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Plan of the Talk

• Introduction.

• Main Theorem and some special consequences.

• Some examples.
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Introduction

• The Serre-Swan Theorem is about the categorical equivalence of vector bundles

and that of finitely generated projective modules.

• J. P. Serre in 1955 proved this equivalence in the case of affine schemes.

• In 1962 R. G. Swan proved the same equivalence for topological manifolds.

• In this talk we will try to formulate the Serre-Swan Theorem in the frame work

of ringed spaces.

http://www.mri.ernet.in/
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Preliminaries

• Definition. A ringed space is a pair (X,OX), where X is a topological space,

and OX is a sheaf of ringed on X. A locally ringed space is a ringed space

(X,OX), such that for all x ∈ X, OX,x is a local ring.

• For a locally ringed space (X,OX), let mX,x denotes the unique maximal ideal of

OX,x. We will denote by k(x) the residue field of X at x, k(x) = OX,x/mX,x.

• We will denote by OX -mod the category of OX -modules on X.

• For any ring A, let A-mod denote the category of A-modules.

• For ringed space (X,OX), we have a canonical functor

Γ(X, •) : OX -mod→ A-mod

F 7→ Γ(X,F),

where A is the ring Γ(X,OX).

http://www.mri.ernet.in/
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Examples of Locally Ringed Spaces

• Example 1: Affine Scheme

Let A be a ring, and X = Spec(A). Then there exists a sheaf of rings Ã such

that for every f ∈ A, Ã(D(f)) = Af , where D(f) = {p ∈ Spec(A) | f /∈ p}.
Then (Spec(A), Ã) is a locally ringed space.

Definition. An affine scheme is a locally ringed space (X,OX) isomorphic to

(Spec(A), Ã), for some ring A. In fact A = Γ(X,OX).

• Example 2: Topological Space

Let X be a topological space, and let CX denote the sheaf of continuous real

valued functions on X. Then, (X, CX) is a locally ringed space.

Similarly (X, C∞X (R), (X, C∞X (C)) are examples of locally ringed spaces.

http://www.mri.ernet.in/
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The Serre-Swan Theorem

• Let (X,OX) be a locally ringed space, and let A denote the ring Γ(X,OX).

• Definition. We say that an OX -module F is locally free if for every x ∈ X,

there exist an open neighborhood U of x, and a set I such that F|U ∼= O(I)
X |U

as an OX |U -module.

• For all x ∈ X, let rkx(F) = dimk(x)(F(x)), where

F(x) = Fx ⊗OX,x
k(x) = Fx/mX,xFx.

• Let Lfb(X) denote the full subcategory of OX -mod consisting of locally free

OX -modules of bounded rank.

• Let Fgp(A) be the full subcategory of A-mod consisting of finitely generated

projective A-modules.

http://www.mri.ernet.in/
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The Serre-Swan Theorem (Continued)

• Serre’s Theorem [1955]. Let (X,OX) be an affine scheme, and let A denote

its coordinate ring Γ(X,OX). Then the functor Γ(X, •) : Lfb(X)→ Fgp(A),

F 7→ Γ(X,F) is an equivalence of categories.

• Swan’s Theorem [1962]. Let X be a paracompact topological space of

bounded topological dimension, and let CX denote the sheaf of continuous real-

valued functions on X. Let C(X) denote the ring Γ(X, CX). Then, the functor

Γ(X, •) : Lfb(X)→ Fgp(C(X)) is an equivalence of categories.

• We will say that the Serre-Swan Theorem holds for a ringed space (X,OX) if

Γ(X, •) : Lfb(X)→ Fgp(A) is an equivalence of categories.

http://www.mri.ernet.in/
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Some Remarks

• Definition. A continuous map π : E → X of one Hausdorff space, E, onto

another, X, is called a K-vector bundle, where K is R or C, if the following

conditions are satisfied:

1. Ep := π−1(p), for p ∈ X, is a K-vector space (Ep is called the fiber over p).

2. For every p ∈ X there is a neighborhood U of p and a homeomorphism

h : π−1(U)→ U ×Kr such that h(Ep) ⊂ {p}×Kr, and hp, defined by the

composition hp : Ep
h→ {p} ×Kr pr2→ Kr, is a K-vector space isomorphism,

for some integer r (the pair (U, h) is called a local trivialization).

• Let X be a connected manifold. Let Vect(X) denotes the category of K-vector

bundles (in the above sense) on X, then Lfb(X) and Vect(X) are equivalent

categories.

http://www.mri.ernet.in/
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The Serre-Swan Theorem for Ringed Spaces

• Definition. An OX -module F is said to be generated by global sections if

there is a family of sections (si)i∈I in Γ(X,F) such that for each x ∈ X, the

images of si in the stalk Fx generate that stalk as an OX,x-module. We say

that F is finitely generated by global sections if I is finite.

• Definition. Let (X,OX) be a locally ringed space. Then, a subcategory

C of OX -mod is called an admissible subcategory if it satisfies the following

conditions:

C1. C is a full abelian subcategory of OX -mod, and HomOX
(F ,G) belongs to

C for every pair of sheaves F and G in C, where HomOX
(F ,G) denotes the

sheaf of OX -morphisms from F to G.

C2. Every sheaf in C is acyclic, and generated by global sections.

C3. Lfb(X) is a subcategory of C.

http://www.mri.ernet.in/
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The Serre-Swan Theorem for Ringed Spaces (Continued)

• Theorem. Let (X,OX) be a locally ringed space, and let A = Γ(X,OX). As-

sume that OX -mod contains an admissible subcategory C, and that every sheaf

in Lfb(X) is finitely generated by global sections. Then, Γ(X, •) : Lfb(X) →
Fgp(A) is an equivalence of categories, i.e., the Serre-Swan Theorem holds for

(X,OX).

http://www.mri.ernet.in/
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Some Special Cases

• Serre’s Theorem.

Definition. Let (X,OX) be a ringed space. We say that an OX -module F
is quasicoherent if for every x ∈ X, there exist an open neighborhood U of x

such that there exists an exact sequence of OX |U -modules,

O(I)
X |U → O

(J)
X |U → F|U → 0,

where I and J are arbitrary index sets.

Let (X,OX) be an affine scheme, with a coordinate ring A. Let Qcoh(X) de-

note the full subcategory of OX -mod consisting of quasicoherent OX -modules.

Then Qcoh(X) is an admissible subcategory of OX -mod. Since X is qua-

sicompact, locally free sheaves of finite rank are finitely generated by global

sections. Therefore the Serre’s Theorem will follows from the main Theorem.

http://www.mri.ernet.in/
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Some Special Cases (Continued)

• Swan’s Theorem.

On a paracompact space fine sheaves are acyclic, and generated by global sec-

tions. Since CX is a fine sheaf, CX -mod is an admissible category. Since vector

bundles are finitely generated by global sections on a paracompact space of

bounded topological dimension is a standard result, the Swan’s Theorem follows

from the main theorem.

• Remark. Let (X,OX) be a ringed space such that, X is a paracompact

topological space of bounded topological dimension, and OX is a fine sheaf.

Then, the Serre-Swan Theorem holds for (X,OX).

http://www.mri.ernet.in/
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Some Special Cases (Continued)

• Stein Spaces [Forster 1967].

Definition. Let (X,OX) be a ringed space. We say that an OX -module F is

coherent if it satisfies the following conditions:

1. F is of finite type.

2. For every open subsets U of X, for every integer p, and for every morphism

of OX |U -modules u : Op
X |U → F|U , the OX |U -module ker(u) is of finite

type.

Recall that a complex space (X,OX) is called a Stein space if every coherent

sheaf is acyclic, (Theorem B is valid for (X,OX)). And we have Theorem A

for Stein spaces which tells that every coherent sheaf is generated by global sec-

tions. Let (X,OX) be a finite-dimensional connected Stein space. Let Coh(X)

be the category of coherent sheaves over X.

http://www.mri.ernet.in/
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Some Special Cases (Continued)

• Stein Spaces [Forster 1967]. (Continued)

Hence for a Stein spaces Coh(X) is canonically an admissible subcategory of an

OX -mod. Further, if X is finite dimensional and connected the locally free sheaf

of bounded rank are finitely generated by global sections. Hence by the main

Theorem we get that the Serre-Swan Theorem holds for a finite-dimensional

connected Stein space.

In particular, if X is a connected noncompact Riemann surface then the Serre-

Swan Theorem hold for X. But on the contrary for compact Riemann surfaces

the result is not true.

http://www.mri.ernet.in/
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More Examples

• Affine differentiable spaces

Any closed ideal a of the Fréchet algebra C∞(R) defines a differentiable space

(X,A), where X = {x ∈ Rn | f(x) = 0 for all f ∈ a} is the underlying topo-

logical space, and A = C∞(Rn)/a is the algebra of differentiable functions on

this differentiable space (X,A) is a basic example of a differentiable space of

Rn.

Lie group G acting on a smooth manifold M , then M/G is a differentiable

space. In particular orbifolds are differentiable spaces. (May not be an affine

differentiable spaces).

• Compact locally ringed spaces

A ringed space (X,OX) is said to be compact provided that, the topological

space X is compact, and that for every x, x′ ∈ X, there exists an element

a ∈ Γ(X,OX) satisfying a(x) = 1 and a(x′) = 0

• Regular ringed spaces

A ringed space (X,OX) is called regular ringed space if X is a profinite space,

i.e., a compact totally disconnected space, and OX,x is a field for every x ∈ X.

http://www.mri.ernet.in/
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