the linear system |2θ|. We identify the group of projective transformations,

H , of order 8, which acts on π−1K(C), (see 3.7). The G(L)-invariant octic hypersurface

R, given as F (z2
0 : ... : z2

7) = 0 in IPH0(L), then contains the components h(φL(A)), h ∈

H in its singular locus.

Now we use the geometry of the moduli space SUC(2) in the linear system |2θ|, which

has been extensively studied ( see [5], for instance), to get analogous results in IPH0(L).

We show

Theorem 1.5 Consider a pair (A,L), as above. Let a ∈ K(L) be an element of order

2 such that eL(a, g) = −1, for all g ∈ G, (here eL is the Weil form on the group K(L)).

Let IPWa be an eigenspace in IPH0(L), for the action of a. Then there is a polarized

abelian surface (Z,N), N is ample of type (1, 4) and a commutative diagram

Z
φN−→ φN(Z) ⊂ IPH0(N) ≃ IPWa

↓f ↓ ↓q ↓p

Pa
φ2θa−→ K(Pa) ⊂ IPH0(2θa) ≃ IPVa
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Here (Pa, θa) is the Prym variety associated to the 2-sheeted unramified cover of the

curve C, given by π(a) and IPVa is the eigenspace in IPH0(2θ), for the action of π(a).

The isomorphisms above are Heisenberg equivariant and the morphism q is given as

(r0 : r1 : r2 : r3) 7→ (r2
0 : r2

1 : r2
2 : r2

3).

We thus obtain the situation described by Birkenhake et.al in the case g = 2, nested

in the case g = 3.

Moreover, the G(N)-invariant octic surface φN(Z) is mapped isomorphically onto the

a⊥/a(≃ Heis(4))-octic R ∩ IPWa and we identify the set ∩h∈Hh(φL(A)) with the set of

all pinch points and the coordinate points in φN(Z), occurring in each of the eigenspace

IPWa, (see 5.6). Finally, we make some remarks on the moduli space A(1,2,4).

Acknowledgements: We thank W.M.Oxbury and B.van Geemen for making useful

comments in an earlier version. We are grateful to Christian Pauly for suggestions

during revision. We also thank the French Ministry of National Education, Research

and Technology, for their support.

Notation : Suppose L is a symmetric line bundle i.e. L ≃ i∗L for the involution

i : A −→ A, a 7→ −a.

The fixed group of L is K(L) = {a ∈ A : L ≃ t∗aL}, ta : A −→ A, x 7→ a+ x.

The theta group of L is G(L) = {(a, φ) : L
φ
≃ t∗aL}.

K1(δ) = ZZ
d1ZZ

× ...× ZZ
dgZZ

, and K̂1(δ) = Hom(K1(δ), IC
∗).

The Heisenberg group of type δ, Heis(δ) = IC∗ ×K1(δ) × K̂1(δ) and V (δ) = {f : f :

K1(δ) −→ IC}.

The Weil form eL : K (L)×K (L) −→ IC ∗, is the commutator map (x, y) 7→ x′y′x′−1y′−1,

for any lifts x′, y′ ∈ G(L) of x, y ∈ K(L).

For any a ∈ K(L), a⊥ = {x ∈ K(L) : eL(a, x) = 1}.

Consider the semi-direct product, G(L)(×(i), of the theta group associated to L and

the group generated by the involution i. Let γ ∈ G(L)(×(i) be an element of order 2.

H0(L)±γ = (±1)−eigenspace of H0(L) for the action of γ.

h0(L)±γ = dimH0(L)±γ .

Q(V ) = function field of a variety V .
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2 Birationality of the map φL.

Let L be an ample line bundle of type δ = (1, ..2, .., 4) on a g-dimensional abelian variety

A. Here number of 2’s= number of 4’s in δ. Let K(L) = {a ∈ A : t∗aL ≃ L}, where

ta denotes translation by a on A. Choose a maximal isotropic subgroup G of K(L)

w.r.t. the Weil form eL, containing 2K(L) and having only elements of order 2. Then

G ≃ ZZ
2ZZ

× ...× ZZ
2ZZ

, g-times. Consider the exact sequence

1 −→ IC∗ −→ G(L) −→ K(L) −→ 0.

Let G′ be a lift of G in G(L). Consider the isogeny A
π

−→ B = A/G. Then L descends

to a principal polarization M on B. By Projection formula and using the fact that

π∗OA = ⊕χ∈ĜLχ, where Lχ denotes the line bundle corresponding to the character χ,

we deduce that

H0(L) = ⊕χ∈ĜH
0(M ⊗ Lχ).

Hence {sχ ∈ H0(M ⊗ Lχ) : χ ∈ Ĝ} is a basis for the vector space H0(L) and since

M2 ⊗ L2
χ ≃M2, s2

χ = sχ ⊗ sχ ∈ H0(M2)∀χ ∈ Ĝ.

Consider the homomorphism ǫ2 : G(L) −→ G(L2), (x, φ) 7→ (x, φ⊗2) and the inclusion

K(L) ⊂ K(L2).

Then the subgroup G ⊂ K(L2) is isotropic for the Weil form eL
2

. Moreover, if

x ∈ K(L) and g ∈ G, then

eL
2

(x, g) = eL(x, g).eL(x, g) = 1.

Hence ǫ2(G(L)) ⊂ Z(ǫ2(G
′

)) and π(K(L)) ⊂ K(M2). ( Here Z(ǫ2(G
‘)) = {a ∈ G(L2) :

a.g
′

= g
′

.a, ∀g
′

∈ ǫ2(G
′

)}).

Now G(M2) = Z(ǫ2(G
′

))/ǫ2(G
′

) and H0(M2) = H0(L2)G
′

, where H0(L2)G
′

denotes

the vector subspace of ǫ2(G
′

)-fixed sections of H0(L2). For g′ ∈ G′ and χ ∈ Ĝ, g′(s2
χ) =

χ2(g).s2
χ = s2

χ. Hence s2
χ ∈ H0(L2)G

′

, for all χ ∈ Ĝ.

We now show that {s2
χ : χ ∈ Ĝ} is a basis for H0(M2), for a generic pair (A,L)..

In fact, we show that the homomorphism

∑

χ∈Ĝ

H0(M ⊗ Lχ).H
0(M ⊗ Lχ)

ρ
−→ H0(M2)...(∗)

is an isomorphism, for a generic pair (A,L).
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Consider the pair (A,L) = (E1 × ...× Er×, A1 × ...As, p
∗
1L1 ⊗ ...⊗ p∗r+sLr+s), where

r is the number of 2’s occurring in δ, E1, ..., Er are elliptic curves with line bundles Li

on Ei of degree 2 and Aj are simple abelian surfaces with line bundles Lj on Aj of type

(1, 4) ( by 1.1, φLj
(Aj) ⊂ |Lj| is an octic surface).

In this case, one can easily see that the homomorphism

S = Sym2H0(L1)⊗...⊗Sym
2H0(Lr+s) −→ H0(L2

1)⊗...⊗H
0(L2

r+s) = H0(L2
1⊗...⊗L

2
r+s)

is injective. Here, (B,M) = (F1,M1) × ... × (Fr,Mr) × (B1,M
′
1) × ...(Bs,M

′
s), where

(Fj ,Mj) are polarised elliptic curves of degree 1 and (Bj ,Mj) are principally polarised

abelian surfaces. Also, the groupG is generated by elements of the type (e1, .., er, a
′
r+1, .., a

′
g),

where each of ej and a′j are non-trivial 2 torsion elements of Ej and Aj , respectively.

Now it is easy to see that
∑
χ∈ĜH

0(M ⊗ Lχ).H
0(M ⊗ Lχ) ⊂ S and H0(M2) ⊂ H0(L2)

and (*) is an isomorphism.

Hence, for a generic pair (A,L) as above, (*) is an isomorphism.

As a consequence, we obtain the following

Proposition 2.1 Consider a generic principally polarized abelian variety (B′,M ′) of

dimension g. Let H be a subgroup of 2-torsion points of B′, of order g. Then the image

of H in K(B′) generates the linear system |2M ′|.

( This is well known if H consists of all the 2-torsion points of B′, for any principally

polarised pair (B′,M ′).)

Proof: Since the map B′ φ
2M′

−→ |2M ′| is given by a 7→ t∗aθ + t∗−aθ, where θ is the

unique divisor in |M ′|, the assertion is equivalent to showing the surjectivity of the

multiplication map

∑

χ∈Ĥ

H0(M ′ ⊗ Lχ) ⊗H0(M ′ ⊗ Lχ)
ρ

−→ H0(M ′2)..(!).

Here Ĥ is the dual image of H in Pic0(B′). But we showed above this isomorphism, if

Ĥ gives rise to a g-sheeted cover (A′, L′) of (B′,M ′), where L′ is of type (1, .., 2, .., 4).

Otherwise, Ĥ gives a cover (A′, L′) where L′ is of type (2, 2, ..., 2). By similar argument

used in proving (*), (!) is still true when A′ = E1 × ... × Eg and L′ = L1 × L2... × Lg,

where Lj are line bundles of degree 2 on the elliptic curves Ej . Hence our assertion is

true for a generic pair (B′,M ′). 2
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So, for a generic pair (A,L), the map IPH0(L) −→ IPH0(M2), given as (..., sχ, ...) 7→

(..., s2
χ, ...) is a morphism and we obtain a commutative diagram (I),

A
φL−→ φL(A) ⊂ IP 2g−1 = IPH0(L)

↓π ↓ ↓p

B = A/G
φ

M2

−→ K(B) ⊂ IP 2g−1 = IPH0(M2)

where p(..., sχ, ...) = (..., s2
χ, ...).

Remark 2.2 Since φM2 ◦ π is a morphism, φL is a morphism i.e. L is base point free.

Lemma 2.3 Consider a pair (A,L) as in 1.2. Let γ ∈ G(L)(×(i) be an element of order

2. Then H0(L) 6= H0(L)±γ .

Proof: Case 1: Suppose γ = g ∈ G(L). Then the action of γ is fixed point free on A.

Hence by Atiyah- Bott fixed point theorem,

h0(L)+
γ = h0(L)−γ = h0(L)/2.

Case 2: Suppose γ = i. Then

h0(L)±i = h0(L)/2 ± 2g−s−1

( see [1], 4.6.6), where s is the number of odd integers occurring in the type of L.

Case 3: Suppose γ = i.g and H0(L) = H0(L)+
γ , where g ∈ G(L) is an element

of order 2. Let s ∈ H0(L)−g . Then γ(s) = s gives i(s) = −s, i.e. s ∈ H0(L)−i .

Hence H0(L)−g ⊂ H0(L)−i . But this contradicts the fact that h0(L)−g = 2g−1 and

h0(L)−i = 2g−1 − 2g−s−1 (here s > 1). Similarly H0(L) 6= H0(L)−γ . 2

Suppose φL is not birational and is a finite morphism of degree d, d > 1. Notice

that A
φ

M2◦π
−→ K(B) is a Galois covering with Galois group (G, i) ≃ ( ZZ

2ZZ
)g+1 and we have

the extension of fields, Q(K(B)) −→ Q(φL(A)) −→ Q(A). Hence the Galois group of

Q(A) over Q(φL(A)) is a subgroup of (G, i), say H , of order d. Let γ ∈ H . Then γ is an

involution on A, given as a 7→ ǫa + g where ǫ = ±1, g ∈ G and it induces an involution

γ
′

on H0(L).

Hence φL factorizes as A
ψ1−→ A/(γ)

ψ2−→ φL(A) ⊂ IP 2g−1. This means that the

morphism ψ2 is given by the pair (N,H0(L)+
γ
′ ) or (N

′

, H0(L)−
γ
′ ), where N and N

′

are

line bundles on A/(γ) whose pullback to A is L. By 2.3, H0(L) 6= H0(L)±
γ
′ and hence

φL(A) is a degenerate variety in IP 2g−1. This contradicts the fact that the morphism φL

is given by a complete linear system. Hence φL is a birational morphism.
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3 Configuration when g = 3

Assume g = 3. Choose a theta structure f : G(L) −→ Heis(2, 4), ( i.e. f is an isomor-

phism which restricts to identity on IC∗.) This induces an isomorphism H0(L) ≃ V (2, 4)

and a level structure K(L) ≃ ZZ
2ZZ

⊕ ZZ
4ZZ

⊕ ZZ
2ZZ

⊕ ZZ
4ZZ

. Let σ1, τ1, σ2, τ2 be the generators of

the summands such that o(σi) = 2 and o(τi) = 4. The Weil form eL is given as

eL(σ1, σ2) = −1

eL(τ1, τ2) = −i

eL(σi, τj) = 1.

Then we see that the subgroup G =< σ1, τ
2
1 , τ

2
2 > of K(L) is maximal isotropic for the

form eL.

We may assume L is strongly symmetric (see [10], Remark 2.4., p.160), i.e., eL∗ (g) = 1

for all g ∈ K(L)2, after choosing a normalized isomorphism ψ : L ≃ i∗(L), i.e. ψ(0) =

+1. Here eL∗ : A2 −→ {±1} is a quadratic form whose value at an element a, of order 2

is the action of ψ at the fibre of L at a.

Consider the exact sequence

1 −→ IC∗ −→ G(L) −→ K(L) −→ 0

and the homomorphism δ−1 : G(L) −→ G(L), z 7→ izi. Then δ−1(z) = αz−1 for some

α ∈ IC∗.

By [6], Proposition 2.3, p.141, we further assume that f is a symmetric theta structure,

i.e. f ◦ δ−1 = D−1 ◦ f , where D−1 : Heis(δ) −→ Heis(δ) is the homomorphism

(α, x, l) 7→ (α,−x,−l).

Lemma 3.1 If z ∈ G(L) is an element of order 2 and z 6= ±1 then δ−1(z) = eL∗ (z)z.

Proof: : See [8], Proposition 3, p.309. 2

Remark 3.2 Let σ
′

1, σ
′

2, τ
′

1, τ
′

2 ∈ G(L) be lifts of σ1, σ2, τ1, τ2 such that o(σ
′

i) = 2, o(τ
′

i ) =

4. Since τ 2
i ∈ G, eL∗ (τ 2

i ) = 1, hence by 3.1, δ−1((τ
′

i )
2) = (τ

′

i )
2. Hence δ−1(τ

′

i ) = c.τ
′−1

i , c =

±1. We may assume c = +1, by suitably altering the lift τ
′

i .
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Let G
′

=< σ
′

1, (τ
′

1)
2, (τ

′

2)
2 >⊂ G(L).

Then L descends to a principal polarization M on B = A/G.

As remarked in Section 2,

H0(L) = ⊕χ∈ĜH
0(M ⊗ Lχ)

and {sχ ∈ H0(M ⊗ Lχ), χ ∈ Ĝ} form a basis of H0(L).

Consider the commutative diagram,

A
ψL−→ Pic0(A)

↓π ↑ π̂

B
ψM−→ Pic0(B)

where ψL(a) = t∗aL ⊗ L−1 and ψM(b) = t∗bM ⊗M−1. Then ψM is an isomorphism

and since π̂(Lχ) = 0, we have π−1ψ−1
M (Lχ) ∈ K(L)∀χ ∈ Ĝ. Hence M ⊗ Lχ ≃ t∗bM

where b ∈ π(K(L)). The basis elements {sχ}χ∈Ĝ can be written as s0, s1 = σ
′

2(s0), s2 =

τ
′

1(s0), s3 = τ
′

2(s0), s4 = σ
′

2τ
′

1(s0), s5 = σ
′

2τ
′

2(s0), s6 = τ
′

1τ
′

2(s0), s7 = σ
′

2τ
′

1τ
′

2(s0).

Lemma 3.3 If a ∈ K(L)2, then a.i = i.a.

Proof: By 3.1, δ−1(a) = eL∗ (a)a. Since eL∗ (a) = 1, a.i = i.a. 2

In particular, g
′

i(s0) = ig
′

(s0), for all g
′

∈ G
′

. Since g
′

s0 = s0, i(s0) ∈ H0(M). This

implies that i(s0) = ±s0. We may assume i(s0) = s0.

Lemma 3.4 a) iσ
′

2(s0) = σ
′

2(s0).

b) iτ ′j(s0) = τ
′

j(s0).

c) iσ
′

2τ
′

j(s0) = σ
′

2τ
′

j(s0).

d) iτ
′

1τ
′

2(s0) = −τ
′

1τ
′

2(s0).

e)iσ
′

2τ
′

1τ
′

2(s0) = −σ
′

2τ
′

1τ
′

2(s0)

Proof: We will use 3.3 and the fact that g
′

(s0) = s0, for all g
′

∈ G
′

.

a) iσ′
2(s0) = σ′

2i(s0) = σ
′

2(s0).

b) iτ ′j(s0) = τ ′−1
j i(s0) = τ ′3j (s0) = τ

′

j(s0), ( since τ ′2j ∈ G′).

c) iσ
′

2τ
′

j(s0) = σ′
2iτ

′
j(s0) = σ

′

2τ
′

j(s0).

d) iτ
′

1τ
′

2(s0) = τ ′−1
1 iτ ′2(s0) = τ ′1τ

′2
1 τ

′
2(s0) = −τ ′1τ

′
2τ

′2
1 (s0) = −τ

′

1τ
′

2(s0) ( since eL(τ ′21 , τ
′
2) =

−1, τ ′21 ∈ G′).

e) iσ
′

2τ
′

1τ
′

2(s0) = σ′
2iτ

′

1τ
′

2(s0) − σ
′

2τ
′

1τ
′

2(s0) 2

Hence we have shown the following.
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Proposition 3.5 The vector subspace H0(L)+
i of H0(L) is generated by the sections

s0, s1, s2, s3, s4, s5 and the subspace H0(L)−i of H0(L) is generated by the sections s6 and

s7.

We then have the commutative diagram,

A
φL−→ φL(A) ⊂ IP (H0(L))

↓π ↓ ↓p

B = A/G
φ

M2

−→ K(B) ⊂ IP (H0(M2))

...(I).

Here degree(p) = 27 and degree(π) = 8. Since we have shown that φL is a birational

morphism, degree(φL) = 1 and hence degree(p|φL(A)) = 24. The ramification locus of

p|φL(A) is
⋃7
i=0(Hi∩φL(A)), where Hi is the hyperplane {si = 0} in IP (H0(L)), 0 ≤ i ≤ 7.

Consider the group J generated by the projective transformations αi,

(s0, ..., si, ..., s7) 7→ (s0, ...,−si, ..., s7)

for i = 1, ..., 7.

Then order(J) = 27 and the group J is the Galois group of the finite morphism p.

Proposition 3.6 The group G′× < i > can be identified as a subgroup of J .

Proof: : Since the action of g ∈ G on the abelian threefold is fixed point free, the

±1-eigenspaces of H0(L) under the transformation g ∈ G
′

are equidimensional. Also,

g(sχ) = χ(g).sχ, for all χ ∈ Ĝ, implies that g = αiαjαkαl ∈ J , for some 0 ≤ i < j < k <

l ≤ 7. Here α0 = α1α2...α7. By 3.5, i(s0 : ... : s7) = (s0 : ... : s5 : −s6 : −s7). Hence the

involution i = α6.α7. Hence we can identify G
′

× < i > as a subgroup of J . 2

Moreover, since the Galois group of the morphism p, Gal(p) = J and the subgroup

G′× < i >⊂ J , leaves the image φL(A) invariant in IPH0(L), we have the following

Proposition 3.7 Consider the commutative diagram (I). The inverse image of the va-

riety, K(B), has eight distinct components h(φL(A)), where h ∈ J/(G′× < i >).

In Section 2, we have seen that {t0 = s2
0, t1 = σ′

2(s
2
0), t2 = τ ′1(s

2
0), t3 = τ ′2(s

2
0), t4 =

σ′
2τ

′
1(s

2
0), t5 = σ′

2τ
′
2(s

2
0), t6 = τ ′1τ

′
2(s

2
0), t7 = σ′

2τ
′
1τ

′
2(s

2
0)}

form a basis of H0(M2).

Remark 3.8 ( We use the same notations for the elements in K(L) and their images

in K(M2).) The elements σ′
2, τ

′
1, τ

′
2 of G(M2) act on these sections as follows.
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σ
′

2 τ
′

1 τ
′

2

t0 t1 t2 t3

t1 t0 t4 t5

t2 t4 t0 −t6

t3 t5 t6 t0

t4 t2 t1 −t7

t5 t3 t7 t1

t6 t7 t3 −t2

t7 t6 t5 −t4

Now let Hi = {si = 0} denote the coordinate hyperplanes in IPH0(L), for i =

0, 1, ..., 7. Consider the curve C = H6 ∩H7 ∩ φL(A). Then the involution i acts trivially

on the curve C and hence the degree of the restricted morphism φ−1
L (C) −→ C is at

least 2.

Proposition 3.9 The restricted morphism φ′
L : φ−1

L (C) −→ C is of degree 2.

Proof: : Consider the commutative diagram

φ−1
L (C)

φ′
L−→ C

↓π′ ↓p′

φ−1
M2(p(C))

φ′
M2

−→ p(C)

Suppose the degree of the restricted morphism φ′
L is greater than 2. Since the Galois

group of the morphism φ′
M2 ◦ π′ is the group G× < i >, the Galois group of φ′

L contains

an element g ∈ G. Hence the element g acts trivially on the curve C. This means that

C is contained in one of the eigenspaces IPW± of IPH0(L), for the action of g. We claim

that the intersection φL(A) ∩ IPW± is at most a finite set of points. This will give a

contradiction.

If g⊥ = {a ∈ K(L) : eL(a, g) = 1}, then g⊥

<g>
≃ Heis(1, 1, 4) or Heis(1, 2, 2) and the

group g⊥

<g>
acts on the linear space IPW±. Hence projecting from IPW± gives a map

φg : A
<g>

−→ IPW∓, which is base point free in the first case ( by [2]) and has a finite

base locus in the second case ( by [10]). This proves our claim. 2

Now, the group G leaves the curve C invariant and moreover since σ2(H6) = H7, we

get σ2(C) = C. Hence the curves

τ1(C) = H3 ∩H5 ∩ φL(A)

11



τ2(C) = H2 ∩H4 ∩ φL(A)

τ1.τ2(C) = H0 ∩H1 ∩ φL(A)

are also invariant for the action of σ2 and since for x ∈ C, i(x) = x, i.τ 2
j (τj(x)) =

τ 2
j .τ

−1
j i(x) = τj(x). By K(L)-invariance of the image φL(A), we get

Corollary 3.10 The morphism φL restricts to a morphism of degree 2 on the curves

φ−1
L (C), φ−1

L (τ1(C)), φ−1
L (τ2(C)) and φ−1

L (τ1.τ2(C)), onto their respective images. More-

over, the Galois groups of these restricted morphisms are < i >, < i.τ2
1 >, < i.τ2

2 > and

< i.τ 2
1 .τ

2
2 >, respectively.

Let A+
2 denote the set of points of order 2 on A where the involution i acts on the

fibre of L at those points as +1 and A−
2 denote the set of points where i acts as −1. By

[1], Remark 4.7.7, cardinality(A+
2 ) = 48 and cardinality(A−

2 ) = 16. Hence if a ∈ A−
2

and s ∈ H0(L)+
i , then s(a) = 0. This implies that for a ∈ A−

2 ,φL(a) = (0 : 0 : ... : 0 : c1 :

c2) ∈ IPH0(L), for some c1, c2 ∈ IC.

Proposition 3.11 Let a ∈ A+
2 ( respectively A−

2 ) and g ∈ K(L)2. Then a + g ∈ A+
2 (

respectively A−
2 ).

Proof: : Let g ∈ K(L)2 and (g, φ) ∈ G(L) be a lift of order 2 and ψ : L −→ i∗(L) be

the normalized isomorphism. By [7], Proposition 3, p.309,

δ−1(g, φ) = (g, (t∗gψ)−1 ◦ i∗φ ◦ ψ)

= eL∗ (g).(g, φ)

= (g, φ) (since L is strongly symmetric).

Hence the following diagram commutes

L
ψ
≃ i∗(L)

↓φ ↓ i∗(φ)

t∗gL
t∗g(ψ)
≃ i∗t∗gL = t∗g(i

∗L)

Evaluating at a ∈ A+
2 ( respectively A−

2 ), gives ψ(a) = t∗g(ψ)(a) = ψ(a + g), i.e.

a+ g ∈ A+
2 ( respectively A−

2 ). 2

Now let a ∈ A−
2 then φL(a) = (0 : ... : c1, c2) for some c1, c2 ∈ IC. Then σ2φL(a) =

(0 : ... : c2 : c1). We may assume c2 6= 0. Let P0 = φL(a) = (0 : ... : c : 1) and

Q0 = p(P0) = (0 : ... : c2 : 1), for some c ∈ IC.
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Proposition 3.12 The points h(P0), h ∈ K(L)/ < τ2
1 , τ

2
2 > are of degree 4 on the

image φL(A).

Proof: : By 3.11, the action of G on the set A−
2 has two distinct orbits, namely

O1 = {a + g : g ∈ G} and O2 = {a + σ2 + g : g ∈ G}. Then φM2 ◦ π(O1) = Q0

and φM2 ◦ π(O2) = σ2(Q0). Notice that P0 ∈ τ1(C) ∩ τ2(C) ∩ τ1.τ2(C). Hence, by

3.10, φ−1
L (P0) = {a, a + 2τ1, a+ 2τ2, a+ 2τ1 + 2τ2}. The assertion now follows from the

K(L)-invariance of the image φL(A). 2

Corollary 3.13 The points b(Q0), where b ∈< π(σ2), π(τ1), π(τ2) >, lie on the Kummer

K(B).

4 Prym Varieties

We recall few facts on Prym varieties ( see [5], [9], [12], for details).

Let C be a smooth projective curve of genus g. We will assume C has no vanishing

theta nulls. In particular, when g = 3, this means C is a non-hyperelliptic curve. A point

of order 2, in X = Jac(C), say x, defines an unramified 2- sheeted cover Cx of C, qx :

Cx −→ C. Let Px = Ker(Nm(qx) : Jac(Cx) −→ X)o, where ‘o‘ denotes the connected

component containing 0 ∈ Jac(Cx). Here Nm(qx)(O(
∑
riPi)) = O(

∑
riqx(Pi)) is the

norm map. This defines a principally polarized abelian variety (Px, θPx
), of dimension

g − 1. Since the kernel of the dual map q
′

x : X −→ Jac(Cx) is generated by the element

x, qx
′ induces an isomorphism x⊥/x −→ Px[2]. Since qx∗OCx

≃ OC ⊕ x, we have

detqx∗OCx
≃ x. Hence det(qx∗(p)) is also x, for any p ∈ ker(Nm(qx)).

Fix a z ∈ X with z2 ≃ x. This gives a map

ψx : Ker(Nm(qx)) ≃ Px ∪ Px −→ SUC(2).

where ψx(p) = (qx∗p) ⊗ z.

The image of ψx is independent of the choice of z. Recall the map

SUC(2)
φ

−→ |2θC | ≃ IP (H0(SUC(2),L))

where L generates Pic(SUC(2)) ≃ ZZ.

Let IPV +
x and IPV −

x be the two eigenspaces for the action of x on |2θC |. Then there is

one component of Ker(Nm(qx)) in each eigenspace. So we get a map φx : Px −→ IPVx.
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Proposition 4.1 The map φx : Px −→ IPVx is the natural map

Px −→ K(Px) ⊂ IP (H0(Px, 2θPx
) ≃ IPVx.

Proof: : See [5], Proposition 1, p.745.

Proposition 4.2 For any curve C and any x in X[2] − {0}, we have K(C) ∩ IPVx =

K(Px[2]), ( the Schottky Jung relations).

Proof: : See [5], Proposition 2 (1), p.746.

5 Situation in IP (H0(L)), when g = 3.

We now assume B = J(C), where J(C) is the Jacobian of a non-hyperelliptic curve C

of genus 3. (This is the generic situation, since the dimension of the moduli space of

principally polarized abelian threefolds is 6 which equals the dimension of the mod-

uli space of curves of genus 3.) Recall the results of Narasimhan and Ramanan (

Theorem1.3, Theorem1.4), to obtain a morphism

J(C)
φ2θ−→ K(C) ⊂ F ⊂ |2θ|

where

1) F is a quartic hypersurface and is the isomorphic image of the moduli space

SUC(2) and

2) the Kummer variety K(C) is precisely the singular locus of F .

We will use the following

Proposition 5.1 Let L be an ample line bundle of type δ = (d1, d2, ..., dg) on an abelian

variety A. Then the set of irreducible representations of the theta group G(L), where

α ∈ IC∗ acts as multiplication by αn( called as of ’weight n’), is in bijection with the

set of characters on the subgroup of n−torsion elements, K(L)n, of K(L). Moreover,

the dimension of any such representation is d1.d2...dg

(n,d1)...(n,dg)
. ( (n, di) denotes the greatest

common divisor of n and di.)

Proof: : When n = 2, the statement is proved in [6], Proposition 3.2, p.142. The same

proof holds when n > 2, by choosing a section over the subgroup of n-torsion elements,

K(L)n, of K(L) in the exact sequence

1 −→ IC∗ −→ G(L) −→ K(L) −→ 0
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in the proof of [6], Proposition 3.2. 2

Corollary 5.2 The quartic F in |2θ| is G(2θ)-invariant and the linear span of the eight

cubics {dF
dti
} for i = 0, 1, ..., 7 form an irreducible G(2θ)-module where α ∈ IC∗ acts as

multiplication by α3.

Proof: : Consider the multiplication maps SymnH0(2θ)
ρn
−→ H0(2nθ). Then In =

Ker(ρn) = vector space of degree n forms containing the image K(B) in IPH0(2θ). Since

the vector spaces SymnH0(2θ) and H0(2nθ) ( via the homomorphism G(2θ)
ǫn−→ G(2nθ))

are G(2θ)-modules, of weight n and ρn is equivariant for the G(2θ)-action, In is also a

G(2θ)-module of weight n. Now the homogenous polynomial F ∈ I4 and the partial

derivatives dF
dti

∈ I3. By 5.1, it follows that F is G(2θ)-invariant , upto scalars. If

z ∈ G(2θ), then z dF
dti

= d(zF )
d(zti)

= α dF
d(zti)

∈ W = IC{dF
dti

}7
i=0, for some scalar α. Hence W is

a G(2θ)-module of weight 3. By 5.1, dimension of such an irreducible representation is

8. This proves our assertion. 2

Similarly, we see that R = F (s2
0, ..., s

2
7) is a G(L)-invariant octic hypersurface in

IPH0(L), by applying 5.1.

Recall the Weil form eL on K(L) and the isotropic subgroup G =< σ1, τ
2
1 , τ

2
2 >⊂

K(L). Then eL(σ2 + g, σ1) = −1, for all g ∈ G. Let a = σ2 + g, for g ∈ G and

a′ = σ′
2 + g′ ∈ G(L).

Recall the basis {s0, s1, ..., s7} of H0(L) and {s2
0, ..., s

2
7} of H0(M2), (see Section

3). Let W+
a and W−

a denote the eigen spaces in H0(L), for the action of a′. Now

IPW±
a = {s = 0 : s ∈ W∓

a } and IPV +
a = {t = 0 : t ∈ H0(M2)−a }. Now W±

σ2
=

IC{s0 ± s1, s2 ± s4, s3 ± s5, s6 ± s7} and H0(M2)−σ2
= IC{s2

0 − s2
1, s

3
2 − s2

4, s
2
3 − s2

5, s
2
6 − s2

7}.

Then p restricts on IPW±
σ2

−→ IPV +
σ2

as (s0; s2 : s3, s6) 7→ (s2
0 : s2

2 : s2
3 : s2

6), of degree

23. Similarly, one checks that if a = σ2 + g, g ∈ G then p restricts to IPW±
a −→ IPV +

σ2

as (z0 : ... : z3) 7→ (z2
0 : ... : z2

3) of degree 23.

Proposition 5.3 Consider a principally polarized abelian surface (Y, P ), which is not a

product of elliptic curves. Let y1, y2 ∈ Y be elements of order 2, such that eP
2

(y1, y2) =

−1. Then we have the following.

1) There is a polarized abelian surface (Z,N), such that N is strongly symmetric of

type (1, 4) and there is a covering map f : Z −→ Y with the Galois group of the map f

being isomorphic to ZZ/2ZZ × ZZ/2ZZ.
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2) The vector space H0(N) can be written as

H0(N) = H0(P ) ⊕H0(t∗y1P ) ⊕H0(t∗y2P ) ⊕H0(t∗y1+y2
P ).

and there is a commutative diagram

Z
φN−→ φN(Z) ⊂ IP 3 = IPH0(N)

↓f ↓ ↓q

Y
φ

P2

−→ K(Y ) ⊂ IP 3 = IPH0(M2)

where q(r0 : r1 : r2 : r3) = (r2
0 : r2

1 : r2
2 : r2

3). Here {r0, r1, r2, r3} is a basis obtained

from above decomposition of H0(N), such that r0, r1, r3 ∈ H0(N)+
i and r3 ∈ H0(N)−i .

Proof: : 1) Consider the isomorphism φP : Y −→ Pic0(Y ), b 7→ t∗bP ⊗ P−1. Let Ly1

and Ly2 denote the images of y1 and y2 under this map. These two line bundles define

an unramified cover, f : Z −→ Y , whose Galois group is isomorphic to ZZ/2ZZ × ZZ/2ZZ,

as asserted.

Then N = f ∗P is an ample line bundle and dimH0(N) = 4. So to see that N is

of type (1, 4), it is enough to show that K(N) has an element of order 4. Consider the

commutative diagram

Z
ψN−→ Pic0(Z)

↓f ↑ f̂

Y
ψM−→ Pic0(Y )

Then f̂ ◦ ψM (yi) = 0. This implies that if z1 and z2 are in Z such that f(zi) = yi,

then z1, z2 ∈ K(N). Moreover, since eP
2

(y1, y2) = −1 and N2 ≃ f ∗(P 2), we have

eN
2

(z1, z2) = −1. This gives eN(z1, z2) = ±i. Hence the elements z1, z2 ∈ K(N) are of

order 4.

2) Clearly, f∗N = P ⊕ (P ⊗ Ly1) ⊕ (P ⊗ Ly2) ⊕ (P ⊗ Ly1+y2). Now, in the algebraic

equivalence class of N , there are strongly symmetric line bundles. Hence, by tensoring

P with a suitable line bundle of order 2, we may assume that N = f ∗P is strongly

symmetric and r0 ∈ H0(P ) is such that i(r0) = r0.

Since N is strongly symmetric, by 3.1, δ−1(z
′

j)
2 = (z

′

j)
2, for some lifts z

′

j ∈ G(N) of

zj ∈ K(N). We may further choose the lifts such that δ−1(z
′

j) = (z
′

j)
−1, ( as in 3.2).

In particular, the descent data of N to P is K
′

=< (z
′

1)
2, (z

′

2)
2 >⊂ G(N), which is a

splitting over K =< z2
i , z

2
2 >⊂ K(N) in the exact sequence

1 −→ IC∗ −→ G(N) −→ K(N) −→ 0.
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This means (z
′

j)
2r0 = r0. Also this gives

As in 3.5, we see that

i.z
′

j(r0) = z
′

j(r0)

and

i.z
′

1.z
′

2(r0) = −z
′

1.z
′

2(r0).

Thus r0, r1 = z
′

1(r0), r2 = z
′

2(r0) ∈ H0(N)+
i and r3 = z

′

1.z
′

2(r0) ∈ H0(N)−i .

Hence one sees as earlier that Gal(q) =< z2
1 , z

2
2 , i >, with a commuatative diagram

as in 5.3. 2

Proposition 5.4 Let a = σ2+g, g ∈ G and IPWa denote an eigenspace of a in IPH0(L).

Then there is an abelian surface Z and a symmetric line bundle N on Z of type (1, 4)

such that Z
φN−→ IP (H0(N))

Heis(4)
≃ IPWa ⊂ IPH0(L). Moreover, under this isomorphism,

the image φN(Z) is mapped onto the Heis(4)-invariant surface S = R∩ IPWa, where R

is the Heis(2, 4)- invariant hypersurface of degree 8 in IPH0(L), defined by F (s2
0 : s2

1 :

, , , :, s2
7) = 0. ( F being the Coble quartic).

Proof: : Consider the restricted morphism p : IPWa −→ IPVa, given as (z0 : ... :

z3) 7→ (z2
0 : ... : z2

3). Then a acts trivially on IPWa and a⊥/a(≃ Heis(4)) acts on IPWa,

(here a⊥ = {y ∈ K(L) : eL(a, y) = 1}). Hence there is a Heis(4)- action on IPWa and

similarly a Heis(2, 2)- action on IPVa. By 4.1, there is a principally polarized abelian

surface (Pa, θCa
), (Pa being the Prym variety associated to the element π(a) ∈ K(M2)),

such that

Pa −→ K(Pa) ⊂ |2θCa
| ≃ IPVa.

Consider the images of τ1, τ2, which are elements of order 2 in J(C). Since eL
2

(τi, a) = 1,

for the Weil form e2θ on J(C)[2], π(τ1), π(τ2) ∈ π(a)⊥/π(a). Moreover, e2θ(π(τ1), π(τ2)) =

−1. By 4.2, the points φM2 ◦ π(τi), are nodes in the Kummer of the Prym variety Pa.

These nodes correspond to elements of order 2 in Pa, say β1 and β2. Since the Weil form

e2θCa on Pa[2] is induced from the Weil form e2θ, we have e2θCa (β1, β2) = −1. By 5.3,

there is a polarized abelian surface (Z,N) of type (1, 4), such that the following diagram

commutes
Z

φN−→ φN(Z) ⊂ IPH0(N)

↓f ↓ ↓q

Pa
φ2θCa−→ K(Pa) ⊂ |2θCa

|
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and for the choice of basis {r0, r1, r2, r3}, in 5.3 2), the morphism q is defined as

(r0 : r1 : r2 : r3) 7→ (r2
0 : r2

1 : r2
2 : r2

3), with Gal(q) =< z2
1 , z

2
2, i >, (zj as in 5.3).

Now, R is the Heis(2, 4)-invariant octic F (s2
0 : ... : s2

7) = 0, where F is the Coble

quartic. Note that S = R ∩ IPWa is a⊥/a-invariant and is mapped onto the Kummer,

K(Pa), under the restriction morphism. Moreover, the Galois group of p|S is < τ 2
1 , τ

2
2 , i >

which is isomorphic to the Galois group of q. Hence there is a Heis(4)- isomorphism

IPH0(N) −→ IPWa, such that the Heisenberg invariant octic surface φN(Z) is mapped

onto the Heis(4)-invariant octic surface S = R ∩ IPWa. This proves the assertion. 2

It is known that the Kummer K(Pa), has 6 of its nodes in each of the coordinate

hyperplane, namely the coordinate points and 3 other distinct points. The preimages of

the coordinate points are the coordinate points in IPH0(N) and q is etale over the other

3 points which are the pinch points of φN(Z) in the respective coordinate hyperplane.

Proposition 5.5 φN(Z) has exactly 48 pinch points, 12 in each coordinate hyperplane.

Proof: : See [3], Proposition 2.2, p.633.

Let Ta denote the set of pinch points and the coordinate points in φN(Z).

Proposition 5.6 The components h(φL(A)), h ∈ H (here H = J/(G
′

× i)) and IPWa

intersect at the subset Ta of φN(Z). In particular ∩h∈Hh(φL(A)) = ∪a=σ2+g,g∈GTa.

Proof: : Since π−1K(C) = ∪h∈Hh(φL(A)), by 4.2 and 5.5, we conclude that h(φL(A))∩

IPWa = Ta, for all h ∈ H . This gives the assertion. 2

6 Some remarks

a) Consider the moduli space Al
(1,2,4) of triples (A, c1(L), f), where f : K(L) −→

ZZ/DZZ × ZZ/DZZ is a level structure, ( here D = (1, 2, 4)). Consider the subset of

Al
(1,2,4), A

lo
(1,2,4), parametrizing triples which admit a (ZZ/2ZZ)3−isogeny to the Jacobian

of a non-hyperelliptic curve.

Since dimAlo
(1,2,4) = dimAl

(1,2,4) = 6 and c1(L) gives a birational morphism , Alo
(1,2,4)

is an open subset of Al
(1,2,4).

Consider a triple (A, c1(L), f) ∈ Alo
(1,2,4). We have seen that there is a Heis(2, 4)-

invariant octic hypersurface R, defined by F (s2
0 : s2

1 : ... : s2
7) = 0, ( F being the Coble

quartic), such that φL(A) ⊂ R ⊂ IPV (2, 4). In fact h(φL(A)) ⊂ Sing(R), for all h ∈ H ,

( H as in 5.6).
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Now F is a Heis(2, 2, 2)-invariant quartic polynomial in IPV (2, 2, 2). Since the

space of Heis(2, 2, 2)-invariant quartics is 14-dimensional, ( see [4], p.186]), the space of

Heis(2, 4)-invariant octics in IP 7 which are of the form R = F (s2
0 : ... : s2

7) where F is a

Heis(2, 2, 2)-invariant quartic, is also 14-dimensional. Call this space as

P (Sym8V (2, 4)Heis(2,4)
′

) = IP 14.

So there is a morphism

Alo
(1,2,4)

T
−→ IP 14

where T is defined as (A, c1(L), f) 7→ R.

One may try to study this morphism, from a moduli point of view.

b) Consider the special basis {s2
0, ..., s

2
7} ( which is different from the usual Heisenberg

basis) of H0(2θ) and the action of the elements of the subgroup < σ2, τ
2
1 , τ

2
2 >⊂ K(2θ)

on this basis ( see 3.8).

Also, by 3.12, the points b(P0) ∈ φL(A), where b ∈< σ2, τ1, τ2 >⊂ K(L), P0 = (0 :

... : 0 : c : 1) and the point Q0 = (0 : ... : 0 : c2 : 1) ∈ K(C), for some non-zero c ∈ IC.

With these data, in addition to knowing the geometry of SUC(2) in |2θ|- linear system

one may try to know the equation of the Coble quartic, in terms of this basis {s2
0, ..., s

2
7}.
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