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Abstract. In this paper we investigate Murre’s conjecture on the Chow–Künneth de-
composition for two classes of examples. We look at the universal families of smooth
curves over spaces which dominate the moduli space Mg, in genus at most 8 and show
existence of a Chow–Künneth decomposition. The second class of examples include the
representation varieties of a finitely generated group with one relation. This is done in
the setting of equivariant cohomology and equivariant Chow groups to get equivariant
Chow–Künneth decompositions.
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1. Introduction

Suppose X is a nonsingular projective variety defined over the complex numbers. We

consider the rational Chow group CH i(X)Q = CH i(X) ⊗ Q of algebraic cycles of codi-

mension i on X. The conjectures of S. Bloch and A. Beilinson predict a finite descending

filtration {F jCH i(X)Q} on CH i(X)Q and satisfying certain compatibility conditions. A

candidate for such a filtration has been proposed by J. Murre and he has made the fol-

lowing conjecture [Mu2],

Murre’s conjecture: The motive (X, ∆) of X has a Chow-Künneth decomposition:

∆ =
2d

∑

i=0

πi ∈ CHd(X × X) ⊗ Q

0Mathematics Classification Number: 14C25, 14D05, 14D20, 14D21
0Keywords: Equivariant Chow groups, orthogonal projectors.
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such that πi are orthogonal projectors.

These projectors give a candidate for a filtration of the rational Chow groups, see §2.1.

This conjecture is known to be true for curves, surfaces and a product of a curve and

surface [Mu1], [Mu3]. A variety X is known to have a Chow–Künneth decomposition

if X is an abelian variety/scheme [Sh],[De-Mu], a uniruled threefold [dA-Mü1], universal

families over modular varieties [Go-Mu], [GHM2] and the universal family over one Picard

modular surface [MMWYK], where a partial set of projectors are found. Finite group

quotients (maybe singular) of an abelian variety also satisfies the above conjecture [Ak-Jo].

Furthermore, for some varieties with a nef tangent bundle, Murre’s conjecture is proved

in [Iy]. A criterion for existence of such a decomposition is also given in [Sa]. Some other

examples are also listed in [Gu-Pe].

Gordon-Murre-Hanamura [GHM2], [Go-Mu] obtained Chow–Künneth projectors for

universal families over modular varieties. Hence it is natural to ask if the universal

families over the moduli space of curves of higher genus also admit a Chow–Künneth de-

composition. In this paper, we investigate the existence of Chow–Künneth decomposition

for families of smooth curves over spaces which closely approximate the moduli spaces

of curves Mg of genus at most 8, see §5. The other examples that we look at are the

representation varieties of finitely generated groups with one relation, see §6.

In both the above class of examples, we take into account the non-trivial action of a

linear algebraic group G acting on the spaces. This gives rise to the equivariant cohomol-

ogy and equivariant Chow groups, which were introduced and studied by Borel, Totaro,

Edidin-Graham [Bo], [To], [Ed-Gr]. Hence it seems natural to formulate Murre’s conjec-

ture with respect to the cycle class maps between the rational equivariant Chow groups

and the rational equivariant cohomology, see §4.3. Since in concrete examples, good quo-

tients of non-compact varieties exist, it became necessary to extend Murre’s conjecture for

non-compact smooth varieties, by taking only the bottom weight cohomology WiH
i(X, Q)

(see [D]), into consideration. This is weaker than the formulation done in [BE]. For our

purpose though, it suffices to look at this weaker formulation. We then construct a cate-

gory of equivariant Chow motives, fixing an algebraic group G (see [Ak-Jo], for a category

of motives of quotient varieties, under a finite group action).

With this formalism, we show (see §5.3);

Theorem 1.1. The equivariant Chow motive of a universal family of smooth curves

X → U over spaces U which dominate the moduli space of curves Mg, for g ≤ 8, admits an

equivariant Chow–Künneth decomposition, for a suitable linear algebraic group G acting

non-trivially on X .

Whenever smooth good quotients exist under the action of G, then the equivariant

Chow-Künneth projectors actually correspond to the absolute Chow–Künneth projectors

for the quotient varieties. In this way, we get orthogonal projectors for universal families

over spaces which closely approximate the moduli spaces Mg, when g is at most 8.
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Similarly, the second class of examples we look at are the representation varieties

R(Γg, GLn). Here Γg is a freely generated group, with 2g generators and with one re-

lation, and the algebraic group GLn acts by conjugation on this variety.

We show

Theorem 1.2. The equivariant Chow motive of the representation variety R(Γg, GLn)

admits an equivariant Chow–Künneth decomposition for the conjugation action by GLn.

The other examples that admit a Chow–Künneth decomposition are the Fano varieties

of r-dimensional planes contained in a general complete intersection in a projective space,

see Corollary 5.3.

The proofs involve classification of curves in genus at most 8 by Mukai [Muk],[Muk2]

with respect to embeddings as complete intersections in homogeneous spaces. This allows

us to use Lefschetz theorem and construct orthogonal projectors.

Acknowledgements: The first named author thanks the Math Department of Mainz, for their

hospitality and financial support during a visit in July 2006 and Sept 2007, when this work was carried

out.

2. Preliminaries

The category of nonsingular projective varieties over C will be denoted by V . Let

CH i(X)Q = CH i(X) ⊗ Q denote the rational Chow group of codimension i algebraic

cycles modulo rational equivalence.

Suppose X,Y ∈ Ob(V) and X = ∪Xi be a decomposition into connected components

Xi and di = dim Xi. Then Corrr(X,Y ) = ⊕iCHdi+r(Xi × Y )Q is called a space of

correspondences of degree r from X to Y .

Suppose X is a nonsingular projective variety over C of dimension d. Let ∆ ⊂ X × X

be the diagonal. Consider the Künneth decomposition of ∆ in the Betti Cohomology:

∆ = ⊕2d
i=0π

hom
i

where πhom
i ∈ H2d−i(X) ⊗ H i(X).

Definition 2.1. The motive of X is said to have Künneth decomposition if each of the

classes πhom
i are algebraic i.e., πhom

i is the image of an algebraic cycle πi under the cycle

class map from the rational Chow groups to the Betti cohomology.

Definition 2.2. The motive of X is said to have a Chow–Künneth decomposition if each

of the classes πhom
i is algebraic and are orthogonal projectors, i.e., πi ◦ πj = δi,jπi.

Lemma 2.3. If X and Y have a Chow–Künneth decomposition then X × Y also has a

Chow–Künneth decomposition.
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Proof. If πX
i and πY

j are the Chow–Künneth components for h(X) and h(Y ) respectively

then

πX×Y
i =

∑

p+q=i

πX
p × πY

q ∈ CH∗(X × Y × X × Y )Q

are the Chow–Künneth components for X × Y . Here the product πX
p × πY

q is taken after

identifying X × Y × X × Y ≃ X × X × Y × Y . �

2.1. Murre’s conjectures. J. Murre [Mu2], [Mu3] has made the following conjectures

for any smooth projective variety X.

(A) The motive h(X) := (X, ∆X) of X has a Chow-Künneth decomposition:

∆X =
2n
∑

i=0

πi ∈ CHn(X × X) ⊗ Q

such that πi are orthogonal projectors.

(B) The correspondences π0, π1, ..., πj−1, π2j+1, ..., π2n act as zero on CHj(X) ⊗ Q.

(C) Suppose

F rCHj(X) ⊗ Q = Kerπ2j ∩ Kerπ2j−1 ∩ ... ∩ Kerπ2j−r+1.

Then the filtration F • of CHj(X) ⊗ Q is independent of the choice of the projectors πi.

(D) Further, F 1CH i(X)⊗Q = (CH i(X)⊗Q)hom, the cycles which are homologous to

zero.

In §4, we will extend (A) in the setting of equivariant Chow groups.

3. Equivariant Chow groups and equivariant Chow motives

In this section, we recall some preliminary facts on the equivariant groups to formu-

late Murre’s conjectures for a smooth variety X of dimension d, which is equipped with

an action by a linear reductive algebraic group G. The equivariant groups and their

properties that we recall below were defined by Borel, Totaro, Edidin-Graham, Fulton

[Bo],[To],[Ed-Gr], [Fu2].

3.1. Equivariant cohomology H i
G(X, Z) of X. Suppose X is a variety with an action

on the left by an algebraic group G. Borel defined the equivariant cohomology H∗
G(X)

as follows. There is a contractible space EG on which G acts freely (on the right) with

quotient BG := EG/G. Then form the space

EG ×G X := EG × X/(e.g, x) ≃ (e, g.x).

In other words, EG ×G X represents the (topological) quotient stack [X/G].
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Definition 3.1. The equivariant cohomology of X with respect to G is the ordinary sin-

gular cohomology of EG ×G X:

H i
G(X) = H i(EG ×G X).

For the special case when X is a point, we have

H i
G(point) = H i(BG)

For any X, the map X → point induces a pullback map H i(BG) → H i
G(X). Hence

the equivariant cohomology of X has the structure of a H i(BG)-algebra, at least when

H i(BG) = 0 for odd i.

3.2. Equivariant Chow groups CH i
G(X) of X. [Ed-Gr] As in the previous subsection,

let X be a smooth variety, equipped with a left G action. Here G is an affine algebraic

group of dimension g. Choose an l-dimensional representation V of G such that V has an

open subset U on which G acts freely and whose complement has codimension more than

n− i. The diagonal action on X ×U is also free, so there is a quotient in the category of

algebraic spaces. Denote this quotient by XG := (X × U)/G.

Definition 3.2. The i-th equivariant Chow group CHG
i (X) is the usual Chow group

CHi+l−g(XG).

Proposition 3.3. The equivariant Chow group CHG
i (X) is independent of the represen-

tation V , as long as V − U has sufficiently high codimension.

Proof. See [Ed-Gr, Definition-Proposition 1]. �

If Y ⊂ X is an m-dimensional subvariety which is invariant under the G-action, then

it has a G-equivariant fundamental class [Y ]G ∈ CHG
m[X]. More generally if V is an l-

dimensional representation of G and S ⊂ X×V is an m+l-dimensional subvariety which is

invariant under G-action, then S has a G-equivariant fundamental class [S]G ∈ CHG
m(X).

Proposition 3.4. If α ∈ CHG
m(X) then there exists a representation V such that α =

∑

ai[Si]G, for some G-invariant subvarieties Si of X × V .

Proof. See [Ed-Gr, Proposition 1]. �

3.3. Functoriality properties. Suppose f : X → Y is a G-equivariant morphism. Let

S be one of the following properties of schemes or algebraic spaces: proper, flat, smooth,

regular embedding or l.c.i.

Proposition 3.5. If f : X → Y has property S, then the induced map fG : XG → YG

also has property S.

Proof. See [Ed-Gr, Proposition 2]. �
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Proposition 3.6. Equivariant Chow groups have the same functoriality as ordinary Chow

groups for equivariant morphisms with property S.

Proof. See [Ed-Gr, Proposition 3]. �

If X and Y have G-actions then there are exterior products

CHG
i (X) ⊗ CHG

j (Y ) → CHG
i+j(X × Y ).

In particular, if X is smooth then there is an intersection product on the equivariant

Chow groups which makes ⊕jCHG
j (X) into a graded ring.

3.4. Cycle class maps. [Ed-Gr, §2.8]

Suppose X is a complex algebraic variety and G is a complex algebraic group. The

equivariant Borel-Moore homology HG
BM,i(X) is the Borel-Moore homology HBM,i(XG),

for XG = X ×G U . This is independent of the representation as long as V − U has

sufficiently large codimension. This gives a cycle class map,

cli : CH i
G(X) → HBM,2i(X, Z).

compatible with usual operations on equivariant Chow groups. Suppose X is smooth of di-

mension d then XG is also smooth. In this case the Borel-Moore cohomology HBM,2i(X, Z)

is dual to H2d−i(XG) = H2d−i(X ×G U).

This gives the cycle class maps

(1) cli : CH i
G(X) → H2i

G (X, Z).

There are also maps from the equivariant groups to the usual groups:

(2) H i
G(X, Z) → H i(X, Z)

and

(3) CH i
G(X) → CH i(X).

3.5. Weight filtration W. on H i
G(X, Z). In this paper, we assign only the bottom weight

Wi of the equivariant cohomology in the simplest situation. Consider a smooth variety

X equipped with a left G action as above. Suppose there is a smooth compactification

X of X such that the action of G extends to an action on X. In this situation, there is a

localization sequence, given by the inclusion j : X →֒ X:

→ H i
G(X)

j∗

→ H i
G(X) → .

The image under the map j∗ is defined to the bottom weight WiH
i
G(X) cohomology [D].

In particular, if X is itself a complete smooth variety then WiH
i
G(X) = H i

G(X).
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3.6. Equivariant Chow motives and the category of equivariant Chow motives.

When G is a finite group then a category of Chow motives for (maybe singular) quotients

of varieties under the G-action was constructed in [Ak-Jo]. More generally, we consider the

following situation, taking into account the equivariant cohomology and the equivariant

rational Chow groups, which does not seem to have been considered before.

Fix an affine complex algebraic group G. Let VG be the category whose objects are

complex smooth varieties with a G-action and the morphisms are G-equivariant mor-

phisms.

For any X,Y, Z ∈ Ob(VG), consider the projections

X × Y × Z
pXY−→ X × Y,

X × Y × Z
pY Z−→ Y × Z,

X × Y × Z
pXZ−→ X × Z.

which are G-equivariant.

Let d be the dimension of X. The group of correspondences from X to Y of degree r

is defined as

Corrr
G(X × Y ) := CHr+d

G (X × Y ).

Every G-equivariant morphism X → Y defines an element in Corr0
G(X × Y ), by taking

the graph cycle.

For any f ∈ Corrr
G(X,Y ) and g ∈ Corre

G(Y, Z) define their composition

g ◦ f ∈ Corrr+e
G (X,Z)

by the prescription

g ◦ f = pXZ∗(p
∗
XY (f).p∗Y Z(g)).

This gives a linear action of correspondences on the equivariant Chow groups

Corrr
G(X,Y ) × CHs

G(X)Q −→ CHr+s
G (Y )Q

(γ, α) 7→ pY ∗(p
∗
Xα.γ)

for the projections pX : X × Y −→ X, pY : X × Y −→ Y .

The category of pure equivariant G-motives with rational coefficients is denoted by M+
G.

The objects of M+
G are triples (X, p,m)G, for X ∈ Ob(VG), p ∈ Corr0

G(X,X) is a projector,

i.e., p ◦ p = p and m ∈ Z. The morphisms between the objects (X, p,m)G, (Y, q, n)G in

M+
G are given by the correspondences f ∈ Corrn−m

G (X,Y ) such that f ◦p = q◦f = f . The

composition of the morphisms is the compositions of the correspondences. This category

is pseudoabelian and Q-linear. Furthermore, it is a tensor category defined by

(X, p,m)G ⊗ (Y, q, n)G = (X × Y, p ⊗ q,m + n)G.
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The object (Spec C, id, 0)G is the unit object and the Lefschetz motive L is the object

(Spec C, id,−1)G. Here Spec C is taken with a trivial G-action. The Tate twist of a

G-motive M is M(r) := M ⊗ L⊗−r = (X, p,m + r)G.

Definition 3.7. The theory of equivariant Chow motives ([Sc]) provides a functor

h : VG −→ M+
G.

For each X ∈ Ob(VG) the object h(X) = (X, ∆, 0)G is called the equivariant Chow motive

of X. Here ∆ is the class of the diagonal in CH∗(X ×X)Q, which is G-invariant for the

diagonal action on X × X and hence lies in Corr0
G(X,X) = CH∗

G(X × X)Q.

4. Murre’s conjectures for the equivariant Chow motives

Suppose X is a complex smooth variety of dimension d, equipped with a G-action.

Consider the product variety X × X together with the diagonal action of the group G.

The cycle class map

(4) cld : CHd(X × X)Q → H2d(X × X, Q).

actually maps to the weight 2d piece W2dH
2d(X × X, Q) of the ordinary cohomology

group.

Applying this to the spaces X ×U , for open subset U ⊂ V as in §3.2, (4) holds for the

equivariant groups as well and there are cycle class maps:

(5) cld : CHd
G(X × X)Q → W2dH

2d
G (X × X, Q).

Lemma 4.1. The image of the diagonal cycle [∆X ] under the cycle class map cld lies in

the subspace
⊕

i

W2d−iH
2d−i
G (X) ⊗ WiH

i
G(X)

of W2dH
2d
G (X × X, Q).

Proof. If X is a compact smooth variety then we notice that the weight 2d piece coincides

with the cohomology group H2d(X ×X, Q) and by the Künneth formula for products the

statement follows in the usual cohomology. Suppose X not compact. Since the diagonal

cycle is G-invariant, by (4), the image of [∆X ] lies in W2dH
2d(X×X, Q). Choose a smooth

compactification X of X and consider the commutative diagram:
⊕

i

H2d−i(X) ⊗ H i(X)
≃
→ H2d(X, Q)

↓ ↓
⊕

i

W2d−iH
2d−i(X) ⊗ WiH

i(X)
≃
→ W2dH

2d(X, Q)

The vertical arrows are surjective maps, defined by the localization. The assertion now

follows from the above diagram in the bottom weight of the ordinary cohomology group
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of any smooth variety. In particular, it is true in the bottom weights of the ordinary

cohomology groups of the smooth variety X × U , for any open subset U ⊂ V of large

complementary codimension and V is a G-representation. But this is essentially the

bottom weights of the equivariant cohomology group of X.

�

Denote the decomposition of the G-invariant diagonal cycle

(6) ∆X = ⊕2d
i=0π

G
i ∈ W2dH

2d
G (X, Q)

such that πG
i lies in the space W2d−iH

2d−i
G (X) ⊗ WiH

i
G(X).

Definition 4.2. Suppose X is a smooth variety equipped with a G-action. The equivariant

Chow motive (X, ∆X)G of X is said to have an equivariant Künneth decomposition

if the classes πG
i are algebraic, i.e., they have a lift in the equivariant Chow group CHd

G(X×

X)Q. Furthermore, if the lifts are orthogonal projectors then we say that the equivariant

Chow motive of X has an equivariant Chow–Künneth decomposition.

We can now extend Murre’s conjecture to smooth varieties with a G-action, as follows.

Conjecture 4.3. Suppose X is a smooth variety with a G-action. Then the equivariant

Chow motive (X, ∆X)G of X has an equivariant Chow–Künneth decomposition.

In particular, if the action of G is trivial then we can extend Murre’s conjecture to a

(not necessarily compact) smooth variety, by taking only the bottom weight cohomology

WiH
i(X) of the ordinary cohomology. This is weaker than obtaining projectors for the

ordinary cohomology. We remark a projector π1 in the case of quasi–projective varieties

has been constructed by Bloch and Esnault [BE].

5. Families of curves

Our goal in this paper is to find (explicit) absolute Chow–Künneth decomposition for

the universal families of curves over close approximations of the moduli space of smooth

curves of small genus. We begin with the case of families of plane curves.

5.1. Family of plane curves. There is an easy method to obtain a family of plane curves

by blowing up a line on a hypersurface, which is illustrated below. We show that this

family has an absolute Chow–Künneth decomposition. This motivates the other examples

we look in this paper.

Suppose X ⊂ Pn is a nonsingular hypersurface of degree d and containing a line. If

n ≥ 3 and d ≤ n + 1 then X always contains a line [Kol]. Let L be any line on X and we

assume that L is not contained in any plane P ⊂ X.

Projecting from L, we obtain a diagram (A),
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X ′ f
−→ X

↓p

Pn−2

such that X ′ is the blow-up of X along L and p : X ′ −→ Pn−2 is a family of curves of

degree d − 1, with the generic fiber smooth. This family can be described as follows.

Consider the morphism

π′ : Pn−2 −→ G(2, Pn), x 7→ P =< x,L >

which is clearly an embedding. Here G(2, Pn) denotes the Grassmanian of 2–planes con-

tained in Pn and P =< x,L > is the plane spanned by x and the line L.

Consider the morphism

(7) η : Image (π′) −→ |OP2(d − 1)|, P 7→ C

where P ∩ X = L + C where C ⊂ P is a curve of degree d − 1. Then X ′ → Pn−2 is the

pullback of the universal plane curve over |OP2(d − 1)|.

Lemma 5.1. The family

p : X ′ −→ Pn−2.

of projective plane curves has an absolute Chow–Künneth decomposition.

Proof. We first notice that a smooth hypersurface X ⊂ Pn of degree d has a Chow–

Künneth decomposition. Indeed, the cohomology of X is algebraic except in the middle

dimension Hn−1(X, Q). By the Lefschetz Hyperplane section theorem, the algebraic co-

homology H2j(X,Q), j 6= n − 1, is generated by the hyperplane section Hj. So the

projectors are simply

πr :=
1

d
.Hn−1−r × Hr ∈ CHn−1(X × X)Q

for r 6= n − 1. We can now take πn−1 := ∆X −
∑

r,r 6=n−1 πr. This gives a complete set

of orthogonal projectors and a Chow–Künneth decomposition for X. Since X ′ → X is

a blow-up along a line, the new cohomology is again algebraic, by the blow-up formula.

Similarly we get a Chow–Künneth decomposition for X ′ (see also [dA-Mü2, Lemma 2] for

blow-ups). �

The above lemma can be generalized to the following situation.

Lemma 5.2. Suppose Y is a smooth projective variety of dimension r over C which has

only algebraic cohomology groups H i(Y ) for all 0 ≤ i ≤ m for some m < r. Then we can

construct orthogonal projectors

π0, π1, ..., πm, π2r−m, π2r−m+1, ..., π2r
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in the usual Chow group CHr(Y ×Y )Q, and where π2i acts as δi,p on H2p(Y ) and π2i−1 = 0.

Moreover, if there is an affine complex algebraic group G acting on Y , then we can lift the

above projectors in the equivariant Chow group CHr
G(Y × Y )Q as orthogonal projectors.

Proof. See also [dA-Mü1, dA-Mü2]. Let H2p(Y ) be generated by cohomology classes of

cycles C1, . . . , Cs and H2r−2p(Y ) be generated by cohomology classes of cycles D1, . . . , Ds.

We denote by M the intersection matrix with entries

Mij = Ci · Dj ∈ Z.

After base change and passing to Q–coefficients we may assume that M is diagonal,

since the cup–product H2p(Y, Q) ⊗ H2r−2p(Y, Q) → Q is non–degenerate. We define the

projector π2p as

π2p =
s

∑

k=1

1

Mkk

Dk × Ck.

It is easy to check that π2p ∗(Ck) = Dk. Define π2r−2p as the adjoint, i.e., transpose of

π2p. Via the Gram–Schmidt process from linear algebra we can successively make all

projectors orthogonal. �

Suppose X ⊂ Pn is a smooth complete intersection of multidegree d1 ≤ d2 ≤ ... ≤ ds.

Let Fr(X) be the variety of r-dimensional planes contained in X. Let δ := min{(r +

1)(n − r) −
(

d+r

r

)

, n − 2r − s}.

Corollary 5.3. If X is general then Fr(X) is a smooth projective variety of dimension δ

and it has an absolute Chow–Künneth decomposition.

Proof. The first assertion on the smoothness of the variety Fr(X) is well–known, see

[Al-Kl], [ELV], [De-Ma]. For the second assertion, notice that Fr(X) is a subvariety of

the Grassmanian G(r, Pn) and is the zero set of a section of a vector bundle. Indeed,

let S be the tautological bundle on G(r, Pn). Then a section of ⊕s
i=1SymdiH0(Pn,O(1))

induces a section of the vector bundle ⊕s
i=1SymdiS∗ on G(r, Pn). Thus, Fr(X) is the zero

locus of the section of the
⊕s

i=1 SymdiS∗ induced by the equations defining the complete

intersection X. A Lefschetz theorem is proved in [De-Ma, Theorem 3.4]:

H i(G(r, Pn), Q) → H i(Fr(X), Q)

is bijective, for i ≤ δ − 1. We can apply Lemma 5.2 to get the orthogonal projectors in

all degrees except in the middle dimension. The projector corresponding to the middle

dimension can be gotten by subtracting the sum of these projectors from the diagonal

class.

�

Corollary 5.4. Suppose X ⊂ Pn is a smooth projective variety. Let Y ⊂ Pn be any other

projective variety such that X ∩ Y is smooth and irreducible. If X has only algebraic
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cohomology, except perhaps in the middle dimension, then X ∩ Y has an absolute Chow–

Künneth decomposition.

Proof. Since the class of Y in the cohomology of Pn is a linear section, the Lefschetz

theorem holds for the restriction map

H i(X, Q)
∩Y
→ H i(X ∩ Y, Q).

Now we can apply Lemma 5.2 to deduce our claim. �

Corollary 5.5. Suppose X ⊂ Pn is a smooth projective variety of dimension d. Let

r = 2d − n. Then we can construct orthogonal projectors

π0, π1, ..., πr, π2d−r, π2d−r+1, ..., π2d.

Proof. Barth [Ba] has proved a Lefschetz theorem for higher codimensional subvarieties

in projective spaces:

H i(Pn, Q) → H i(X, Q)

is bijective if i ≤ 2d − n and is injective if i = 2d − n + 1. The claim now follows from

Lemma 5.2. �

Remark 5.6. The above corollary says that if we can embed a variety X in a low di-

mensional projective space then we get at least a partial set of orthogonal projectors. A

conjecture of Hartshorne’s says that any codimension two subvariety of Pn for n ≥ 6 is

a complete intersection. This gives more examples for subvarieties with several algebraic

cohomology groups.

5.2. Chow–Künneth decomposition for the universal plane curve. We want to

find explicit equivariant Chow–Künneth projectors for the universal plane curve of degree

d. Let d ≥ 1 and consider the linear system P = |OP2(d)| and the universal plane curve

C ⊂ P2 × P

↓

P.

Furthermore, we notice that the general linear group G := GL3(C) acts on P2 and hence

acts on the projective space P = |OP2(d)|. This gives an action on the product space P2×P

and leaves the universal plane curve C ⊂ P2 × P invariant under the G-action.

Lemma 5.7. The variety C has an absolute Chow–Künneth decomposition and an absolute

equivariant Chow–Künneth decomposition.

Proof. We observe that C ⊂ P2 × P is a smooth hypersurface of degree d with variables

in P2 whose coefficients are polynomial functions on P. Notice that P2 × P has a Chow–

Künneth decomposition and Lefschetz theorems hold for the embedding C ⊂ P2 × P.
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Now we can repeat the arguments from Lemma 5.2 to get an absolute Chow–Künneth

decomposition and absolute equivariant Chow–Künneth decomposition, for the variety

C. �

5.3. Families of curves contained in homogeneous spaces. We notice that when

d = 3 in the previous subsection, the family of plane cubics restricted to the loci of stable

curves is a complete family of genus one stable curves. If d ≥ 4, then the above family

of plane curves is no longer a complete family of genus g curves. Hence to find families

which closely approximate over the moduli spaces of stable curves, we need to look for

curves embedded as complete intersections in other simpler looking varieties. For this

purpose, we look at the curves embedded in special Fano varieties of small genus g ≤ 8,

which was studied by S. Mukai [Muk], [Muk2], [Muk3], [Muk5] and Ide-Mukai [IdMuk].

We recall the main result that we need.

Theorem 5.8. Suppose C is a generic curve of genus g ≤ 8. Then C is a complete

intersection in a smooth projective variety which has only algebraic cohomology.

Proof. This is proved in [Muk], [Muk2], [Muk3], [IdMuk] and [Muk5]. The below classifi-

cation is for the generic curve.

When g ≤ 5 then it is well-known that the generic curve is a linear section of a Grass-

manian.

When g = 6 then a curve has finitely many g1
4 if and only if it is a complete intersection

of a Grassmanian and a smooth quadric , see [Muk3, Theorem 5.2].

When g = 7 then a curve is a linear section of a 10-dimensional spinor variety X ⊂ P15

if and only if it is non-tetragonal, see [Muk3, Main theorem].

When g = 8 then it is classically known that the generic curve is a linear section of the

grassmanian G(2, 6) in its Plucker embedding.

�

Suppose P(g) is the parameter space of linear sections of a Grassmanian or of a spinor

variety, which depends on the genus, as in the proof of above Theorem 5.8. P(g) is

a product of projective spaces on which an algebraic group G (copies of PGLN) acts.

Generic curves are isomorphic, if they are in the same orbit of G.

Proposition 5.9. Suppose P(g) is as above, for g ≤ 8. Then there is a universal curve

Cg → P(g)

such that the classifying (rational) map P(g) → Mg is dominant. The smooth variety Cg

has an absolute Chow–Künneth decomposition and an absolute equivariant Chow-Künneth

decomposition for the natural G–action mentioned above.
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Proof. The first assertion follows from Theorem 5.8. For the second assertion notice that

the universal curve, when g ≤ 8, is a complete intersection in P(g)× V where V is either

a Grassmanian or a spinor variety, which are homogeneous varieties. In other words,

Cg is a complete intersection in a space which has only algebraic cohomology. Hence,

by Lemma 5.2, Cg has an absolute Chow–Künneth decomposition. Now a homogeneous

variety looks like V = G/P where G is an (linear) algebraic group and P is a parabolic

subgroup. Hence the group G acts on the variety V . This induces an action on the linear

system P(g) and hence G acts on the ambient variety P(g) × V and leaves the universal

curve Cg invariant. Hence we can again apply Lemma 5.2 to obtain absolute equivariant

Chow–Künneth decomposition for Cg.

�

Consider the universal family of curves Cg → P(g) as obtained above, which are

equipped with an action of a linear algebraic group G.

Suppose there is an open subset Ug ⊂ P(g), with the universal family CUg
→ Ug, on

which G acts freely to form a good quotient family

Yg := CUg
/G → Sg := Ug/G.

Notice that the classifying map Sg → Mg is dominant.

Corollary 5.10. The smooth variety Yg has an absolute Chow–Künneth decomposition.

Proof. Consider the localization sequence, for the embedding j : CUg
× CUg

→֒ Cg × Cg,

CHd
G(Cg × Cg)Q

j∗

→ CHd
G(CUg

× CUg
)Q → 0.

Here d is the dimension of Cg. Then the map j∗ is an equivariant ring homomorphism and

transforms orthogonal projectors to orthogonal projectors. Similarly there is a commuting

diagram between the equivariant cohomologies:
⊕

i

H2d−i
G (Cg) ⊗ H i

G(Cg)
≃
→ H2d

G (Cg, Q)

↓ ↓
⊕

i

W2d−iH
2d−i
G (CUg

) ⊗ WiH
i
G(CUg

)
≃
→ W2dH

2d
G (CUg

, Q)

The vertical arrows are surjective maps mapping onto the bottom weights of the equi-

variant cohomology groups. By Proposition 5.9, the variety Cg has an absolute equivari-

ant Chow–Künneth decomposition. Hence the images of the equivariant Chow–Künneth

projectors for the complete smooth variety Cg, under the morphism j∗ give equivariant

Chow–Künneth projectors for the smooth variety CUg
.

Using [Ed-Gr], we have the identification of the rational Chow groups

CH∗(Yg)Q = CH∗
G(CUg

)Q
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and

CH∗(Yg × Yg)Q = CH∗
G(CUg

× CUg
)Q.

Furthermore, this respects the ring structure on the above rational Chow groups. A

similar identification also holds for the rational cohomology groups. This means that the

equivariant Chow–Künneth projectors for the variety CUg
correspond to a complete set of

absolute Chow–Künneth projectors for the quotient variety Yg. �

Remark 5.11. Since Mukai has a similar classification for the non-generic curves in

genus ≤ 8, one can obtain absolute equivariant Chow–Künneth decomposition for these

special families of smooth curves, by applying the proof of Proposition 5.9. There is also a

classification for K3-surfaces and in many cases the generic K3-surface is obtained as a

linear section of a Grassmanian [Muk]. Hence we can apply the above results to families

of K3-surfaces over spaces which dominate the moduli space of K3-surfaces.

6. Equivariant Chow–Künneth decomposition for representation

varieties

In this section, we look at the representation varieties R(Γ, GLn), where Γ is a finitely

generated group with one relation. It is significant to consider such varieties because

these varieties allow a conjugation action by GLn. When Γ is the fundamental group of a

compact Riemann surface, the good quotients of the semi-stable loci give rise to moduli

spaces. Instead of GLn, if we consider the unitary group U(n), then the study of such

quotients was initiated by Mumford [Md], [Md2] and Narasimhan-Seshadri [Na-Se]. More

generally, when Γ is the fundamental group of a complex smooth projective variety then

Simpson [Si], [Si2], [Si3] studied such quotients and proved the equivalences between the

Betti moduli space, the de Rham moduli space and the Dolbeault moduli space. This

equivalence is although not algebraic. Hence the equivariant Chow–Künneth projectors

for R(Γ, GLn) will correspond to Chow-Künneth projectors for the moduli space of finite

dimensional irreducible representations, which is a smooth variety.

6.1. Representation varieties. [RBC] Let Γ be a finitely generated group. For any

algebraic group G, the set R(Γ, G) of all representations ρ : Γ → G is known to have

a natural structure of an algebraic variety. With this structure, this set is called the

representation variety of Γ in G. When G = GLn, this variety is called the variety of

n-dimensional representations of Γ and usually denoted by Rn(Γ).

Suppose Γ has 2g generators and admits at most one relation r. Such groups arise as

the fundamental groups of compact Riemann surfaces and of abelian varieties or compact

complex tori, when there is no relation. When there are 2g generators and one relation,

denote the representation variety by Rn(Γg). When there are 2g generators and no rela-

tion, denote the representation variety by C(2g, n) := R(Z2g, GLn), which is usually called

the Commutator variety. This can also be described as the set of 2g-tuples of pairwise
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commuting 2g × 2g-matrices;

(8) C(2g,GLn) := {(x1, x2, ..., x2g) ∈ (GLn)2g| xi.xj = xj.xi, for all i, j ≤ 2g}.

Similarly, we can write

(9) Rn(Γg) := {(x1, x2, ..., x2g) ∈ (GLn)2g| r = 1}.

For example, when Γg is the fundamental group of a compact Riemann surface, then the

relation is

r = [x1, x2]....[xi, xi+1]...[x2g−1, x2g]

where [xi, xi+1] denotes the commutator of xi and xi+1.

We recall the following result on these varieties, by Rapinchuk, Benyash–Krivetz and

Chernousov;

Theorem 6.1. The representation variety Rn(Γg) is an absolutely irreducible Q–rational

variety of dimension

dimRn(Γg) = (2g − 1)n2 + 1 if g > 1

= n2 + n if g = 1

Proof. See [RBC, Theorem 1]. �

6.2. Equivariant Chow-Künneth projectors for Rn(Γg). Since GLn is a homoge-

neous space it has only algebraic cohomology. Hence the same is true for the variety

(GLn)2g. Hence, by Lemma 5.2, we get Chow–Künneth projectors for (GLn)2g. Fur-

thermore these projectors remain invariant under the conjugation action by Gln acting

diagonally on the product and give equivariant Chow–Künneth projectors for (GLn)2g.

Let Rn(Γg)
0 be the smooth open subset of the variety Rn(Γg). This is an irreducible

complex variety, by Theorem 6.1. Let Xn(Γg)
0 be the good quotient of Rn(Γg)

0 (perhaps

a smaller open subset so that quotient exists) modulo the action of GLn by conjugation.

Theorem 6.2. There is an equivariant Chow–Künneth decomposition for the smooth

variety Rn(Γg)
0, for g > 1. This gives absolute Chow–Künneth projectors for the quotient

variety Xn(Γg)
0.

Proof. Using the description of the representation variety Rn(Γg) in (9), the relation r

corresponds to n2 − 1 equations in (GLn)2g and hence Rn(Γg) is a complete intersection

in the product space (GLn)2g, defined by n2 − 1 equations. There is a Lefschetz theorem

for the smooth locus Rn(Γg)
0 (see [D]), and the restriction map

H i((GLn)2g, Q) → WiH
i(Rn(Γg)

0, Q)

is bijective, for i ≤ dimRn(Γg) − 1. Hence, by Lemma 5.2, we get equivariant Chow–

Künneth projectors for the smooth variety Rn(Γg)
0. Using [Ed-Gr] one can identify the

rational equivariant Chow groups of Rn(Γg)
0 with the rational Chow groups of the quo-

tient space Xn(Γg)
0, and this identification respects the ring structure. This means that
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the equivariant Chow–Künneth projectors of Rn(Γg)
0 correspond to the absolute Chow–

Künneth projectors for the smooth variety Xn(Γg)
0. �

Consider the commutator variety C(2, GLn) defined in (8). Then, by [RBC, Proposition

3], the variety C(2, GLn) is an absolutely irreducible Q-rational variety. Let C(2, GLn)0 ⊂

C(2, GLn) be the smooth open locus. Then C(2, GLn)0 is a smooth irreducible complex

variety.

Theorem 6.3. The smooth variety C(2, GLn)0 has an equivariant Chow–Künneth de-

composition.

Proof. Firstly, using the description in (8), we identify the variety C(2g,GLn) with the

variety defined by quadratic relations in the product space (GLn)2g. In particular, when

g = 1, there is only one quadratic relation and C(2, GLn)0 is a smooth complete intersec-

tion in (GLn)2. There is a Lefschetz theorem for the smooth locus C(2, GLn)0 (see [D]),

and the restriction map

H i((GLn)2, Q) → WiH
i(C(2, GLn)0, Q)

is bijective, for i ≤ dimC(2, GLn) − 1.

By applying Lemma 5.2, we get equivariant Chow–Künneth projectors for C(2, GLn)0.

�
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[Ak-Jo] R. Akhtar, R. Joshua, Künneth decomposition for quotient varieties, Indag. Math. (N.S.) 17
(2006), no. 3, 319–344.

[Ba] W. Barth Transplanting cohomology classes in complex-projective space. Amer. J. Math. 92

1970 951–967.
[BBD] A.A. Beilinson, J. Bernstein, P. Deligne, Faisceaux pervers (French) [Perverse sheaves], Anal-

ysis and topology on singular spaces, I (Luminy, 1981), 5–171, Astérisque, 100, Soc. Math.
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tangent bundle, to appear in Trans. of Amer. Math. Soc.
[Ja] U. Jannsen, Motivic sheaves and filtrations on Chow groups, Motives (Seattle, WA, 1991),

245–302, Proc. Sympos. Pure Math., 55, Part 1, Amer. Math. Soc., Providence, RI, 1994.
[Kol] J. Kollár, Rational curves on algebraic varieties, Ergebnisse der Mathematik und ihrer Gren-

zgebiete. 3., 32. Springer-Verlag, Berlin, 1996. viii+320 pp.
[KMM] J. Kollár, Y. Miyaoka, S. Mori, Rationally connected varieties, Jour. Alg. Geom. 1 (1992)

429–448.
[Man] Yu. Manin, Correspondences, motifs and monoidal transformations (in Russian), Mat. Sb.

(N.S.) 77 (119) (1968), 475–507.
[MMWYK] A. Miller, S. Müller-Stach, S. Wortmann, Y.H. Yang, K. Zuo. Chow-Künneth decomposition
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