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I Avoid extreme case: q < x,

I Seek UPPER BOUNDS,

I We want primes: choose a prime to q,

I No a is special: equidistribution in the φ(q) classes.
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Brun-(Titchmarsh, 1930) Theorem:
Terminology of (Linnik, 1961)

Theorem
(Montgomery & Vaughan, 1974 )

When x > q ≥ 1,
∑

y<p≤y+x,
p≡a[q]

1 ≤
2 x

φ(q) log(x/q)

π(1010000 + 1000) − π(1010000) ≤ 289.
Better than 2? Oups !!!
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Often used with a global lower bound, for instance:

Theorem Let 1 ≤ q ≤ X1/10. (X ≥ X0)
∀a prime to q,
∃m = p1p2 or p1p2p3 ≤ X / m ≡ a[q].

Proof. x = X1/3.

I π(x) ≥ x/ log x when x ≥ 17,

I 1
2 log(x/q) ≥ 7/20 > 1/3,

I Brun-Titchmarsh→ one class / three has primes,

I Add. comb. → products of three covers a b · H,

I ∃n outside H → result.

Two or three prime factors! See later
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The Brun-Titchmarsh Theorem:
OPTIMAL or NOT?

I Beats the trivial 1+x/q in a wide range,

I When q = 1 and y = 0,

the estimate is sharp up to the 2,

I Idem when q is small,

I At size x + y, average density is 1/ log(y + x)

I When y = 0, density is 1/ log x, not 1/ log(x/q)

What about a heuristics?? Consequences?
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Background
on Siegel zero

I Study of primes
−→ Riemann-ζ function and Dirichlet L -series

I One of the keys: no zero close to<s = 1

I Hadamard and de la Vallée-Poussin – 1896
Assume L(1 + iγ, χ) = 0. Take σ > 1:

3<
−L ′

L
(σ, χ0)+4<

−L ′

L
(σ+ iγ, χ)+<

−L ′

L
(σ+2iγ, χ2) ≥ 0

=⇒ L(1 + it , χ),0
Pole:

1
σ − 1 Zero:

−1
σ − 1

Bounded if
χ2 , χ0or γ , 0

↑ ↑

↙

Problem left: χ2 = 1 and γ = 0. A possible exceptional “Siegel zero”
χ , 1

B
alasubram

anian
&

R
am

anchandra,1976
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More on Balasubramanian
& Ramachandra’s

idea
Here is a sample of what they do.

Theorem∑
Y<p≤2Y

(
1 + cos(

√
Y log p)

)
� Y/ log Y.

oscillates wildly!

↙

I Analytical means→ nothing, even on RH,
I Vinogradov→ nothing [multiplicativity].

'
√

YY 2Y
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Siegel zero versus class number problem
An algebraical interpretation:

I No Siegel zero

Same as I A lower bound for L(1, χ) (real analysis, tricks)

Same as I A lower bound for the class number of Q(
√
−q)

(split primes)

Same as I Counting reduced quadratic forms in a family
(quadratic system)

Dirichlet class number formula
↑

We are again stuck on these three new points –
No better luck with upper bounds!
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Brun-Titchmarsh versus Siegel zero
When L(1 − δ, χ) = 0 and δ = o(1/ log q):

Cheating a bit∑
p≤X ,

p≡a[q]

1 ∼
π(X)

φ(q)

(
1 − χ(a)

X−δ

1 − δ

)
when

log X

log q
→ ∞

(Gallagher, 1970)

For X in some range,
For a such that χ(a) = −1:

∑
p≤X ,

p≡a[q]

1 ∼
2 X

φ(q) log X

Back to the same factor 2 !!
We know the subgroup structure
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Brun-Titchmarsh versus Siegel zero
and effectivity

Cheating a bit (Motohashi, 1979), (Basquin, 2006)

I Show that
∑

p≤X ,
p≡a[q]

1 ≤ (2 − ε)π(X)/φ(q)

for some ε > 0 and all q ≤ (log X)c ,
Same as I Prove in an effective fashion that∑

p≤X ,
p≡a[q]

1 ∼ π(X)/φ(q) for q ≤ (log X)c ,

Same as I Make L(1, χ) � 1/q1/c effective,

(Goldfeld, 1975), (Gross & Zagier, 1983),
(Oesterlé, 1985).

Reinforced Deuring-Heilbronn phenomenom
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Brun-Titchmarsh: crossing the second
wall!

1 ≥ α > 0

I When q ≤ xα,
∑
p≤x,

p≡a[q]

1 ≤
2c(α)x

φ(q) log(x/q)
with c(α) < 1,

(Motohashi, 1974), (Iwaniec, 1982),
(Friedlander & Iwaniec, 1997)

I (Maynard, 2013) has c(α)(1 − α) = 1 when α ≤ 1/8,

I We always have c(α) log x ≥ log(x/q).



History and
classical Statement

Siegel zero
as a barrier

The parity principle
as ... a barrier

Prime packing My own Strange encounters Future? References

A footnote for specialists

Brun-Titchmarsh inequality ↔ zero-free region

Large sieve extension of
Brun-Titchmarsh inequality

↔
Log-free
density estimates
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A second occurrence of the factor 2
(Selberg, 1949) developped by (Bombieri, 1976)

Take an optimal linear sieve
ω(n) = number of prime factors of n

Contribution of
integers with
even ω(n)

Expected
=

Contribution of
integers with
odd ω(n)

+

=
TWICE the expectation

↙↘

↓
←by the sieve

I We had an analytical hurdle
I This one is a combinatorial hurdle
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A first stop!

Where did the intervals disappear?

I In q-aspect: the factor 2 is not justified.
I Is this factor required by the interval aspect?

We consider q = 1.
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Towards a lower bound: Prime packing
Locating the problem
Typically :

101
0000

101
0000 + 1000

how many primes there?

In (y, y + x], with x very small,
how many primes At Most?

On average x/log(y + x)
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Let us look at the spacings:

h2 h3 h4 · · · hκ

y p1 p2 p3 p4 pκ y + x

p1 + (h1 = 0, h2, h3, · · · , hκ)

A κ-tuple is admissible (h1, h2, · · · , hκ) when
∀q ≥ 1, {h1, h2, · · · , hκ}/qZ , Z/qZ

Enough: q prime and q ≤ κ?.
(2, 4, 6) no!

Framework of ... (Hardy & Littlewood, 1922)!



History and
classical Statement

Siegel zero
as a barrier

The parity principle
as ... a barrier

Prime packing My own Strange encounters Future? References

Length of a κ-tuple : L(h) = hκ − h1 + 1

PROBLEM: Given κ, find h that minimizes L(h).

Theorem (Hensley & Richards, 1974)
Let ε > 0 and L be large.
∃ admissible κ-tuple of length ≤ L such that

κ ≥ π(L) + (log 2 − ε)
L

(log L)2
.

Schinzel: log 2→ 2 log 2 most probably
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A numerical approach

Theorem (Dusart, 1998)
∃admissible 1415-tuple of length L = 11763

π(11763) = 1409 , hence +6 !! κ ≥ 1.004π(L)
(2π(11763/2) = 1550 > 1415)

PROBLEM: max
h admissible

κ

π(L)
? ≥ 1.004

PROBLEM: lim sup
κ→∞

max
h admissible

κ

π(L)
? ∈ [1, 2]
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A more modest project
Back to diminishing the upper bound
Statement and history

Theorem (O.R. & S. Yazdani, 2016 ?)
When x ≥ x0, π(y + x) − π(y) ≤

2x
5.66 + log x

(Bombieri, 1971) 5.66→ −3
(Montgomery & Vaughan, 1973) 5.66→ 5/6

(Selberg, 1991) 5.66→ 2.81
(O.R. & Schlage-Puchta, 2006) 5.66→ 3.53
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Sieving out the small primes more precisely
f = 2 × 3 × 5 × 7 × 11 × 13 × 17

Cheating a bit!

Df(u) = max
h∈R,

w/[w]=[u]

∣∣∣∣∣∣∣ ∑
h<n≤h+w,
gcd(n,f)=1

1 −Model(w)

∣∣∣∣∣∣∣

a
m
ax
im
al

es
ti
m
at
e

I Selberg: Model(w) =
ϕ(f)

f
w

I Now: Model(w) is optimal
+ expressed as lin. comb. of

∑
n≤w,

gcd(n,f)=1

χ(n)

where χ are Generalized Dirichlet characters.

Idem for Df(u)
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Some simple tools:

µ(q) =

(−1)r when q = p1 · · · pr , pi , pj,

0 else.
,

φ(q) =
∑
n≤q,

(n,q)=1

1
∼
≈ q σ(q) =

∑
d|q

d
∼
≈ q

cq(n) =
∑

1≤a≤q,
(a,q)=1

e2iπan/q ← Ramanujan sum

Main property we use:

cq(n) = µ(q) when (n, q) = gcd(n, q) = 1
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Sieving the larger primes

I Wanted: f = 1n ∈(y,y+x]∩P

I From: Set = {n ∈ (y, y + x], gcd(n, f) = 1} (y ≥ x)

I Using: n ∈ Set and prime⇒ µ(q)cq(n) = 1, ∀q ≤
√

x

F(n) =
1
C

∑
q/σ(q)≤

√
x,

gcd(q,f)=1

(
1 −

σ(q)
√

x

)
µ(q)cq(n)

φ(q)

Local-Global gluing

+ optimization prayer

Choice of C −→ F(p) = 1 when p ∈ (y, y + x]
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The local-model or functional approach
Consider [g1, g2] =

∑
y<n≤y+x,
(n,f)=1

g1(n)g2(n)

We have [f , f ] = [f ,F] = Z and thus

[F,F] ≥ [f , f ]

But [F,F] is computable!

f
F

OPTIMAL !

We ignore the error terms!
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A methological INTERLUDE

The "small sieve" approach:
∣∣∣F(n)

∣∣∣2 ≥ f(n)

and thus....

[F,F] ≥ [f , f ] !! Yet again!!

Local Models
−→

−→

Large sieve [F,F]=
∑
n

∣∣∣∣ ∑
q≤
√

x

∑
a mod ∗q

h(a/q)e(na/q)

∣∣∣∣2
Small sieve F(n)=

∑
d|n
λd , λd=

∑
d|q···
···
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.... and we work ...
I Special sieve with a thicker close-to-diagonal,
I Generalized characters,
I Mellin (and reverse!) transform in several complex variables,
I Distribution measure of arithmetical function

Some funny beasts to study
Cheating a bit

Af(s) =
∏

gcd(p,f)=1

(
p − 1

p

)2 (
1 +

2
p

(
p + 1

p

)s)
Bf(s) =

∏
gcd(p,f)=1

(
1 +

(p + 1)2s

p4

)
Cf(s) =

∏
gcd(p,f)=1

(
1 +

(p + 1)2s

ps+2

) (
1 −

1
p2−s

)
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Main hurdle left

f 7→
1

2iπ

∫ 1
2+i∞

1
2−i∞

Af(s)Bf(s)Cf(s) ζ(2 − s)E(s)ds
4s(2 − s)2(1 − s)2s

E(s) =
∑
n≥1

Df(n) − Df(n − 1)

ns

Even if E(s) is given, computing is difficult!

First step:

I Af(s), Bf(s) and Cf(s) −→ finite Euler products
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(∆ =
∏

p≤P,
p,-f

p), G0(u) = 1
2 u2( 5

2 − log u) − u(1 + log u) − 1/4

To be evaluated:
φ(∆)2

∆2

∑
abc |∆,

σ(a)σ(bc)2≤wac

cφ2(c)

φ(bc)2σ(bc)2

2ω(a)a
φ(a)σ(a)

G0

(
σ(a)σ(bc)2

wac

)

Second step:
I Restrict a to having less than 7 prime factors

Output:

I f = 2 × 3 × 5 × 7 −→ Constant ≥ 4.51

I f = 2 × 3 × 5 × 7 × 11 −→ Constant ≥ 4.91

I f = 2 × 3 × 5 × 7 × 11 × 13 −→ Constant ≥ 5.38

I f = 2 × 3 × 5 × 7 × 11 × 13 × 17 −→ Constant ≥ 5.66
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Prospectives
Is the 2 required?

I don’t know! Hensley & Richards propose: no.

I believe:
∃f(X)→ ∞/ π(y + x) − π(y) ≤

2x
f(x) + log x

What about the Lq-problem?∫ 2Y

Y

∣∣∣ ∑
y<p≤y+x

1
∣∣∣qdy � · · · ?

Can we really adapt that to primes in
progressions?
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A FOOTNOTE

(Odlyzko et al., 1999)
give a heuristics that says that:

The most frequent difference is

first 6,
then 30,

then 210,
and so on...

They sustain their point by producing calculations.
Marek Wolf started this business by exhibing some
surprising numerical tables.
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