Groups with expansive automorphisms

C. R. E. Raja

Indian Statistical Institute, Bangalore.

• G - locally compact totally disconnected group,

• *G* - locally compact totally disconnected group, that is, *G* has arbitrarily small compact open subgroups.

- *G* locally compact totally disconnected group, that is, *G* has arbitrarily small compact open subgroups.
- ullet By an automorphisms lpha of G, we mean a continuous automorphism.

- *G* locally compact totally disconnected group, that is, *G* has arbitrarily small compact open subgroups.
- ullet By an automorphisms lpha of G, we mean a continuous automorphism.

For an automorphism α of ${\it G}$ we consider the following two subgroups:

- *G* locally compact totally disconnected group, that is, *G* has arbitrarily small compact open subgroups.
- ullet By an automorphisms lpha of G, we mean a continuous automorphism.

For an automorphism α of ${\it G}$ we consider the following two subgroups:

•
$$U_{\alpha} = \{x \in G \mid \lim_{n \to \infty} \alpha^n(x) = e\}$$

- *G* locally compact totally disconnected group, that is, *G* has arbitrarily small compact open subgroups.
- ullet By an automorphisms lpha of G, we mean a continuous automorphism.

For an automorphism α of ${\it G}$ we consider the following two subgroups:

• $U_{\alpha} = \{x \in G \mid \lim_{n \to \infty} \alpha^n(x) = e\}$ - known as the contraction group of α

- *G* locally compact totally disconnected group, that is, *G* has arbitrarily small compact open subgroups.
- ullet By an automorphisms lpha of ${\it G}$, we mean a continuous automorphism.

For an automorphism α of ${\it G}$ we consider the following two subgroups:

- $U_{\alpha} = \{x \in G \mid \lim_{n \to \infty} \alpha^n(x) = e\}$ known as the contraction group of α
- $U_{\alpha^{-1}} = \{x \in G \mid \lim_{n \to -\infty} \alpha^n(x) = e\}$

We recall the following facts about the contraction groups.

We recall the following facts about the contraction groups.

• In general, neither U_{α} nor $U_{\alpha^{-1}}$ is closed;

We recall the following facts about the contraction groups.

- In general, neither U_{α} nor $U_{\alpha^{-1}}$ is closed;
- U_{α} is closed if and only if $U_{\alpha^{-1}}$ is closed ([BaWi-04]);

We recall the following facts about the contraction groups.

- In general, neither U_{α} nor $U_{\alpha^{-1}}$ is closed;
- U_{α} is closed if and only if $U_{\alpha^{-1}}$ is closed ([BaWi-04]);
- If G is a p-adic Lie group, U_{α} is closed, in fact an unipotent algebraic group ([Wa-84]).

 α will denote an automorphisms of a totally disconnected locally compact group G.

 α will denote an automorphisms of a totally disconnected locally compact group G.

 α is called expansive if

 α will denote an automorphisms of a totally disconnected locally compact group G.

 α is called expansive if there is a compact open subgroup ${\it K}$ of ${\it G}$ such that

 α will denote an automorphisms of a totally disconnected locally compact group G.

 α is called expansive if there is a compact open subgroup K of G such that $\bigcap_{n\in\mathbb{Z}}\alpha^n(K)=\{e\}.$

lpha will denote an automorphisms of a totally disconnected locally compact group ${\it G}$.

 α is called expansive if there is a compact open subgroup K of G such that $\bigcap_{n\in\mathbb{Z}}\alpha^n(K)=\{e\}.$

Aim:

 α will denote an automorphisms of a totally disconnected locally compact group G.

 α is called expansive if there is a compact open subgroup K of G such that $\bigcap_{n\in\mathbb{Z}}\alpha^n(K)=\{e\}.$

Aim: Study the structure of groups that admit expansive automorphisms

 α will denote an automorphisms of a totally disconnected locally compact group G.

 α is called expansive if there is a compact open subgroup K of G such that $\bigcap_{n\in\mathbb{Z}}\alpha^n(K)=\{e\}.$

Aim: Study the structure of groups that admit expansive automorphisms

lpha will denote an automorphisms of a totally disconnected locally compact group ${\it G}$.

 α is called expansive if there is a compact open subgroup K of G such that $\bigcap_{n\in\mathbb{Z}}\alpha^n(K)=\{e\}.$

Aim: Study the structure of groups that admit expansive automorphisms

The following are easy to observe:

• Automorphisms on discrete groups are expansive.

lpha will denote an automorphisms of a totally disconnected locally compact group ${\it G}$.

 α is called expansive if there is a compact open subgroup K of G such that $\bigcap_{n\in\mathbb{Z}}\alpha^n(K)=\{e\}.$

Aim: Study the structure of groups that admit expansive automorphisms

- Automorphisms on discrete groups are expansive.
- If α restricted to an open subgroup is expansive, then α is expansive.

lpha will denote an automorphisms of a totally disconnected locally compact group ${\it G}$.

 α is called expansive if there is a compact open subgroup K of G such that $\bigcap_{n\in\mathbb{Z}}\alpha^n(K)=\{e\}.$

Aim: Study the structure of groups that admit expansive automorphisms

- Automorphisms on discrete groups are expansive.
- If α restricted to an open subgroup is expansive, then α is expansive.
- Equicontinuous automorphisms on a non-discrete group is not expansive.

 α will denote an automorphisms of a totally disconnected locally compact group G.

 α is called expansive if there is a compact open subgroup K of G such that $\bigcap_{n\in\mathbb{Z}}\alpha^n(K)=\{e\}.$

Aim: Study the structure of groups that admit expansive automorphisms

- Automorphisms on discrete groups are expansive.
- If α restricted to an open subgroup is expansive, then α is expansive.
- Equicontinuous automorphisms on a non-discrete group is not expansive. For instance $\alpha \in GL_n(\mathbb{Z}_p)$ is not expansive on \mathbb{Q}_p^n .

• scalar multiplication on \mathbb{Q}_p by p is expansive.

• scalar multiplication on \mathbb{Q}_p by p is expansive. In this case, $U_{\alpha} = \mathbb{Q}_p$.

• scalar multiplication on \mathbb{Q}_p by p is expansive. In this case, $U_\alpha=\mathbb{Q}_p$.

Automorphisms for which $U_{\alpha}=G$, are called contractive and groups admitting contractive automorphisms are called contraction groups.

• scalar multiplication on \mathbb{Q}_p by p is expansive. In this case, $U_\alpha=\mathbb{Q}_p.$

Automorphisms for which $U_{\alpha}=G$, are called contractive and groups admitting contractive automorphisms are called contraction groups.

• Any contractive automorphism is expansive.

Let $G = \{(x, y, z + \mathbb{Z}_p) \mid x, y, z \in \mathbb{Q}_p\}$ with multiplication given by

Let
$$G=\{(x,y,z+\mathbb{Z}_p)\mid x,y,z\in\mathbb{Q}_p\}$$
 with multiplication given by
$$(x,y,z+\mathbb{Z}_p)(x',y',z'+\mathbb{Z}_p)=(x+x',y+y',z+z'+xy'+\mathbb{Z}_p)$$
 and

Let
$$G=\{(x,y,z+\mathbb{Z}_p)\mid x,y,z\in\mathbb{Q}_p\}$$
 with multiplication given by $(x,y,z+\mathbb{Z}_p)(x',y',z'+\mathbb{Z}_p)=(x+x',y+y',z+z'+xy'+\mathbb{Z}_p)$ and $\alpha\colon G\to G$ be given by
$$\alpha(x,y,z+Z_p)=(x/p,py,z+\mathbb{Z}_p).$$

Let $G = \{(x, y, z + \mathbb{Z}_p) \mid x, y, z \in \mathbb{Q}_p\}$ with multiplication given by

$$(x, y, z + \mathbb{Z}_p)(x', y', z' + \mathbb{Z}_p) = (x + x', y + y', z + z' + xy' + \mathbb{Z}_p)$$

and $\alpha \colon G \to G$ be given by

$$\alpha(x, y, z + Z_p) = (x/p, py, z + Z_p).$$

Then α is an expansive automorphism

Expansive but not contractive

Let $G = \{(x, y, z + \mathbb{Z}_p) \mid x, y, z \in \mathbb{Q}_p\}$ with multiplication given by

$$(x, y, z + \mathbb{Z}_p)(x', y', z' + \mathbb{Z}_p) = (x + x', y + y', z + z' + xy' + \mathbb{Z}_p)$$

and $\alpha \colon G \to G$ be given by

$$\alpha(x, y, z + Z_p) = (x/p, py, z + Z_p).$$

Then α is an expansive automorphism but G does not admit any contractive automorphism as the commutator of G is discrete.

Let α be an automorphism of G.

Let α be an automorphism of G. For a compact open subgroup V, consider the following:

Let α be an automorphism of G. For a compact open subgroup V, consider the following:

$$V_+ = \bigcap_{n\geq 0} \alpha^n(V), \quad V_- = \bigcap_{n\leq 0} \alpha^n(V)$$

Let α be an automorphism of G. For a compact open subgroup V, consider the following:

$$V_+ = \bigcap_{n \geq 0} \alpha^n(V), \quad V_- = \bigcap_{n \leq 0} \alpha^n(V)$$

$$V_0 = V_+ \cap V_-, \quad V_{++} = \bigcup_{n \ge 0} \alpha^n(V_+), \quad V_{--} = \bigcup_{n \le 0} \alpha^n(V_-)$$

Let α be an automorphism of G. For a compact open subgroup V, consider the following:

$$V_+ = \cap_{n \geq 0} \alpha^n(V), \quad V_- = \cap_{n \leq 0} \alpha^n(V)$$

$$V_0 = V_+ \cap V_-, \quad V_{++} = \bigcup_{n \ge 0} \alpha^n(V_+), \quad V_{--} = \bigcup_{n \le 0} \alpha^n(V_-)$$

In general neither of V_{++} , V_{--} is closed. However,

Let α be an automorphism of G. For a compact open subgroup V, consider the following:

$$V_+ = \bigcap_{n \geq 0} \alpha^n(V), \quad V_- = \bigcap_{n \leq 0} \alpha^n(V)$$

$$V_0 = V_+ \cap V_-, \quad V_{++} = \bigcup_{n \ge 0} \alpha^n(V_+), \quad V_{--} = \bigcup_{n \le 0} \alpha^n(V_-)$$

In general neither of V_{++} , V_{--} is closed. However,

Theorem [Wi-94]

There is a compact open subgroup V such that V_{++} and V_{--} are closed and $V=V_+V_-$: such a subgroup is called a tidy subgroup for α .

We define the Levi factor $M_{\alpha} = \{x \in G \mid \overline{\{\alpha^n(x)\}} \text{ is compact } \}$

We define the Levi factor $M_{\alpha} = \{x \in G \mid \overline{\{\alpha^n(x)\}} \text{ is compact } \}$ and we have

• M_{α} is a α -invariant closed subgroup ([Wi-94]).

We define the Levi factor $M_{\alpha} = \{x \in G \mid \overline{\{\alpha^n(x)\}} \text{ is compact } \}$ and we have

• M_{α} is a α -invariant closed subgroup ([Wi-94]).

we observe that

Proposition (GIR)

 α is expansive if and only if α restricted to M_{α} is expansive.

Assuming α is expansive on \emph{G} , we observe the following:

• *G* is metrizable;

- *G* is metrizable;
- V_0 is trivial for some compact open subgroup V and $V=V_+V_-;$

- G is metrizable;
- V_0 is trivial for some compact open subgroup V and $V=V_+V_-;$
- U_{α} could be given a locally compact group topology τ so that α is contraction on (U_{α}, τ) and the canonical injection $(U_{\alpha}, \tau) \to G$ is continuous (also proved in [Si-88]).

- G is metrizable;
- V_0 is trivial for some compact open subgroup V and $V=V_+V_-;$
- U_{α} could be given a locally compact group topology τ so that α is contraction on (U_{α}, τ) and the canonical injection $(U_{\alpha}, \tau) \to G$ is continuous (also proved in [Si-88]).
- $U_{\alpha}U_{\alpha^{-1}}$ is open

- G is metrizable;
- V_0 is trivial for some compact open subgroup V and $V=V_+V_-;$
- U_{α} could be given a locally compact group topology τ so that α is contraction on (U_{α}, τ) and the canonical injection $(U_{\alpha}, \tau) \to G$ is continuous (also proved in [Si-88]).
- $U_{\alpha}U_{\alpha^{-1}}$ is open and the converse holds if U_{α} is closed.

- G is metrizable;
- V_0 is trivial for some compact open subgroup V and $V=V_+V_-;$
- U_{α} could be given a locally compact group topology τ so that α is contraction on (U_{α}, τ) and the canonical injection $(U_{\alpha}, \tau) \to G$ is continuous (also proved in [Si-88]).
- $U_{\alpha}U_{\alpha^{-1}}$ is open and the converse holds if U_{α} is closed. In general, the converse need not be true.

Take
$$G = K^Z$$

Take
$$G = K^Z$$
 where

Take $G = K^Z$ where K is any compact group

Take $G = K^Z$ where K is any compact group and

Take $G = K^{\mathbb{Z}}$ where K is any compact group and α to be the right shift.

Take $G = K^Z$ where K is any compact group and α to be the right shift.

In this situation,

Take $G = K^Z$ where K is any compact group and α to be the right shift.

In this situation, $U_{\alpha}U_{\alpha^{-1}}=G$.

Take $G = K^Z$ where K is any compact group and α to be the right shift.

In this situation, $U_{\alpha}U_{\alpha^{-1}}=G$.

It can be shown that

Take $G = K^{\mathbb{Z}}$ where K is any compact group and α to be the right shift.

In this situation, $U_{\alpha}U_{\alpha^{-1}}=G$.

It can be shown that α is expansive

Take $G = K^{\mathbb{Z}}$ where K is any compact group and α to be the right shift.

In this situation, $U_{\alpha}U_{\alpha^{-1}}=G$.

It can be shown that α is expansive iff

Take $G = K^{\mathbb{Z}}$ where K is any compact group and α to be the right shift.

In this situation, $U_{\alpha}U_{\alpha^{-1}}=G$.

It can be shown that α is expansive iff K is finite.

Take $G = K^{\mathbb{Z}}$ where K is any compact group and α to be the right shift.

In this situation, $U_{\alpha}U_{\alpha^{-1}}=G$.

It can be shown that α is expansive iff K is finite.

Here α is never contractive since U_{α} as well as $U_{\alpha^{-1}}$ is a proper subgroup.

Normal series

Normal series

Assume α is expansive on G.

Theorem (GIR)

There exists α -stable subnormal series of closed subgroups $G = G_0 \supseteq G_1 \supseteq \cdots \supseteq G_n = \{e\}$ of G such that

Normal series

Assume α is expansive on G.

Theorem (GIR)

There exists lpha-stable subnormal series of closed subgroups

$$G = G_0 \supseteq G_1 \supseteq \cdots \supseteq G_n = \{e\}$$
 of G such that

(1) every α -stable closed normal subgroup of G_{j-1}/G_j is discrete or open and

Assume α is expansive on G.

Theorem (GIR)

There exists α -stable subnormal series of closed subgroups

 $G = G_0 \supseteq G_1 \supseteq \cdots \supseteq G_n = \{e\}$ of G such that

(1) every α -stable closed normal subgroup of G_{j-1}/G_j is discrete or open and (2) each of the quotient groups G_{j-1}/G_j is discrete, abelian or topologically perfect.

Assume α is expansive on G.

Theorem (GIR)

There exists α -stable subnormal series of closed subgroups $G = G_0 \supseteq G_1 \supseteq \cdots \supseteq G_n = \{e\}$ of G such that

(1) every α -stable closed normal subgroup of G_{j-1}/G_j is discrete or open and (2) each of the quotient groups G_{j-1}/G_j is discrete, abelian or topologically perfect.

Assume α is expansive on G.

Theorem (GIR)

 $G = G_0 \supseteq G_1 \supseteq \cdots \supseteq G_n = \{e\}$ of G such that (1) every α -stable closed normal subgroup of G_{j-1}/G_j is discrete or open and (2) each of the quotient groups G_{j-1}/G_j is discrete, abelian or topologically perfect.

There exists α -stable subnormal series of closed subgroups

Proof

• We first find an upper bound for number of j in any subnormal series $G = G_0 \supseteq G_1 \supseteq \cdots \supseteq G_n = \{e\}$ for which G_{j-1}/G_j is not discrete.

Assume α is expansive on G.

Theorem (GIR)

There exists α -stable subnormal series of closed subgroups $G = G_0 \supseteq G_1 \supseteq \cdots \supseteq G_n = \{e\}$ of G such that (1) every α -stable closed normal subgroup of G_{j-1}/G_j is discrete or open and (2) each of the quotient groups G_{j-1}/G_j is discrete, abelian or topologically perfect.

- We first find an upper bound for number of j in any subnormal series $G = G_0 \supseteq G_1 \supseteq \cdots \supseteq G_n = \{e\}$ for which G_{j-1}/G_j is not discrete.
- We choose a series that has maximum such j,

Assume α is expansive on G.

Theorem (GIR)

There exists α -stable subnormal series of closed subgroups $G = G_0 \supseteq G_1 \supseteq \cdots \supseteq G_n = \{e\}$ of G such that (1) every α -stable closed normal subgroup of G_{j-1}/G_j is discrete or open and (2) each of the quotient groups G_{j-1}/G_j is discrete, abelian or topologically perfect.

- We first find an upper bound for number of j in any subnormal series $G = G_0 \supseteq G_1 \supseteq \cdots \supseteq G_n = \{e\}$ for which G_{j-1}/G_j is not discrete.
- We choose a series that has maximum such j, hence subfactors of such a series satisfy (1).

Assume α is expansive on G.

Theorem (GIR)

There exists α -stable subnormal series of closed subgroups $G = G_0 \supseteq G_1 \supseteq \cdots \supseteq G_n = \{e\}$ of G such that (1) every α -stable closed normal subgroup of G_{j-1}/G_j is discrete or open and (2) each of the quotient groups G_{j-1}/G_j is discrete, abelian or topologically perfect.

- We first find an upper bound for number of j in any subnormal series $G = G_0 \supseteq G_1 \supseteq \cdots \supseteq G_n = \{e\}$ for which G_{j-1}/G_j is not discrete.
- We choose a series that has maximum such j, hence subfactors of such a series satisfy (1).
- For each such j we introduce $(G_{j-1} \supseteq) M_j \supseteq N_j (\supseteq G_j)$ so that the conclusion are valid for the subfactors.

Theorem (GIR)

If α is expansive on G and H is a closed normal α -stable subgroup of G,

Theorem (GIR)

If α is expansive on G and H is a closed normal α -stable subgroup of G, then the factor of α is expansive on G/H.

Theorem (GIR)

If α is expansive on G and H is a closed normal α -stable subgroup of G, then the factor of α is expansive on G/H.

The result was known for compact groups (see [Sch-95], [Wi-15]).

Theorem (GIR)

If α is expansive on G and H is a closed normal α -stable subgroup of G, then the factor of α is expansive on G/H.

The result was known for compact groups (see [Sch-95], [Wi-15]).

Proof

We restrict to the Levi factor and prove the expansiveness of the factor automorphism.

The following are abelian groups with expansive automorphisms:

(1) \mathbb{Q}_p^n for some $n \in \mathbb{N}$,

The following are abelian groups with expansive automorphisms:

(1) \mathbb{Q}_p^n for some $n \in \mathbb{N}$, together with a linear automorphism $\beta \colon \mathbb{Q}_p^n \to \mathbb{Q}_p^n$ such that β or β^{-1} is contracting.

The following are abelian groups with expansive automorphisms:

(1) \mathbb{Q}_p^n for some $n \in \mathbb{N}$, together with a linear automorphism $\beta \colon \mathbb{Q}_p^n \to \mathbb{Q}_p^n$ such that β or β^{-1} is contracting.

Let
$$\mathbb{N}_0 = \mathbb{N} \cup \{0\}$$
.

The following are abelian groups with expansive automorphisms:

(1) \mathbb{Q}_p^n for some $n \in \mathbb{N}$, together with a linear automorphism $\beta \colon \mathbb{Q}_p^n \to \mathbb{Q}_p^n$ such that β or β^{-1} is contracting.

Let $\mathbb{N}_0 = \mathbb{N} \cup \{0\}$.

Let C_p be the cyclic group of order p

The following are abelian groups with expansive automorphisms:

(1) \mathbb{Q}_p^n for some $n \in \mathbb{N}$, together with a linear automorphism $\beta \colon \mathbb{Q}_p^n \to \mathbb{Q}_p^n$ such that β or β^{-1} is contracting.

Let $\mathbb{N}_0 = \mathbb{N} \cup \{0\}$.

Let C_p be the cyclic group of order p and $C_p^{(-\mathbb{N})}$ be the restricted direct product.

The following are abelian groups with expansive automorphisms:

(1) \mathbb{Q}_p^n for some $n \in \mathbb{N}$, together with a linear automorphism $\beta \colon \mathbb{Q}_p^n \to \mathbb{Q}_p^n$ such that β or β^{-1} is contracting.

Let $\mathbb{N}_0 = \mathbb{N} \cup \{0\}$.

Let C_p be the cyclic group of order p and $C_p^{(-\mathbb{N})}$ be the restricted direct product.

(2) $C_p^{(-\mathbb{N})} \times C_p^{\mathbb{N}_0}$ with the right-shift;

The following are abelian groups with expansive automorphisms:

(1) \mathbb{Q}_p^n for some $n \in \mathbb{N}$, together with a linear automorphism $\beta \colon \mathbb{Q}_p^n \to \mathbb{Q}_p^n$ such that β or β^{-1} is contracting.

Let $\mathbb{N}_0 = \mathbb{N} \cup \{0\}$.

Let C_p be the cyclic group of order p and $C_p^{(-\mathbb{N})}$ be the restricted direct product.

- (2) $C_p^{(-\mathbb{N})} \times C_p^{\mathbb{N}_0}$ with the right-shift;
- (3) $C_p^{(-\mathbb{N})} \times C_p^{\mathbb{N}_0}$ with the left-shift;

The following are abelian groups with expansive automorphisms:

(1) \mathbb{Q}_p^n for some $n \in \mathbb{N}$, together with a linear automorphism $\beta \colon \mathbb{Q}_p^n \to \mathbb{Q}_p^n$ such that β or β^{-1} is contracting.

Let
$$\mathbb{N}_0 = \mathbb{N} \cup \{0\}$$
.

Let C_p be the cyclic group of order p and $C_p^{(-\mathbb{N})}$ be the restricted direct product.

- (2) $C_p^{(-\mathbb{N})} \times C_p^{\mathbb{N}_0}$ with the right-shift;
- (3) $C_p^{(-\mathbb{N})} \times C_p^{\mathbb{N}_0}$ with the left-shift;
- (4) $C_p^{\mathbb{Z}}$ with the right-shift.

The following are abelian groups with expansive automorphisms:

(1) \mathbb{Q}_p^n for some $n \in \mathbb{N}$, together with a linear automorphism $\beta \colon \mathbb{Q}_p^n \to \mathbb{Q}_p^n$ such that β or β^{-1} is contracting.

Let
$$\mathbb{N}_0 = \mathbb{N} \cup \{0\}$$
.

Let C_p be the cyclic group of order p and $C_p^{(-\mathbb{N})}$ be the restricted direct product.

- (2) $C_p^{(-\mathbb{N})} \times C_p^{\mathbb{N}_0}$ with the right-shift;
- (3) $C_p^{(-\mathbb{N})} \times C_p^{\mathbb{N}_0}$ with the left-shift;
- (4) $C_p^{\mathbb{Z}}$ with the right-shift.

Theorem (GIR)

Let A be an abelian, totally disconnected, locally compact group and $\alpha \colon A \to A$ be an expansive automorphism.

The following are abelian groups with expansive automorphisms:

(1) \mathbb{Q}_p^n for some $n \in \mathbb{N}$, together with a linear automorphism $\beta \colon \mathbb{Q}_p^n \to \mathbb{Q}_p^n$ such that β or β^{-1} is contracting.

Let $\mathbb{N}_0 = \mathbb{N} \cup \{0\}$.

Let C_p be the cyclic group of order p and $C_p^{(-\mathbb{N})}$ be the restricted direct product.

- (2) $C_p^{(-\mathbb{N})} \times C_p^{\mathbb{N}_0}$ with the right-shift;
- (3) $C_p^{(-\mathbb{N})} \times C_p^{\mathbb{N}_0}$ with the left-shift;
- (4) $C_p^{\mathbb{Z}}$ with the right-shift.

Theorem (GIR)

Let A be an abelian, totally disconnected, locally compact group and $\alpha\colon A\to A$ be an expansive automorphism. Assume that $A=U_\alpha U_{\alpha^{-1}}$ and

The following are abelian groups with expansive automorphisms:

(1) \mathbb{Q}_p^n for some $n \in \mathbb{N}$, together with a linear automorphism $\beta \colon \mathbb{Q}_p^n \to \mathbb{Q}_p^n$ such that β or β^{-1} is contracting.

Let
$$\mathbb{N}_0 = \mathbb{N} \cup \{0\}$$
.

Let C_p be the cyclic group of order p and $C_p^{(-\mathbb{N})}$ be the restricted direct product.

- (2) $C_p^{(-\mathbb{N})} \times C_p^{\mathbb{N}_0}$ with the right-shift;
- (3) $C_p^{(-\mathbb{N})} \times C_p^{\mathbb{N}_0}$ with the left-shift;
- (4) $C_p^{\mathbb{Z}}$ with the right-shift.

Theorem (GIR)

Let A be an abelian, totally disconnected, locally compact group and $\alpha\colon A\to A$ be an expansive automorphism. Assume that $A=U_{\alpha}U_{\alpha^{-1}}$ and every α -stable proper closed subgroup of A is discrete.

The following are abelian groups with expansive automorphisms:

(1) \mathbb{Q}_p^n for some $n \in \mathbb{N}$, together with a linear automorphism $\beta \colon \mathbb{Q}_p^n \to \mathbb{Q}_p^n$ such that β or β^{-1} is contracting.

Let
$$\mathbb{N}_0 = \mathbb{N} \cup \{0\}$$
.

Let C_p be the cyclic group of order p and $C_p^{(-\mathbb{N})}$ be the restricted direct product.

- (2) $C_p^{(-\mathbb{N})} \times C_p^{\mathbb{N}_0}$ with the right-shift;
- (3) $C_p^{(-\mathbb{N})} \times C_p^{\mathbb{N}_0}$ with the left-shift;
- (4) $C_p^{\mathbb{Z}}$ with the right-shift.

Theorem (GIR)

Let A be an abelian, totally disconnected, locally compact group and $\alpha\colon A\to A$ be an expansive automorphism. Assume that $A=U_{\alpha}U_{\alpha^{-1}}$ and every α -stable proper closed subgroup of A is discrete. Then there exists a prime number p such that (A,α) isomorphic to one of the above.

The following are abelian groups with expansive automorphisms:

(1) \mathbb{Q}_p^n for some $n \in \mathbb{N}$, together with a linear automorphism $\beta \colon \mathbb{Q}_p^n \to \mathbb{Q}_p^n$ such that β or β^{-1} is contracting.

Let
$$\mathbb{N}_0 = \mathbb{N} \cup \{0\}$$
.

Let C_p be the cyclic group of order p and $C_p^{(-\mathbb{N})}$ be the restricted direct product.

- (2) $C_p^{(-\mathbb{N})} \times C_p^{\mathbb{N}_0}$ with the right-shift;
- (3) $C_p^{(-\mathbb{N})} \times C_p^{\mathbb{N}_0}$ with the left-shift;
- (4) $C_p^{\mathbb{Z}}$ with the right-shift.

Theorem (GIR)

Let A be an abelian, totally disconnected, locally compact group and $\alpha\colon A\to A$ be an expansive automorphism. Assume that $A=U_{\alpha}U_{\alpha^{-1}}$ and every α -stable proper closed subgroup of A is discrete. Then there exists a prime number p such that (A,α) isomorphic to one of the above.

Proposition (GIR)

An automorphism α of a Lie group over a local field is expansive if and only if the differential d α has no eigenvalue of absolute value one.

Proposition (GIR)

An automorphism α of a Lie group over a local field is expansive if and only if the differential d α has no eigenvalue of absolute value one.

Proposition [Bourbaki]

If a Lie algebra has an automorphism that has no eigenvalue of absolute value one, then the Lie algebra is nilpotent.

Proposition (GIR)

An automorphism α of a Lie group over a local field is expansive if and only if the differential d α has no eigenvalue of absolute value one.

Proposition [Bourbaki]

If a Lie algebra has an automorphism that has no eigenvalue of absolute value one, then the Lie algebra is nilpotent.

Corollary (GIR)

If a Lie group over a local field has an expansive automorphism, then its Lie algebra is nilpotent.

Even for a p-adic Lie group, $U_{\alpha}U_{\alpha^{-1}}$ may not be a group. However,

Even for a p-adic Lie group, $U_{\alpha}U_{\alpha^{-1}}$ may not be a group. However,

Theorem (GIR)

Let G be a p-adic Lie group with an expansive automorphism α .

Even for a p-adic Lie group, $U_{\alpha}U_{\alpha^{-1}}$ may not be a group. However,

Theorem (GIR)

Let G be a p-adic Lie group with an expansive automorphism α . If G has a continuous injection into $GL_n(\mathbb{Q}_p)$,

Even for a p-adic Lie group, $U_{\alpha}U_{\alpha^{-1}}$ may not be a group. However,

Theorem (GIR)

Let G be a p-adic Lie group with an expansive automorphism α . If G has a continuous injection into $GL_n(\mathbb{Q}_p)$, then G has a α -stable nilpotent open subgroup.

Even for a p-adic Lie group, $U_{\alpha}U_{\alpha^{-1}}$ may not be a group. However,

Theorem (GIR)

Let G be a p-adic Lie group with an expansive automorphism α . If G has a continuous injection into $GL_n(\mathbb{Q}_p)$, then G has a α -stable nilpotent open subgroup. If G is a p-adic linear group,

Even for a p-adic Lie group, $U_{\alpha}U_{\alpha^{-1}}$ may not be a group. However,

Theorem (GIR)

Let G be a p-adic Lie group with an expansive automorphism α . If G has a continuous injection into $GL_n(\mathbb{Q}_p)$, then G has a α -stable nilpotent open subgroup. If G is a p-adic linear group, then $U_{\alpha}U_{\alpha^{-1}}$ is an open unipotent (α -stable) algebraic subgroup of G.

p-adic Lie groups

Even for a p-adic Lie group, $U_{\alpha}U_{\alpha^{-1}}$ may not be a group. However,

Theorem (GIR)

Let G be a p-adic Lie group with an expansive automorphism α . If G has a continuous injection into $GL_n(\mathbb{Q}_p)$, then G has a α -stable nilpotent open subgroup. If G is a p-adic linear group, then $U_{\alpha}U_{\alpha^{-1}}$ is an open unipotent (α -stable) algebraic subgroup of G.

Even for a *p*-adic linear group, U_{α} may not normalize $U_{\alpha^{-1}}$:

p-adic Lie groups

Even for a $\emph{p}\text{-adic}$ Lie group, $\emph{U}_{\alpha}\emph{U}_{\alpha^{-1}}$ may not be a group. However,

Theorem (GIR)

Let G be a p-adic Lie group with an expansive automorphism α . If G has a continuous injection into $GL_n(\mathbb{Q}_p)$, then G has a α -stable nilpotent open subgroup. If G is a p-adic linear group, then $U_{\alpha}U_{\alpha^{-1}}$ is an open unipotent (α -stable) algebraic subgroup of G.

Even for a *p*-adic linear group, U_{α} may not normalize $U_{\alpha^{-1}}$: recall that U_{α} as well as $U_{\alpha^{-1}}$ both are closed.

Let $G = \{(x, y, z + \mathbb{Z}_p) \mid x, y, z \in \mathbb{Q}_p\}$ with multiplication given by

Let
$$G=\{(x,y,z+\mathbb{Z}_p)\mid x,y,z\in\mathbb{Q}_p\}$$
 with multiplication given by
$$(x,y,z+\mathbb{Z}_p)(x',y',z'+\mathbb{Z}_p)=(x+x',y+y',z+z'+xy'+\mathbb{Z}_p)$$
 and

Let
$$G=\{(x,y,z+\mathbb{Z}_p)\mid x,y,z\in\mathbb{Q}_p\}$$
 with multiplication given by $(x,y,z+\mathbb{Z}_p)(x',y',z'+\mathbb{Z}_p)=(x+x',y+y',z+z'+xy'+\mathbb{Z}_p)$ and $\alpha\colon G\to G$ be given by
$$\alpha(x,y,z+|Z_p)=(x/p,py,z+\mathbb{Z}_p).$$

Let $G=\{(x,y,z+\mathbb{Z}_p)\mid x,y,z\in\mathbb{Q}_p\}$ with multiplication given by

$$(x,y,z+\mathbb{Z}_p)(x',y',z'+\mathbb{Z}_p)=(x+x',y+y',z+z'+xy'+\mathbb{Z}_p)$$

and $\alpha \colon G \to G$ be given by

$$\alpha(x,y,z+Z_p)=(x/p,py,z+\mathbb{Z}_p).$$

Here,
$$U_{\alpha} = \{(0, y, \mathbb{Z}_p) \mid y \in \mathbb{Q}_p\}$$
 and $U_{\alpha^{-1}} = \{(x, 0, \mathbb{Z}_p) \mid x \in \mathbb{Q}_p\}.$

Let $G = \{(x, y, z + \mathbb{Z}_p) \mid x, y, z \in \mathbb{Q}_p\}$ with multiplication given by

$$(x, y, z + \mathbb{Z}_p)(x', y', z' + \mathbb{Z}_p) = (x + x', y + y', z + z' + xy' + \mathbb{Z}_p)$$

and $\alpha \colon G \to G$ be given by

$$\alpha(x,y,z+Z_p)=(x/p,py,z+\mathbb{Z}_p).$$

Here, $U_{\alpha} = \{(0, y, \mathbb{Z}_p) \mid y \in \mathbb{Q}_p\}$ and $U_{\alpha^{-1}} = \{(x, 0, \mathbb{Z}_p) \mid x \in \mathbb{Q}_p\}.$

Thus, $U_{\alpha}U_{\alpha^{-1}}=\{(x,y,\mathbb{Z}_p)\mid x,y\in\mathbb{Q}_p\}$ which is not even a group.

Take
$$H = \{ \begin{pmatrix} 0 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix} \mid x, y, z \in \mathbb{Q}_p \}$$
 and $G = H \times H$.

Take
$$H = \left\{ \begin{pmatrix} 0 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix} \mid x, y, z \in \mathbb{Q}_p \right\}$$
 and $G = H \times H$.

Define $\beta \colon H \to H$ by $\beta \begin{pmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & px & z/p \\ 0 & 1 & y/p^2 \\ 0 & 0 & 1 \end{pmatrix}$

Take
$$H = \left\{ \begin{pmatrix} 0 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix} \mid x, y, z \in \mathbb{Q}_p \right\}$$
 and $G = H \times H$.

Define $\beta \colon H \to H$ by $\beta \begin{pmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & px & z/p \\ 0 & 1 & y/p^2 \\ 0 & 0 & 1 \end{pmatrix}$ and take $\alpha = \beta \times \beta^{-1}$ on G

Take
$$H = \left\{ \begin{pmatrix} 0 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix} \mid x, y, z \in \mathbb{Q}_p \right\}$$
 and $G = H \times H$. Define $\beta \colon H \to H$ by $\beta \begin{pmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & px & z/p \\ 0 & 1 & y/p^2 \\ 0 & 0 & 1 \end{pmatrix}$ and take $\alpha = \beta \times \beta^{-1}$ on G Then
$$U_{\alpha} = \left\{ \begin{pmatrix} 1 & x & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \mid x \in \mathbb{Q}_p \right\} \times \left\{ \begin{pmatrix} 1 & 0 & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix} \mid y, z \in \mathbb{Q}_p \right\}$$
 and

Take
$$H = \left\{ \begin{pmatrix} 0 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix} \mid x, y, z \in \mathbb{Q}_p \right\}$$
 and $G = H \times H$.

Define $\beta \colon H \to H$ by $\beta \begin{pmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & px & z/p \\ 0 & 1 & y/p^2 \\ 0 & 0 & 1 \end{pmatrix}$ and take $\alpha = \beta \times \beta^{-1}$ on G Then
$$U_{\alpha} = \left\{ \begin{pmatrix} 1 & x & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \mid x \in \mathbb{Q}_p \right\} \times \left\{ \begin{pmatrix} 1 & 0 & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix} \mid y, z \in \mathbb{Q}_p \right\}$$
 and
$$U_{\alpha^{-1}} = \left\{ \begin{pmatrix} 1 & 0 & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix} \mid y, z \in \mathbb{Q}_p \right\}.$$

Take
$$H = \left\{ \begin{pmatrix} 0 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix} \mid x,y,z \in \mathbb{Q}_p \right\}$$
 and $G = H \times H$. Define $\beta \colon H \to H$ by $\beta \begin{pmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & px & z/p \\ 0 & 1 & y/p^2 \\ 0 & 0 & 1 \end{pmatrix}$ and take $\alpha = \beta \times \beta^{-1}$ on G Then
$$U_{\alpha} = \left\{ \begin{pmatrix} 1 & x & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \mid x \in \mathbb{Q}_p \right\} \times \left\{ \begin{pmatrix} 1 & 0 & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix} \mid y,z \in \mathbb{Q}_p \right\}$$
 and
$$U_{\alpha^{-1}} = \left\{ \begin{pmatrix} 1 & 0 & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix} \mid y,z \in \mathbb{Q}_p \right\} \times \left\{ \begin{pmatrix} 1 & x & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \mid x \in \mathbb{Q}_p \right\}.$$
 In this case $U_{\alpha}U_{\alpha^{-1}} = G$

Take
$$H = \{ \begin{pmatrix} 0 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix} \mid x, y, z \in \mathbb{Q}_p \}$$
 and $G = H \times H$.

Define
$$\beta \colon H \to H$$
 by $\beta \begin{pmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & px & z/p \\ 0 & 1 & y/p^2 \\ 0 & 0 & 1 \end{pmatrix}$ and take

$$\alpha = \beta \times \beta^{-1}$$
 on G Then

$$U_{\alpha} = \left\{ \begin{pmatrix} 1 & x & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \mid x \in \mathbb{Q}_{p} \right\} \times \left\{ \begin{pmatrix} 1 & 0 & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix} \mid y, z \in \mathbb{Q}_{p} \right\} \text{ and}$$

$$U_{\alpha^{-1}} = \left\{ \begin{pmatrix} 1 & 0 & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix} \mid y, z \in \mathbb{Q}_p \right\} \times \left\{ \begin{pmatrix} 1 & x & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \mid x \in \mathbb{Q}_p \right\}. \text{ In}$$

this case $U_{\alpha}U_{\alpha^{-1}}=G$ but neither U_{α} nor $U_{\alpha^{-1}}$ normalize the other.

Thanks for your attention!!!