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A physical phenomenon : harmonics (stationary vibration modes).

A mathematical theorem : the spectral decomposition of the
laplacian.
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The wave equation :
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An abstract language – allowing unified treatment of all wave
phenomena, regardless of their physical origin (sound,
electromagnetic waves, seismic waves,...)
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The wave equation has special “stationary” solutions, i.e. of the
form

u(t, x , y) = e iωtψ(x , y),

also called “eigenmodes”, “characteristic modes”.
The function ψ must satisfy ∆ψ = −ω2

c2 ψ.
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Figure: Ernst Chladni
(1756-1827)
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Figure: Sophie Germain
(1776-1831)
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Doing research in math ?
Observing the world... answering questions... always leads to new
questions !
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Can we calculate explicitly the eigenfrequencies and eigenmodes ?
it depends on the shape of the membrane, but in general the
answer is NO.
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Nodal lines for a guitar table :
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Nodal lines on a sphere :

[Eric Heller Gallery]
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(R. Courant’s theorem) For the n-th eigenmode, the nodal lines
cut the membrane into at most n pieces (= nodal domains).

(Pleijel’s theorem) In dimension ≥ 2. For n large enough, the nodal
lines of the n-th eigenmode cut the membrane into at most αn
pieces with α = 0, 54.
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The nodal lines seem to “invade” the domain, to form a denser
and denser family of curves, as the frequency increases.
Mathematical proof ?
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(Donnelly-Fefferman 1988) The total length of nodal lines grows
proportionnally to frequency :

Zψ = {x , ψ(x) = 0}.

C1ωn ≤ length(Zψn) ≤ C2ωn.

(proven if the boundary is analytic. Conjectured by Yau to hold
always).
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(Egorov-Kondratiev 1996, Nazarov-Polterovich-Sodin 2005) The
“spacing” between nodal lines decreases like the inverse of
frequency.
Let rψn be the “inner radius” (radius of a ball included in a nodal
domain). Then

C1

ωn
≤ rψn ≤

C2

ωn
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n = 100 n = 1000 n = 1500 n = 2000

Billard régulier

Billard chaotique

1

[Arnd
Bäcker]
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How to explain the following patterns ?

[Eric Heller Gallery]
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[Pär Kurlberg]
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The Weyl law :

N(λ) := |{n, ωn ≤ λ}|

∼λ−→+∞
1

4π
Area(Ω)λ2

and more generally, for a ∈ C 0(Ω),∑
n,ωn≤λ

∫
Ω
a(x , y)|ψn(x , y)|2dx dy ∼λ−→+∞

1

4π
λ2

∫
Ω
a(x , y)dx dy .

(Here (ψn) is an orthonormal basis of L2(Ω) such that
∆ψn = −ω2

nψn)
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1

N(λ)

∑
n,ωn≤λ

∫
a(x , y)|ψn(x , y)|2dx dy

−→
λ−→+∞

1

Area(Ω)

∫
Ω
a(x , y)dx dy

Individual behaviour of |ψn(x , y)|2 as n −→ +∞ ?
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Do we have∫
a(x , y)|ψn(x , y)|2dx dy −→

λ−→+∞

1

Area(Ω)

∫
Ω
a(x , y)dx dy?

If this is true, this means that the eigenfunctions are becoming
uniformly spread out for high frequencies, and is interpreted as
their having a “disordered” behaviour.

The answer seems to depend on the geometry of the domain.
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For “negatively curved manifolds”, it is believed that∫
a(x , y)|ψn(x , y)|2dx dy −→

λ−→+∞

1

Area(Ω)

∫
Ω
a(x , y)dx dy .

Quantum Unique Ergodicity conjecture 1992, proven in some cases
by E. Lindenstrauss (2002)

For the stadium billiard, Hassell has proved in 2008 that QUE is
false : there are families of eigenfunctions that concentrate inside
the rectangle.
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[Pär Kurlberg]
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“Can one hear the shape of a drum ?”
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If one hears the harmonics produced by a drum, can one guess
its shape ?

Is it possible for two membranes with different shapes to
produce the same harmonics ?
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One can prove mathematically that :

if two membranes have the same harmonics, they must have
the same area ; this comes from the Weyl law :

|{n, ωn ≤ λ}|| ∼λ−→+∞
1

4π
Area(Ω)λ2.

if two membranes have the same harmonics, they must have
the same perimeter ;

if a membrane has the same harmonics as a circular
membrane, it must be circular ;

if two rectangular membranes have the same harmonics, the
rectangles must be the same.
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BUT...
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