Physics potentials of a magnetized iron calorimeter detector

Srubabati Goswami

Physik-Department T30d Technische Universität München, Germany &

> Harish-Chandra Research Institute, Allahabad, India

INO collaboration

CERN, JUNE 2006

Magnetized Iron Calorimeter Detector

- Currently feasibility study for such a detector is underway in India by the India-Based Neutrino Observatory (INO) collaboration.
- Detector choice based on
 - Technological capabilites available in the country
 - Existing/Planned other neutrino detectors in the world
 - Modularity and the possibility of phasing
 - Compactness and ease of construction
- MONOLITH collaboration had earlier proposed similar design

The detector

Current Activities

- Detector R & D
- Physics Studies
- Detector Simulation
- Data Acquisition System
- **Site Survey**
- Human Resource Development

Interim Report submitted to funding agencies

Cost

- **J** Lab. Construction \sim 90 crores INR (1 crore = 10 million)
- Detector \sim (200 (iron) + 200 (others)) crores in INR

Total cost \sim 500 crores in INR (1 Euro \approx INR 50)

Solution Time Scale : \sim 5 years from approval

Details: INO interim report, http://www.imsc.res.in/~ ino

Site

- Two sites were considered –Rammam in North India and PUSHEP in South India
- PUSHEP is recommended for ease of accessibility, less seismicity..

Geotechnological studies are going on

Physics Goals for INO

- First phase measurement of atmospheric neutrino flux
 - Reconfirmation of the first oscillation dip as a function of L/E
 - Improved precision of oscillation parameters
 - Determination of the octant of θ_{23}
 - Matter effects and determination of sign of Δm^2_{31}
 - Probing CPT violation, Lorentz violation
 - Discrimination between $\nu_{\mu} \nu_{\tau}$ and $\nu_{\mu} \nu_{s}$
 - Constraining long range leptonic forces
- Second Phase end detector for beta beams, neutrino factory
 - If the interaction hierarchy, θ_{13} , CP violation
 - \checkmark CERN to INO baseline \sim 7000 km, the magic baseline

INO as a long baseline detector

Atmospheric Neutrino Oscillation Parameters

Solution Two generation $\nu_{\mu} - \nu_{\tau}$ oscillation ($\theta_{atm} \equiv \theta_{23}, \Delta m_{atm}^2 \equiv \Delta m_{32}^2$) $P_{\mu\mu} = 1 - \sin^2 2\theta_{atm} \sin^2 \left(\frac{\Delta m_{atm}^2 L}{4E}\right)$

9 $heta_{23} - (\pi/2 - \theta_{23})$ symmetry

Y. Ashie et al. hep-ex/05404034

Atmospheric Neutrino Oscillation Parameters ...

Y. Ashie et al. hep-ex/05404034

Atmospheric Neutrino Oscillation Parameters ...

Disappearance of u_{μ} vs L/E

Comparison with Long Baseline Experiments

2
$$3\sigma$$
 spread ($\Delta m_{13}^2 = 2 \times 10^{-3} \text{ eV}^2$, $\sin^2 \theta_{23} = 0.5$).

	$ \Delta m^2{}_{13} $	$\sin^2 \theta_{23}$
current	44%	39%
MINOS+CNGS	13%	39%
T2K	6%	23%
Nova	13%	43%
INO, 50 kton, 5 years	10%	30%

M. Lindner, hep-ph/0503101

Table refers to the older NO ν A proposal; the revised March 2005 NO ν A detector is expected to be competitive with T2K.

Comparison with Long Baseline Experiments

Constraints from future SK Data

3
$$\sigma$$
 spread after 20 SKyr
($\Delta_{31} = 0.002 \text{eV}^2$, $\sin^2 \theta_{23} = 0.5$)
 $\Delta m_{32}^2 = 17\%$ $\sin^2 \theta_{23} = 24\%$
Gonazalez-Garcia et al. hep-ph/0408170

Ambiguity in Mass Hierarchy

$$\ln \tan 2\theta_{13}^{m} = \frac{\Delta m_{31}^2 \sin 2\theta_{13}}{\Delta m_{31}^2 \cos 2\theta_{13} \pm 2\sqrt{2}G_F n_e E}$$

- Solution For $\Delta m_{\rm atm}^2 > 0$ matter resonance in neutrinos
- Solution For $\Delta m_{\rm atm}^2 < 0$ matter resonance in anti neutrinos
- Experiments sensitive to matter effects can probe the mass hierarchy
- Solution Matter effects for $\Delta m_{\rm atm}^2$ channel depend crucially on θ_{13}
- Thus both parameters get related

Ambiguity in Mass Hierarchy

M. Lindner, hep-ph/0503101

- Hierarchy difficult to determine in superbeams
 - Sensitivity limited by correlation and degeneracies
 - Synergistic use of experiments
- Use of Magic Baseline

Earth Matter Effects at Long Baselines

Problem of δ_{CP} degeneracy less at longer baselines

Significant matter effect in $P_{\mu\tau}$ at 9700 km and for E \sim 5 GeV

Genuine three flavour effect

Impact on
$$P_{\mu\mu} \Rightarrow$$

 $P_{\mu\mu} = 1 - P_{\mu e} - P_{\mu a}$

- At 7000 km drop in $P_{\mu\mu}$ induced by $P_{\mu e}$
- At 9700 km rise in $P_{\mu\mu}$ induced by $P_{\mu e}$ and $P_{\mu\tau}$

R. Gandhi et. al, PRL, 2005

Determining Hierarchy by Atmospheric Neutrinos

Using μ^- rates in magnetized iron calorimeter detectors like INO

$$\phi_{\mu^{-}}/\phi_{\mu^{-}}^{0} \approx P_{\mu\mu} + rP_{e\mu} \qquad r = \phi_{e}^{0}/\phi_{\mu}^{0}$$
$$= P_{\mu\mu}(1-r) - rP_{\mu\tau} + r$$

For $\Delta m^2_{31} > 0$ matter effect in ν_{μ} ($N_{\mu^+}^{mat} \approx N_{\mu^+}^{vac}$)

Determining Hierarchy by Atmospheric Neutrinos

Gandhi et al., hep-ph/0411252 Palomarez-Ruiz, hep-ph/0406096 Murthy,Indumathi hep-ph/0407336

Determining Hierarchy by Atmospheric Neutrinos

Using μ^- rates in magnetized iron calorimeter detectors like INO

$$\phi_{\mu^{-}}/\phi_{\mu^{-}}^{0} \approx P_{\mu\mu} + rP_{e\mu} \qquad r = \phi_{e}^{0}/\phi_{\mu}^{0}$$
$$= P_{\mu\mu}(1-r) - rP_{\mu\tau} + r$$

For $\Delta m^2_{31} > 0$ matter effect in ν_{μ} ($N_{\mu^+}^{mat} \approx N_{\mu^+}^{vac}$)

- **3**-4 σ signal for matter effects at $\sin^2 2\theta_{13} = 0.1$ for 1000kTy using the total event rates for fixed values of parameters
- Parameter uncertainties spoil the sensitivity

Bin by bin $\chi^2\text{-analysis}$

Results for a iron calorimeter detector

- χ^2 analysis of μ^- event in 24 L/E bins
- 15% energy and 15° angular resolution
- 10% systematic error
- 85% efficiency
- Marginalized over Δm_{31}^2 , $\sin^2 \theta_{13}$, $\sin^2 \theta_{23}$

$\sin^2 2\theta_{13}$	$\chi^2_{ m min}$ 500 kt yr	$\chi^2_{ m min}$ 1000 kt yr
0.05	2.7	3.7
0.1	6.6	8.9

Gandhi et al. work in progress.

Bin by bin χ^2 -analysis

Results for a iron calorimeter detector

- χ^2 analysis of μ^- event in 24 L/E bins
- 15% energy and 15° angular resolution
- 10% systematic error
- 85% efficiency
- Marginalized over Δm_{31}^2 , $\sin^2 \theta_{13}$, $\sin^2 \theta_{23}$

$\sin^2 2\theta_{13}$	$\chi^2_{ m min}$ 500 kt yr	$\chi^2_{ m min}$ 1000 kt yr
0.05	2.7	3.7
0.1	6.6	8.9

Gandhi et al. work in progress.

Effect of Smearing

Petcov and Schwetz, hep-ph/0511277

Bin by bin χ^2 -analysis

Results for a iron calorimeter detector

 $\sin^2 2\theta_{13}$ $\chi^2_{\rm min}$ $\chi^2_{\rm min}$ \checkmark χ^2 analysis of μ^- event in 24 L/E bins 500 kt yr 1000 kt yr 15% energy and 15° angular resolution 2.7 3.7 0.05 10% systematic error 0.1 6.6 8.9 85% efficiency Gandhi et al. work in progress. Marginalized over Δm_{31}^2 , $\sin^2 \theta_{13}$, $\sin^2 \theta_{23}$

Comparison with water-Cerenkov detector

So charge sensitivity:
$$N_{\mu} = N_{\mu}^{+} + N_{\mu}^{-}$$

$\sin^2 2\theta_{13}$	$\chi^2_{ m min}$ (6 Mt yr)
0.05	1.9
0.1	4.4

Gandhi et al., hep-ph/0406145

Deviation of $\sin^2 \theta_{23}$ from maximal value

$$D \equiv 1/2 - \sin^2 \theta_{23}$$

- **D** gives the deviation of $\sin^2 \theta_{23}$
- **Solution** sin² θ_{23}
- **Current** 3σ limits:
 - **D** < 0.16 at 3σ from the SK data
 - No robust information on sgn(D)

Can Earth matter effects determine |D| ?

Can Earth matter effects determine |D| ?

In |D| can be measured to ~ 17%(20%) at 3σ for $s_{13}^2 = 0.04(0.00)$ with 1 MtonY exposure and 50% detector efficiency

S.Choubey. and P. Roy hep-ph/0509197

Is the atmospheric mixing maximal?

• Using long baseline experiments

Antusch, et al, hep-ph/0404268

Solution Maximality can be tested to ~ 14% at 3σ for $\Delta m_{\rm atm}^2 = 2.5 \times 10^{-5}$ eV² after 10 years.

Is the atmospheric mixing maximal?

- Using atmospheric neutrino data in SK
- Sensitivity comes from $\Delta m^2{}_{21}$ driven oscillations
- Main effect in sub-GeV e-effects ⇒ electron excess

Maximality can be tested to \sim 21% at 3 σ at all $\Delta m^2_{
m atm}$ with SK20

Resolving the octant ambiguity in INO

Using atmospheric neutrinos in INO

For every non-maximal $\sin^2 \theta_{23}$ (true) there exists a $\sin^2 \theta_{23}$ (false) $\sin^2 \theta_{23}$ (false) = 1 - $\sin^2 \theta_{23}$ (true)

S.Choubey. and P. Roy hep-ph/0509197

Comparing the Octant Sensitivity of Experiments

- LBL+atmospheric Huber et al hep-ph/0501037
 - LBL accelerator + reactor Minakata et al hep-ph/0601258

Atmospheric neutrinos in water Cerenkov detectors $\sin^2 \theta_{23}$ (false) can be excluded at 3σ if:

 $\sin^2 \theta_{23}$ (true) < 0.36 or > 0.62

Gonzalez-Garcia et al, hep-ph/0408170

Atmospheric neutrinos in large magnetized iron detectors $\sin^2 \theta_{23}$ (false) can be excluded at 3σ if:

$$\sin^2 \theta_{23}(\text{true}) < 0.36 \text{ or } > 0.63 \text{ for } \sin^2 \theta_{13}(\text{true}) = 0.01,$$

$$\sin^2 \theta_{23}(\text{true}) < 0.40 \text{ or } > 0.59 \text{ for } \sin^2 \theta_{13}(\text{true}) = 0.02,$$

$$\sin^2 \theta_{23}(\text{true}) < 0.41 \text{ or } > 0.58 \text{ for } \sin^2 \theta_{13}(\text{true}) = 0.03,$$

$$\sin^2 \theta_{23}(\text{true}) < 0.42 \text{ or } > 0.57 \text{ for } \sin^2 \theta_{13}(\text{true}) = 0.04.$$

S.Choubey. and P. Roy hep-ph/0509197

Detector and Physics Simulation

• Simulation studies with atmospheric neutrinos are in progress at many collaborating Institutions

- Nuance Event Generator
 - Generates of atmospheric neutrino events inside the INO detector
- GEANT Monte Carlo Package
 - Simulates the detector response for the neutrino events
- Event Reconstruction
 - Fits the raw data to extract neurtrino energy and direction
- Physics Performance
 - Analysis of reconstructed events to extract physics.

Conclusion

- A large magnetized iron calorimeter detector has substantial physics potential using atmospheric neutrinos.
 - Reconfirmation of L/E dip and precision of Δm^2_{31}
 - Matter effect and Sign of Δm^2_{31}
 - Determination of octant of θ_{23}
 - CPT violation, Long Range Forces
- It will complement the planned water Cerenkov, Liquid Scintillator and Liquid Argon Detectors as well as the long baseline and reactor experiments
- Can be used as a far detector for neutrino factories

Should be an International Facility