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Definition
(Peter Sarnak) A finitely generated subgroup Γ ⊂ SLn(Z) is said to be
thin if it has infinite index in G(Z) where G is the Zariski closure of Γ in
SLn.

Otherwise, Γ is said to be arithmetic.

It is easy to show that there are many thin groups but hard to tell if a
given group is one. In general it is impossible to decide if a group Γ is
thin or arithmetic.
Examples of arithmetic groups: SLn(Z), Sp2g(Z) or subgroups of finite
index in them.
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Restricton of Scalars

The complex algebraic group SL2(C) may be viewed as the real
algebraic subgroup of SL(R4) which commutes with the complex
multiplication by i : C2 ' R4.

Similarly, the group SL2(Z[
√

2]) may be
viewed as the subgroup of SL(Z4) which commutes with the
multiplication by

√
2 : Z[

√
2]2 ' Z4. Thus SL2(Z[

√
2]) is an arithmetic

group in the foregoing sense.

Similarly, if G is a linear algebraic group defined over a number field,
there is a linear algebraic group G defined over Q such that
G(R) = G(K ⊗Q R) and G(Z) ' G(OK ), where OK is the ring of
integers in the number field K . G is group obtained from G by the "Weil
restriction of scalars" from K to Q. The sign ' means that the groups
are commensurable.
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Monodromy Groups

A natural source of finitely generated subgroups of SLn(Z) is from
monodromy.

To define monodromy, we begin with a locally trivial fibration X → S of
manifolds with all fibres diffeomorphic to a fixed manifold F . We then
get a local system of S, with fibre H∗(F ,Z) and thus a representation
π1(S)→ Aut(H∗(F ,Z)) = GLN(Z).

The image of this representation is called the monodromy of the
fibration.
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Griffiths-Schmid

From now on, we assume that the fibration X → S is such that both X
and S are complex points of algebraic varieties and that the fibres are
smooth projective varieties, all of which are diffeomorphic to a fixed
manifold F .

We get, as before, the monodromy representation
π1(S)→ Aut(H∗(F ,Z)). In this setting, Griffiths and Schmid (1971,
Discrete Subgroups of Lie Groups and Applications to moduli,
International Colluquium, Bombay 1973) conjectured that the
monodromy group should always be an arithmetic group.

However, this conjecture is false in general and it is not clear what are
the (geometric) hypotheses to be made on the fibration , which ensure
that the monodromy is arithmetic. We first look at cases where the
monodromy is arithmetic.
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An Example

Take S = P1(C) \ {0,1,∞}. For X , we take the Legendre family of of
elliptic curves X = {(x , y , λ) : y2 = x(x − 1)(x − λ), λ ∈ S with the
fibration being the projection to the λ part .

The fundamental group of S is the free group on two generators,
h0,h∞ given by small loops going around 0 and∞.

The monodromy in this case is the representation

π1(S)→ GL(H1(F ,Z)) = GL2(Z) given by h0 7→
(

1 2
0 1

)
and

h∞ 7→
(

1 0
2 1

)
. These two matrices generate the principal congruence

subgroup of level 2 in SL2(Z). In particular, the monodromy is
arithmetic.
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A’Campo’s Theorem

Take for S the space f = (x − a1) · · · (x − an) of monic polynomials of
degree n with distinct roots. Consider the family {(y , x , f ) : y2 = f (x)}
of hyperelliptic curves. All these curves have the same genus g and
the monodromy group preserves a symplectic form (the intersection
form) on H1 of these curves.

Theorem
(A’Campo, Commentri Math. Helvetici, 54 (1979)) The monodromy
group has finite index in Sp2g(Z).

The fibres of the family X → S are double covers of the projective line
which ramify at n distinct points and possibly at infinity.
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The Main Result

We keep the same base S of monic polynomials f of degree n with
distinct roots, but consider the family X = {(x , y , f ) : yd = f (x)} for a
fixed integer d ≥ 3. The fibres are cyclic covers of degree d of the
projective line ramified at n distinct points and maybe at infinity.

The generator T of the group Z/dZ acts on the cyclic cover yd = f (x)
by sending y to yω for a primitive d-th root of unity ω. It is easy to see
that the monodromy action commutes with the action of T , and hence
Γ ⊂ Sp2g(Z)T , the subgroup of the symplectic group which commutes
with T .

Theorem
(T.N.Venkataramana, Annals of Math 179 (2014) The monodromy of
this family is arithmetic, provided n ≥ d + 1. More precisely, Γ has finite
index in Sp2g(Z)T .
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If we take d = 18 and n = 4, then the monodromy is thin (i.e. not
arithmetic) by the theory of Deligne and Mostow. Therefore, some
condition on n,d is certainly needed for monodromy to be arithmetic.

If we use the main theorem plus results of Deligne-Mostow (Publ
IHES, 63 (1978) and Mcmullen (Braid Groups and Hodge Theory,
Math Annalen, 355 (2013)), we obtain

Corollary
If d = 3,4,6 then the monodromy is arithmetic for all n.
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General Cyclic covers

Let d ≥ 2 and 1 ≤ k1, · · · , kn ≤ d − 1 and be integers and suppose
d , k1, · · · , kn are coprime. Consider the open curve
C = Ca : yd = (x − a1)k1 · · · (x − an)kn where ai are distinct complex
numbers. The curve Ca is a compact Riemann surface Fa with finitely
many punctures. The genus g of Fa is fixed independent of a.

Take for S the open subset of Cn whose entries are all distinct. Then
the monodromy of the family X of the compact Riemann surfaces Fa
lies in Sp2g(Z).

Theorem
(T.N.Venkataramana, Invent Math, 197 (2014)) If all the ki are co-prime
to d, and n ≥ 2d + 1 then the foregoing monodromy is arithmetic.

As before, it is not true in general that the monodromy is arithmetic (in
the range n ≤ d). There is a general criterion by Deligne-Mostow
which tells us when the monodromy is not arithmetic (i.e. is thin).
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The fundamental group of the base

The monodromy in our situation acts on H1
C = H1 with C-coefficients,

of the curve (the fibre) and we need to understand the fundamental
group of the base as well as the irreducible components of the
representation. The base S is the space of monic polynomials of
degree n with distinct roots.

One can show that π1(S) is the Artin braid group Bn on n-strands. It
has generators si(1 ≤ i ≤ n − 1 with relations sisj = sjsi | i − j |≥ 2)
and the braiding relations sisi+1si = si+1sisi+1 for 1 ≤ i ≤ n − 2.

The braid group Bn acts on H1
C. The latter has an action by T ∈ Z/dZ,

and splits into (Bn-stable) eigenspaces Vf with eigenvalue ωf , for each
f ∈ Z/dZ. The intersection form on H1 extends to a Hermitian form h
on H1

C. Suppose the signature of the restriction of h to Vf is (pf ,qf ).
Thus SpT

2g(R) =
∏

f U(pf ,qf ).
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The Burau Representation

We define the Burau representation ρ : Bn → GLn−1(Z[q,q−1]). Let
R = Z[q,q−1] and Rn−1 the free R module of rank n − 1 with standard
basis e1, · · · ,en−1. Bn has the standard generators s1, · · · , sn−1. Each
si acts on ej as follows. si(ej) = ej if | j − i |≥ 2. si(ei) = −qei ,
si(ei−1) = ei−1 + qei , si(ei+1) = ei + ei+1. Restricted to the submodule
generated by ei−1,ei ,ei+1, the matrix of si has the form1 0 0

q −q 1
0 0 1

 .

Thus each si acts by a generalised reflection.

Suppose q is specialised to the d-th root of unity ωf . We then get the
Burau representation evaluated at ωf , as the specialisation
ρf : Bn → GLn−1(R)→ GLn−1(Z[ωf ]).
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Monodromy and Burau representation

The Burau representation ρ is absolutely irreducible. When specialised
to a primitive d-th root of unity, it (i.e. ρd ) continues to be irreducible,
except when d divides n, in which case there is a one dimnesional
space Cv generated by an invariant vector and the quotient ρd by this
line is irreducible. We write ρd = ρd even when ρd is irreducible.

The monodromy representation is the direct sum ⊕ρe where the sum
runs through all the divisors e 6= 1 of d .
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A Hermitian form on the Burau representation

The ring R = Z[q,q−1] has an involution defined by sending q to its
inverse. On the free R module Rn−1 (with respect to the standard
basis ei ), we define a Hermitian form h by setting h(ei ,ej) = 0 if

| i − j |≥ 2, h(ei ,ei) = (q+1)2

q and h(ei ,ei+1) = q+1
q .

The braid group Bn preserves this Hermitian form under the Burau
action, and hence ρ : Bn → U(h)(R), the unitary group of the form h.
We also get, by composition, the representation ρd : Bn → U(h)(Z[ω])
where ω is a primitive d-th root of unity. The latter ring Od = Z[ω] is the
ring of integers in the d-th cyclotomic extension Q(e2πi/d ) of Q.

The arithmeticity of the monodromy follows from the

Theorem
If n ≥ 2d + 1, then the image of ρd has finite index in the arithmetic
group U(h)(Od ).

T.N.Venkataramana () Monodromy and Arithmetic Groups January 15, 2016 14 / 22



A Hermitian form on the Burau representation

The ring R = Z[q,q−1] has an involution defined by sending q to its
inverse. On the free R module Rn−1 (with respect to the standard
basis ei ), we define a Hermitian form h by setting h(ei ,ej) = 0 if

| i − j |≥ 2, h(ei ,ei) = (q+1)2

q and h(ei ,ei+1) = q+1
q .

The braid group Bn preserves this Hermitian form under the Burau
action, and hence ρ : Bn → U(h)(R), the unitary group of the form h.
We also get, by composition, the representation ρd : Bn → U(h)(Z[ω])
where ω is a primitive d-th root of unity. The latter ring Od = Z[ω] is the
ring of integers in the d-th cyclotomic extension Q(e2πi/d ) of Q.

The arithmeticity of the monodromy follows from the

Theorem
If n ≥ 2d + 1, then the image of ρd has finite index in the arithmetic
group U(h)(Od ).

T.N.Venkataramana () Monodromy and Arithmetic Groups January 15, 2016 14 / 22



A Hermitian form on the Burau representation

The ring R = Z[q,q−1] has an involution defined by sending q to its
inverse. On the free R module Rn−1 (with respect to the standard
basis ei ), we define a Hermitian form h by setting h(ei ,ej) = 0 if

| i − j |≥ 2, h(ei ,ei) = (q+1)2

q and h(ei ,ei+1) = q+1
q .

The braid group Bn preserves this Hermitian form under the Burau
action, and hence ρ : Bn → U(h)(R), the unitary group of the form h.
We also get, by composition, the representation ρd : Bn → U(h)(Z[ω])
where ω is a primitive d-th root of unity. The latter ring Od = Z[ω] is the
ring of integers in the d-th cyclotomic extension Q(e2πi/d ) of Q.

The arithmeticity of the monodromy follows from the

Theorem
If n ≥ 2d + 1, then the image of ρd has finite index in the arithmetic
group U(h)(Od ).

T.N.Venkataramana () Monodromy and Arithmetic Groups January 15, 2016 14 / 22



Criterion for thin-ness

Before describing the proof, we describe why the condition n ≥ 2d + 1
appears. Return to the definition of a thin group. Under certain
conditions, the monodromy group Γ ⊂ GLN(Z) is thin.

Suppose for a
moment, that Γ ⊂ SL2(Z[

√
2]) ⊂ SL2(R)× SL2(R). The projection of

Z[
√

2] into R via the embedding a + b
√

2 7→ a + b
√

2 ∈ R has dense
image; from this it follows that the projection of SL2(Z[

√
2]) into each of

the two factors is dense. The same thing holds for Γ if Γ has finite index
(strong approximation).

If we can show that one of the projections of Γ has discrete image,
then it follows that Γ cannot have finite index, i.e. Γ is thin. This is the
strategy of Deligne-Mostow.
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Deligne-Mostow

Consider the family (as the ai vary while remaining distinct from each
other, of curves yd = (x − a1)k1 · · · (x − an)kn , with 1 ≤ ki ≤ d − 1.
Since Z/dZ acts on H1 of this curve, we may consider the
“Z/dZ-primitive part of H1 which, by definition, is a sum of
eigenspaces Mf for the generator T of the cyclic group, with
eigenvalues primitive d-th roots of unity of the form ωf .

The monodromy Γ lies in U(h)(Od ) where h is the intersection form,
and Od is the ring of integers in the d-th cyclotomic extension of Q.
Hence U(h)(K ⊗ R) =

∏
f U(pf ,qf ). Deligne-Mostow prove that under

certain conditions, the projection to the f -th factor is discrete.

Write µi = {ki f
d } where, for real x , {x} denotes the fractional part of x .

Write µ∞ = 2−
∑

i µi .
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Theorem
(Deligne-Mostow) Assume that for all suffices (including∞), we have
µi + µj < 1. (1) The unitary group of the hermitian form h on Mf is
U(n − 2,1) if and only if 0 < µ∞ < 1.

(2) Assume (1). The projection to the f -th factor of Γ is discrete if for all
suffices i , j (including∞), the condition 1

1−µi−µj
∈ Z if miui 6= µj holds.

If µi = µj then this reciprocal is allowed to be half integral. The
projection of Γ is then a lattice in U(n − 2,1).

(3) If there is another f ′ such that U(pf ′ ,qf ′) is non-compact, then the
f -th projection is a non-arithmetic lattice in U(n − 2,1). Moreover, Γ is
thin.

For example, take d = 18,n = 4 and each ki = 1. Take
f = 7 ∈ (Z/18Z)∗. Then µi = 7

18 , and µ∞ = 2− 4 7
18 = 4

9 lies between 0
and 1. Moreover, 1

1−µi−µj
= 1

1−14/18 = 9
2 is a half integer. Then

U(p7,q7) ' U(2,1) and U(p5,q5) ' U(2,1). Hence the monodromy is
thin.
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If we are to have rank one factors, then by the above theorem, µ∞ > 0
that is

∑
{ki f

d } < 2. Since each µi ≥ 1
d , it follows that 2 ≥ n( 1

d )
i.e.n ≤ 2d . Thus, if we take n ≥ 2d + 1, then none of the factors of the
unitary group U(h)K ⊗R) will have real rank one. Therefore, the above
criterion is not applicable.
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Getting Unipotent Elements

The proof consists in showing that there are many unipotent elements
in the mondromy group, in the range n ≥ 2d + 1. Take n = 2d , to begin
with. Then the Hermitian form is degenerate (has a one dmensional
kernel). The representation ρd of Bn is reducible, since n is divisible by
d : it has a one dimensional invariant subspace, with the quotient being
the representation ρd and hence the matrices of the monodromy group

are of the form ρd (g) =

(
1 ∗∗
0 ρd (g)

)
for g ∈ Bn.

We now look at the subgroup Bn−1 ⊂ Bn, acting only on the first n − 1
strands. The restriction of ρd to the smaller group is simply the Burau
for the smaller group. Thus the matrices of Bn−1 are of the form(

1 0
0 ρd (g)

)
; it can be shown that there exist central elements c in

Bn−1 whose image in the quotient are scalars λ 6= 1.
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Getting many unipotents

We now consider the commutator

[ρd (g), ρd (c)] = [

(
1 ∗∗
0 ρd (g)

)
,

(
1 0
0 λ

)
] =

(
1 ∗
0 1

)
]

for some ∗ 6= 0. This is a nontrivial unipotent element in the unipotent
radical of the unitary group U(h) (remember that h is degenerate).

By conjugating this unipotent with arbitrary elements of ρd (g) we get
an arithmetic subgroup of the unipotent radical of U(h) inside the
monodromy group.

If we now take n = 2d + 1, the conclusion of the preceding paragraph
says: the image of Bn−1 under the Burau representation of Bn contains
an arithmetic subgroup of the unipotent radical of a parabolic
subgroup, namely, the one which preserves the flag

Cv ⊂ v⊥ ⊂ Cn−1.

The arithmeticity follows from
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A criterion for Arithmeticity

The following is a criterion for arithmeticity:

Suppose that G is an absolutely simple linear algebraic group defined
over a number field K ; denote by OK the ring of integers in K .
Suppose G is such that

∞− rank(G) =
∑

v archimedean

Kv − rank(G) ≥ 2,

and K − rank(G) ≥ 1. Suppose that Γ ⊂ G(OK ) is a Zariski dense
subgroup in G, such that the intersection of Γ with the integer points
U(OK ) has finite index in U(OK ) where U is the unipotent radical of a
maximal parabolic subgroup of G defined over K . Then
(M.S.Raghunathan, Pacific Journal of math, 152 (1992), and
T.N.Venkataramana, Systems of Generators, Pacific Journal of math,
166 (1994))) Γ is arithmetic, i.e. Γ has finite index in G(OK ).

This immediately implies that the image of the Burau representation ρd
is arithmetic provided n = 2d + 1. Then a "bootstrapping" plus
induction gives the same result for all n ≥ 2d + 1.
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Thank you for your attention.
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