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Control Problems

Let Z be a Hilbert space and let A be the infinitesimal generator of a
Co-semigroup {S(t)}+>0 on Z. Let U be a Hilbert space called the space
of controls and let B: U — Z. Let ( € Z. Consider the problem:
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Control Problems

Let Z be a Hilbert space and let A be the infinitesimal generator of a
Co-semigroup {S(t)}+>0 on Z. Let U be a Hilbert space called the space
of controls and let B: U — Z. Let ( € Z. Consider the problem:

Z(t) = Az(t)+Bu(t), 0<t<T, 1
20 = ¢ (1)
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Control Problems

Let Z be a Hilbert space and let A be the infinitesimal generator of a
Co-semigroup {S(t)}+>0 on Z. Let U be a Hilbert space called the space
of controls and let B: U — Z. Let ( € Z. Consider the problem:

Z/(t) = Az(t)+ Bu(t), 0<t<T,
z(0) = (.

The space Z is called the state space and z € L?(0, T; Z) is the state of
the system. We may have several objectives from the point of view of
control of the above system.

(1)
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Controllability

o Exact controllability
The system (1) is exactly controllable in time T > 0, if for any
initial data ¢, and any given element (3, there exists a control
u € L?(0, T; U) such that z(T) = (3.
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Controllability

o Exact controllability
The system (1) is exactly controllable in time T > 0, if for any
initial data ¢, and any given element (3, there exists a control
u € L2(0, T; U) such that z(T) = (1. This happens if, and only if,

;
/ |1B*e*A7¢||% dt > a|¢||% forall (€ Z.
0
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Controllability

o Exact controllability
The system (1) is exactly controllable in time T > 0, if for any
initial data ¢, and any given element (3, there exists a control
u € L2(0, T; U) such that z(T) = (1. This happens if, and only if,

;
/ |1B*e*A7¢||% dt > a|¢||% forall (€ Z.
0

@ Approximate controllability
For every pair ((, (1) as above there exists a control u such that z(T)
is as close to (7 as we please.

S. Kesavan (IMSc) Degenerate Riccati equation / 43



Controllability

o Exact controllability
The system (1) is exactly controllable in time T > 0, if for any
initial data ¢, and any given element (3, there exists a control
u € L2(0, T; U) such that z(T) = (1. This happens if, and only if,

;
/ |1B*e*A7¢||% dt > a|¢||% forall (€ Z.
0

@ Approximate controllability
For every pair ((, (1) as above there exists a control u such that z(T)
is as close to (7 as we please.

@ Null controllability
For every initial value (, there exists a control u such that z(T) = 0.
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Controllability

o Exact controllability
The system (1) is exactly controllable in time T > 0, if for any
initial data ¢, and any given element (3, there exists a control
u € L2(0, T; U) such that z(T) = (1. This happens if, and only if,

;
/ |1B*e*A7¢||% dt > a|¢||% forall (€ Z.
0

@ Approximate controllability
For every pair ((, (1) as above there exists a control u such that z(T)
is as close to (7 as we please.

@ Null controllability
For every initial value (, there exists a control u such that z(T) = 0.
This happens if, and only if, for all { € Z,

T *
/ 1B e ¢
0
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Controllability

o Exact controllability
The system (1) is exactly controllable in time T > 0, if for any
initial data ¢, and any given element (3, there exists a control
u € L2(0, T; U) such that z(T) = (1. This happens if, and only if,

;
/ |1B*e*A7¢||% dt > a|¢||% forall (€ Z.
0

@ Approximate controllability
For every pair ((, (1) as above there exists a control u such that z(T)
is as close to (7 as we please.

@ Null controllability
For every initial value (, there exists a control u such that z(T) = 0.
This happens if, and only if, for all { € Z,

T *
/ 1B e ¢
0

All three notions are equivalent if the spaces are finite dimensional.
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Optimal Control: Linear Regulator Problem

Let Y be a Hilbert space, called the space of observation. Let
C:Z — Y be a bounded linear operator. Let ( € Z be fixed. Let z(t) be
the state, i.e. the solution of (1). Define the cost functional

17 1 [T
Szw) = 5 [ NGO der g [ uteyl
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Optimal Control: Linear Regulator Problem

Let Y be a Hilbert space, called the space of observation. Let
C:Z — Y be a bounded linear operator. Let ( € Z be fixed. Let z(t) be
the state, i.e. the solution of (1). Define the cost functional

1

T 2 1 T 2
Sz = 5 [ det g [ luolf o
0 0

Problem: Find u € L?(0, T; U) such that J is minimized.
This is called an optimal control problem with finite time horizon.
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Optimal Control: infinite time horizon

Let ( € Z be fixed. Let z(t) be the state, i.e. the solution of (1). Define
the cost functional

1 [ 1 [
Sew) = 5 [ IcOR de+ g [ ol a

Problem: Find u € L2(0, 00; U) such that J is minimized.
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Optimal Control: infinite time horizon

Let ( € Z be fixed. Let z(t) be the state, i.e. the solution of (1). Define
the cost functional

Sz = 5 [ ICH@ des s [ uel o
0 0
Problem: Find u € L?(0, 00; U) such that J is minimized.
Finite Cost Condition
For every ¢ € Z, there exists a control u € L%(0, 00; U) such that
J(z,u) < .
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If FCC holds then there exists a unique optimal control which minimizes J.
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If FCC holds then there exists a unique optimal control which minimizes J.
Further, there exists P € £(Z) such that

P =P >0
and P satisfies the algebraic Riccati equation

A*P+ PA—PBB*P+ C*C = 0.
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If FCC holds then there exists a unique optimal control which minimizes J.
Further, there exists P € £(Z) such that

P =P >0
and P satisfies the algebraic Riccati equation
AP+ PA—PBB*P+ C*C = 0.

We also have that 1
minJ = §(PC, ()z.
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If FCC holds then there exists a unique optimal control which minimizes J.
Further, there exists P € £(Z) such that

P =P >0
and P satisfies the algebraic Riccati equation
AP+ PA—PBB*P+ C*C = 0.

We also have that 1
minJ = §(PC’ ()z.

Moreover, the optimal control is given in feedback form

u(t) = —B*Pz(t), t > 0.
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If FCC holds then there exists a unique optimal control which minimizes J.
Further, there exists P € £(Z) such that

P =P >0
and P satisfies the algebraic Riccati equation
AP+ PA—PBB*P+ C*C = 0.

We also have that 1
minJ = §(PC’ ()z.

Moreover, the optimal control is given in feedback form
u(t) = —B*Pz(t), t > 0.
Then (1) becomes

Z(t) = (A—BB*P)z(t), t >0, and 2(0) = (.
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In the case of a finite time horizon, defined by T, we have a differential
Riccati equation. Given the system (1), we have the dual system:

—p'(t) = Ap(t)+C*Cz, 0<t< T,
p(T) = C*Cz(T).
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In the case of a finite time horizon, defined by T, we have a differential
Riccati equation. Given the system (1), we have the dual system:

—p'(t) = Ap(t)+C*Cz, 0<t< T,
p(T) = C*Cz(T).

Again
u(t) = —B*p(t).

We can write u(t) = —B*P(t)z(t), where P = P* > 0 and
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In the case of a finite time horizon, defined by T, we have a differential
Riccati equation. Given the system (1), we have the dual system:

—p'(t) = Ap(t)+C*Cz, 0<t< T,
p(T) = C*Cz(T).

Again
u(t) = —B*p(t).

We can write u(t) = —B*P(t)z(t), where P = P* > 0 and
P'(t) + A*P(t) + P(t)A— P(t)BB*P(t) + C*C = 0

and
P(T) = 0.
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In the case of a finite time horizon, defined by T, we have a differential
Riccati equation. Given the system (1), we have the dual system:

—p'(t) = Ap(t)+C*Cz, 0<t< T,
p(T) = C*Cz(T).

Again
u(t) = —B*p(t).

We can write u(t) = —B*P(t)z(t), where P = P* > 0 and
P'(t) + A*P(t) + P(t)A— P(t)BB*P(t) + C*C = 0

and

We have
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@ The (unbounded) operator A is said to be exponentially stable if

] <

for some constants M > 0 and o > 0.
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@ The (unbounded) operator A is said to be exponentially stable if

] <

for some constants M > 0 and o > 0.

@ The pair (A, C) is said to be exponentially detectable if there exists
L € L(Y,Z) such that the operator A+ LC, with domain D(A) is
exponentially stable.
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@ The (unbounded) operator A is said to be exponentially stable if

] <

for some constants M > 0 and o > 0.

@ The pair (A, C) is said to be exponentially detectable if there exists
L € L(Y,Z) such that the operator A+ LC, with domain D(A) is
exponentially stable.

o If A is exponentially stable, then FCC automatically holds.

e If FCC holds and the pair (A, C) is exponentially detectable, then the
solution to the algebraic Riccati equation is unique.
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Numerical Approximation

Let Ap, By, Cp be finite dimensional approximations to A, B, C respectively
using some numerical scheme (eg. Finite element method). Problem: Find
Py € L(RN) such that P, = P; > 0 and

AZPh —+ PhAh — PhBhB;:Ph —+ C;:Ch = 0.

For control of fluid flows or thermal processes, N is very large. Solution of
above equation very difficult.
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Numerical Approximation

Let Ap, By, Cp be finite dimensional approximations to A, B, C respectively
using some numerical scheme (eg. Finite element method). Problem: Find
Py € L(RN) such that P, = P; > 0 and

AZPh —+ PhAh — PhBhB;:Ph —+ C;:Ch = 0.

For control of fluid flows or thermal processes, N is very large. Solution of
above equation very difficult.

Newton-Kleinmann algorithm, for convergence, needs an initial guess Py
such that A, — BB} Py is exponentially stable.
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Numerical Approximation

Let Ap, By, Cp be finite dimensional approximations to A, B, C respectively
using some numerical scheme (eg. Finite element method). Problem: Find
Py € L(RN) such that P, = P; > 0 and

AZPh —+ PhAh — PhBhB;Ph —+ C;:Ch = 0.

For control of fluid flows or thermal processes, N is very large. Solution of
above equation very difficult.

Newton-Kleinmann algorithm, for convergence, needs an initial guess Py
such that A, — BB} Py is exponentially stable.

Benner: Choose Py such that Py = P§ > 0 solution to the degenerate
algebraic Riccati equation:

AyP + PA, — PByB;P = 0
which is also such that A, — BB} Py is exponentially stable.
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We are interested in the following problem:
Find P € £(Z) such that P = P* > 0 such that

A*P + PA— PBB*P =0

and such that A — BB*P is exponentially stable.
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We are interested in the following problem:
Find P € £(Z) such that P = P* > 0 such that

A*P + PA— PBB*P =0

and such that A — BB*P is exponentially stable.
Let us assume for the time being that the spaces Z and U and Y are
finite dimensional.
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A Comparison Principle

Lemma

Let C; € L(Z,Y) for i = 1,2 be such that C; C; > C; G, Let P; € L(Z)
be such that P; = P; > 0 and

A*P; + P;,A — P;BB*P; + C,-*C,' =0

fori =1,2. If A— BB*P; is exponentially stable, then P > P, B
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A Comparison Principle

Lemma

Let C; € L(Z,Y) for i =1,2 be such that C;C; > C5 G, Let P; € L(Z)
be such that P; = P¥ > 0 and

A*P; + P;,A — P;BB*P; + Ci*C,' =0

fori =1,2. If A— BB*P; is exponentially stable, then P > P, R

Corollary

The algebraic and degenerate algebraic Riccati equations admit at most
one solution P such that A — BB*P is exponentially stable. In particular,
if A is itself exponentially stable, then the degenerate equation has no
non-trivial solutions such that A — BB*P is exponentially stable. B
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A Special Case

Theorem
The following are equivalent:

(i) The operator —A is exponentially stable and there exists o > 0 such
that

o0
/0 1% 2|3 dt > allz|2 )

forall z € Z.
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A Special Case

Theorem
The following are equivalent:

(i) The operator —A is exponentially stable and there exists o > 0 such
that

o0
/0 1% 2|3 dt > allz|2 )

forall z € Z.

(ii) The degenerate algebraic Riccati equation admits solution P € L(Z)
which is invertible and such that A — BB*P is exponentially stable.
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A Special Case

Theorem

The following are equivalent:
(i) The operator —A is exponentially stable and there exists o > 0 such
that

o0
/0 1% 2|3 dt > allz|2 )

forallz € Z.
(ii) The degenerate algebraic Riccati equation admits solution P € L(Z)
which is invertible and such that A — BB*P is exponentially stable.

Proof: Step 1: If —A is exponentially stable and (2) holds,
Q = / e MBB*e ™ dt
0
is well defined and Q@ = Q*. Further, for any z € Z, (2) implies that

(Qz,2)z > alz||

a al a
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Step 2. Let Q(t) = e ABB*e ™", Then

BB* = Q(0) = —/OoodtQ(t) dt

and so we deduce that
AQ + QA* = BB*.

Set P= Q1.
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Step 2. Let Q(t) = e ABB*e ™", Then
BB* = Q(0) = —/Ooo —Q(t) dt
and so we deduce that
AQ + QA* = BB™.

Set P= QL.
Step 3. Since P is invertible, and solves the degenerate equation, we see
that

P(A— BB*P)P7! = A

and the RHS is, by assumption, also exponentially stable. Thus A— BB*P
is also exponentially stable.
Step 4. The converse is proved by essentially retracing this proof. B
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Remark 1. The operator Q is the familiar Grammian associated to the
system and AQ 4+ QA* = BB* is the Lyapunov equation.
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Remark 1. The operator Q is the familiar Grammian associated to the

system and AQ 4+ QA* = BB* is the Lyapunov equation.
Remark 2. If the pair (—A, B) is exactly controllable in some time T > 0,

then there exists o > 0 such that
T *
| iEre g e > ozl

for all z € Z and so (2) is also true. Thus, the above theorem is applicable
if —A is exponentially stable and the pair (—A, B) is exactly controllable.
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A Variational Characterization

We will assume that —A is exponentially stable and that (2) holds. Let P

be the solution to the degenerate algebraic Riccati equation obtained in
the proof of Theorem 1.
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A Variational Characterization

We will assume that —A is exponentially stable and that (2) holds. Let P

be the solution to the degenerate algebraic Riccati equation obtained in
the proof of Theorem 1.

Let H be a real Hilbert space. Let {G,} be a sequence in L(H) such that
Gn, = G} > 0. Assume, further that, for every v € H, the sequence
{(Gpv, v)n} is decreasing. Then, there exists G € L(H) such that

G = G* >0 and, foreveryve H, Gov— Gvin H. 1

S. Kesavan (IMSc) Degenerate Riccati equation



A Variational Characterization

We will assume that —A is exponentially stable and that (2) holds. Let P
be the solution to the degenerate algebraic Riccati equation obtained in
the proof of Theorem 1.

Let H be a real Hilbert space. Let {G,} be a sequence in L(H) such that
Gn, = G} > 0. Assume, further that, for every v € H, the sequence
{(Gpv, v)n} is decreasing. Then, there exists G € L(H) such that

G = G* >0 and, foreveryve H, Gov— Gvin H. 1

Since A — BB*P is exponentially stable, (A, /) is exponentially detectable.
So is the pair (A, kl) for any k € R. In particular, for every £ > 0, there
exists a unique P. = P > 0 such that

P.A+ A*P. — P.BB*P. +£? = 0.
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Further, A — BB*P. is exponentially stable.
Then, by lemma, there exists Py = P; > 0 solution of the degenerate
algebraic Riccati equation.
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Further, A — BB*P; is exponentially stable.

Then, by lemma, there exists Py = P; > 0 solution of the degenerate
algebraic Riccati equation.

Since A — BB*P is exponentially stable, we get, by the comparison
principle, that P > Py. Again, by the same principle, we have P. > P and,
passing to the limit, Py > P. Thus, Py = P.
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Further, A — BB*P; is exponentially stable.

Then, by lemma, there exists Py = P; > 0 solution of the degenerate
algebraic Riccati equation.

Since A — BB*P is exponentially stable, we get, by the comparison
principle, that P > Py. Again, by the same principle, we have P. > P and,
passing to the limit, Py > P. Thus, Py = P.

Let ¢ € Z be fixed such that ¢ # 0.

Now, for u € L2(0, 00; U), set z, to be the solution of (1). Define

E; = {ue 0,00, U) | z, € L3(0,00; Z}.

Consider ~
. 2
t dt.
min [ ue)1}
FCC = E; # 0.
E; closed?
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Proposition
If —A is exponentially stable and (2) holds, then the above minimization
problem admits a solution. We have

(P¢.0z = mip [ (ol ot

and the minimizer is given by

u(t) = —B*e ™ pPc. 1
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Proposition

If —A is exponentially stable and (2) holds, then the above minimization
problem admits a solution. We have

el = /0 a0, dt

UGEC

and the minimizer is given by

u(t) = —B*e ™ pPc. 1

Remark 3. Since —A is exponentially stable, A'is NOT and so 0 ¢ E.
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The General Case

Henceforth, we will assume the following to hold:

(H) There exist subspaces Z and Z, of Z such that

(i) Z=2Z® Z,.

(i) Zs and Z, are invariant under A.

(iii) The restriction of A to Z is exponentially stable.
(iv) The restriction of —A to Z,, is exponentially stable.

S. Kesavan (IMSc) Degenerate Riccati equation / 43



The General Case

Henceforth, we will assume the following to hold:

(H) There exist subspaces Z and Z, of Z such that

() Z=2Zs® 2,

(i) Zs and Z, are invariant under A.

(iii) The restriction of A to Z is exponentially stable.

(iv) The restriction of —A to Z,, is exponentially stable.

Example The matrix A has no eigenvalues on the imaginary axis. Then
we can find invariant subspaces Z; and Z, such that all the eigenvalues of
the restriction of A to Z are with negative real part and all the
eigenvalues of the restriction of A to Z, have positive real part. B
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Let 7 : Z — Zs and 7w, : Z — Z, be the canonical projections with
respect to this decomposition of Z.

A = Amr, = m,AT,.

T+ 7 = 1.
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Let 7 : Z — Zs and 7w, : Z — Z, be the canonical projections with
respect to this decomposition of Z.

A = Amr, = m,AT,.
T+ 7 = 1.

Assume that the pair (7,A, m,B) is such that there exists o > 0 satisfying:
/ |(7uB) e ™ 2| dt > ozl (3)
0

forall z € Z,.
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Let 7 : Z — Zs and 7w, : Z — Z, be the canonical projections with
respect to this decomposition of Z.

A = Amr, = m,AT,.
T+ 7 = 1.

Assume that the pair (7,A, m,B) is such that there exists o > 0 satisfying:

/ [(muB)* e Az
0

for all z € Z,. Then, by Theorem 1, there exists P, € £(Z,) such that
P,=P;>0and

7 dt > allz|Z (3)

Py(myA) + (my) Py — Py(myB)(myB)*P, = 0.

Further, m,A — (7,B)(7,B)* P, is exponentially stable.
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Theorem

Assume that the hypothesis (H) holds and that (3) is true. Let
P, € L(Z,) be as detailed earlier. Define

P = 7 Pym,.

Then P = P* > 0; P satisfies the degenerate algebraic Riccati equation
and A — BB*P is exponentially stable.
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Theorem

Assume that the hypothesis (H) holds and that (3) is true. Let
P, € L(Z,) be as detailed earlier. Define

P = 7 Pym,.

Then P = P* > 0; P satisfies the degenerate algebraic Riccati equation
and A — BB*P is exponentially stable.

Proof: Clearly P is self-adjoint and non-negative. That it satisfies the
degenerate algebraic Riccati equation follows by multiplying the equation
for P, on the left by 7}, and on the right by 7, and using the fact that 7,
commutes with A (and so its adjoint commutes with A*) and that 7, is a
projection.
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Finally we see that (with respect to the decomposition Z = Z; & Z,,),

- wee ] -

_ [ A —msBB TPy } [ TsZ ]

0 m,A—mBB*r}P, Tyz

Since both diagonal blocks of the upper triangular matrix are exponentially
stable, it follows that A — BB*P is also exponentially stable. l
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Assume that A has no eigenvalues on the imaginary axis.

If (—A, B) is exactly controllable in time T > 0, then so is (—m,A, 7,B).
The eigenvalues of msA are precisely those of A with negative real part.
Since m,A — 7, BB*m} P, is similar to —(m,A)*, the eigenvalues of this
matrix are the reflections on the imaginary axis of those of A with positive
real part.

Thus, the eigenvalues of A — BB*P are those of A with negative real part
and the reflections on the imaginary axis of those eigenvalues of A with
positive real part.
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One dimensional case

Degenerate Equation:
2ap — b’p?> = 0.
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One dimensional case

Degenerate Equation:
2ap — b’p?> = 0.

Solutions: p=0and p = % (when b # 0; if b= 0, then (—a, b) is not
exactly controllable).
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One dimensional case

Degenerate Equation:

2ap — b’p?> = 0.
Solutions: p=0and p = % (when b # 0; if b= 0, then (—a, b) is not
exactly controllable).

Perturbed Equation:
2ap. — bzpf +e2 = 0.
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One dimensional case

Degenerate Equation:
2ap — b’p?> = 0.
Solutions: p=0and p = % (when b # 0; if b= 0, then (—a, b) is not
exactly controllable).
Perturbed Equation:

2ap. — bzpf +e2 = 0.

Positive solution:

a++va?+ e2p?

P = b2
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One dimensional case

Degenerate Equation:
2ap — b’p?> = 0.
Solutions: p=0and p = % (when b # 0; if b= 0, then (—a, b) is not
exactly controllable).
Perturbed Equation:
2ap. — bzpf +e2 = 0.

Positive solution:
a+ Va2 +e2b?

b2 ’

P =

When a < 0, p. - p=0.
When a > 0, p5—>p:§.
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One dimensional case

Degenerate Equation:
2ap — b’p?> = 0.
Solutions: p=0and p = % (when b # 0; if b= 0, then (—a, b) is not
exactly controllable).
Perturbed Equation:
2ap. — bzpf +e2 = 0.
Positive solution:

a+VaZ+e2p?
P = b2 .

When a < 0, p. - p=0.
When a > 0, p5—>p:§.
Thus,

A b2 — a whena<0
P= 1 —a whena>o.
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Infinite Dimensions

Let Z be a Hilbert space and let A be the infinitesimal generator of a
Co-semigroup which is exponentially stable. Thus, there exists ¢ > 0 such
that, for all t > 0, we have

le] < Me.
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Infinite Dimensions

Let Z be a Hilbert space and let A be the infinitesimal generator of a
Co-semigroup which is exponentially stable. Thus, there exists ¢ > 0 such
that, for all t > 0, we have

le] < Me.

Let a > 0. We define
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Infinite Dimensions

Let Z be a Hilbert space and let A be the infinitesimal generator of a
Co-semigroup which is exponentially stable. Thus, there exists ¢ > 0 such
that, for all t > 0, we have

le] < Me.

Let a > 0. We define

Then (—A)™ € L(Z).
If0<a<1, weset

(A" = (—A)(-A)"
with the domain

D((-A)") = {z€ Z | (~A)" 'z € D(A)}.
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We have
eAZ c D((—A)?), (—A)*e™ e L(Z) forall t > 0
and there exists k > 0 and C(«) > 0 such that

[(~A)e|| < C(a)t~"e~", t > 0.
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Unbounded Control Operator

Let A be the infinitesimal generator of a Cp-semigroup on a Hilbert space
Z. Let A* denote the Z-adjoint of A and let (D(A*))" denote the dual of
D(A*) with respect to the Z-topology. Let B € L(U, (D(A*)").
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Unbounded Control Operator

Let A be the infinitesimal generator of a Cp-semigroup on a Hilbert space
Z. Let A* denote the Z-adjoint of A and let (D(A*))" denote the dual of
D(A*) with respect to the Z-topology. Let B € L(U, (D(A*)").

Let A € p(A), the resolvent set of A. Then (A — A) € L(D(A), Z) and has
a bounded inverse in Z. Further (A — (A*)*), the extension of (Al — A) to
D(A*)), also denoted by (Al — A) has a bounded inverse from (D(A*))
into Z. Thus, there exists By € L(U, Z) such that B = (Al — A)Bo.
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The Parabolic Case

Let A be an analytic semigroup and let A— X\g/ be exponentially stable.Let
By € L(U,Z) and 0 < « < 1 be such that

B = (Ao — Al B

in the sense explained earlier.
In other words, we have B € L(U, (D(A*)’) and

Bi = (Mol —A)* 1B e L(U,2).
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Degenerate Riccati Equation

Find P € £(Z) such that P = P* >0 and
AP+ PA— P(Xol — A 9By B (Aol — A*)1 P = 0
and such that
A— (Mol — A2BBf (Aol — AN 2P

is exponentially stable.
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Degenerate Riccati Equation

Find P € £(Z) such that P = P* >0 and
AP+ PA— P(Xol — A 9By B (Aol — A*)1 P = 0
and such that
A— (Mol — A2BBf (Aol — AN 2P

is exponentially stable.
The equation is interpreted as follows: for all £&,n7 € D(A),
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Hypotheses

o Z =72, Zs, with Z, finite dimensional.
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Hypotheses

o Z =72, Zs, with Z, finite dimensional.
e Z,ND(A) = Z, and Z; N D(A) invariant under A.
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Hypotheses

o Z =72, Zs, with Z, finite dimensional.
e Z,ND(A) = Z, and Z; N D(A) invariant under A.
e A|z and —A|z, exponentially stable.
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Hypotheses

Z = Z,® Zs, with Z, finite dimensional.
Z,ND(A) = Z, and Z; N D(A) invariant under A.
Al|z, and —A|z, exponentially stable.

Let 7, and 75 be the projections of Z onto Z, and Zs respectively.
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Hypotheses

Z = Z,® Zs, with Z, finite dimensional.
Z,ND(A) = Z, and Z; N D(A) invariant under A.
Al|z, and —A|z, exponentially stable.

Let 7, and 75 be the projections of Z onto Z, and Zs respectively.
There exists 8 > 0 such that

/O I(muB) e ™A 2|y dt > pllz|I%

for all z € Z,.
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Theorem

Under the preceding hypotheses, there exists P = P* > 0 in L(Z) such
that
()
A*P + PA— PBB*P =0,
(i) A— BB*P is exponentially stable and
(i) P € L(D(A), D(A*)).
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Theorem

Under the preceding hypotheses, there exists P = P* > 0 in L(Z) such
that
(i)
A*P + PA— PBB*P =0,
(ii)) A — BB*P is exponentially stable and
(iii) P € L(D(A), D(A*)).

v

Proof: Z, is finite dimensional and we have P, € £(Z,) as in Theorem 2.
We can set P = 7,P,m, and verify that (i) and (ii) are true. We will prove

(iii).
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B = (ol — A)Nol — A)2B;
= (ol = Amu(hol — A)"°B;.
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B = (ol — A)Nol — A)2B;
= (ol = A)mu(hol — A)"B;.

But (Ao/ — A)™ @By € L(U, Z) and so m,(Aol — A)"*By € L(U, Z,,).
Since Z,, is finite dimensional A|z, € £(Z,) and so m,B € L(U, Z,).
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B = (ol — A)Nol — A)2B;
= (ol = A)mu(hol — A)"B;.

But (Ao/ — A)™ @By € L(U, Z) and so m,(Aol — A)"*By € L(U, Z,,).
Since Z,, is finite dimensional A|z, € £(Z,) and so m,B € L(U, Z,). Then

PBB*P = (n:P)(m,B)(muB)*(Pr,) € L(Z).
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Let x € D(A). Since P solves the equation, we easily deduce that
Px € D(A*).
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Let x € D(A). Since P solves the equation, we easily deduce that
Px € D(A*).

(A*Px,y) = (PBB*Px,y) — (PAx,y).
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Let x € D(A). Since P solves the equation, we easily deduce that
Px € D(A*).

(A*Px,y) = (PBB*Px,y) — (PAx,y).

(PAX7y) = (T‘-Z'DUWUAX?.)/) = (TFZPuAﬂ'uX,y)
whence since A|z, € L(Z,),

[(PAx, y)| < Clixllzllyllz-
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Let x € D(A). Since P solves the equation, we easily deduce that
Px € D(A*).

(A*Px,y) = (PBB*Px,y) — (PAx,y).

(PAx,y) = (7 Pum,Ax,y) = (7, PyAT,X, y)
whence since A|z, € L(Z,),
[(PAX, )| < Cllx|lzllyllz-
As we have seen PBB*P € L(Z) and so
[((PBB* — Aol)Px,y)| < Cllx]|zllyllz-

S. Kesavan (IMSc) Degenerate Riccati equation

/ 43



Let x € D(A). Since P solves the equation, we easily deduce that
Px € D(A*).

(A*Px,y) = (PBB*Px,y) — (PAx,y).

(PAX7y) = (FTJPUWUAXL)/) = (TFZPUAWUX7_)/)
whence since A|z, € L(Z,),

[(PAX, )| < Cllx|lzllyllz-
As we have seen PBB*P € L(Z) and so
[((PBB™ — Xol)Px,y)| < Clx|lzllyllz-

Thus
(A" = 20hPx,y)| < Clixllzllyllz

which gives
I1Pxllpasy < Clixllz < Clixllpea

for all x € D(A). Thus P € L(D(A), D(A*)) .
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Variational Characterization

Let ¢ € Z and let z; , be the solution of

Z/(t) = Az(t)+ Bv(t), t >0,
z(0) = (.
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Variational Characterization

Let ¢ € Z and let z; , be the solution of
Z/(t) = Az(t)+ Bv(t), t >0,
z(0) = (.

Let

z¢,,€L2(0,00;2)
E; = {vel?(0,00;U) | z(t)—=0ast—oop.
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Variational Characterization

Let ¢ € Z and let z; , be the solution of
Z/(t) = Az(t)+ Bv(t), t >0,
z(0) = (.

Let
zC,VELz(O,oo;Z)
E; = {vel?(0,00;U) | z(t)—=0ast—oop.

Theorem
Let ¢ € D(A). Then E¢ # 0 and

(P¢.¢) = min [ W0 dt

VEEg 0

and the optimal solution is given by

V(t) - _B* Pet(A_BB*P)C.
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Theorem
Let ( € Z. Then

where

(PC,¢) = min /O V() dt

veEC

S. Kesavan (IMSc)

Degenerate Riccati equation

/ 43



Theorem
Let ( € Z. Then

(P¢,¢) = min /O T vl dt

ve Eé‘!
where

z¢ ,€L%(0,00;2)
El = v e [2(0,00; V) | z¢,(t) > 0ast— o0

and zé’v is the solution of
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Theorem
Let ( € Z. Then

(P¢,¢) = min /O T vl dt

ve Eé‘!
where

z¢ ,€L%(0,00;2)
El = v e [2(0,00; V) | z¢,(t) > 0ast— o0

and zé’v is the solution of

Z/(t) = myAz(t) +muBv(t), t >0,
z(0) = mC.
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Theorem
Let ( € Z. Then

(P¢,¢) = min /O TV ot

ve Eé‘!
where

z¢ ,€L%(0,00;2)
El = v e [2(0,00; V) | z¢,(t) > 0ast— o0

and zé’v is the solution of

Z/(t) = myAz(t) +muBv(t), t >0,
z(0) = mC.

Proof:
('DCa C) = (T":Puﬂ'uCaC) = (Puﬂ'uCaﬂ'uC)
and the result follows from the finite-dimensional version. B
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Since A — BB*P is exponentially stable, the pair (A, /) is exponentially

detectable. Thus for every € > 0, we have a unique P. € £(Z) with
P. =P >0 and

P.A+ A*P. — P.BB*P. + &%l = 0.

Further A — BB*P. is exponentially stable.
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Since A — BB*P is exponentially stable, the pair (A, /) is exponentially
detectable. Thus for every € > 0, we have a unique P. € £(Z) with
P. =P >0 and

P.A+ A*P. — P.BB*P. + &%l = 0.

Further A — BB*P. is exponentially stable.

By the comparison principle (P-(, () decreases as ¢ | 0 for all ( € Z and
so there exists Py € £(Z) such that Py = Py > 0 and P.{ — Py( for all
(e’
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Since A — BB*P is exponentially stable, the pair (A, /) is exponentially
detectable. Thus for every € > 0, we have a unique P. € £(Z) with
P. =P >0 and

P.A+ A*P. — P.BB*P. + &%l = 0.

Further A — BB*P. is exponentially stable.

By the comparison principle (P-(, () decreases as ¢ | 0 for all ( € Z and
so there exists Py € £(Z) such that Py = Py > 0 and P.{ — Py( for all
(e’

Question: Py = P(= wiP,m,)?
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Since A — BB*P is exponentially stable, the pair (A, /) is exponentially
detectable. Thus for every € > 0, we have a unique P. € £(Z) with
P. =P >0 and

P.A+ A*P. — P.BB*P. + &%l = 0.

Further A — BB*P. is exponentially stable.

By the comparison principle (P-(, () decreases as ¢ | 0 for all ( € Z and
so there exists Py € £(Z) such that Py = Py > 0 and P.{ — Py( for all
(e’

Question: Py = P(= wiP,m,)?

By the comparison principle we get P. > P and so, for ( € Z, we have
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Let ¢ € D(A). Then

(Pc.6) = mip {2 [Tzl e+ [ 1ol o).

<
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Let ¢ € D(A). Then

(Pc.6) = mip {2 [Tzl e+ [ 1ol o).

VGEC

Thus, for any fixed v € E;, we get, on passing to the limit,

(PoC.C) < /0 T I3 ot

and so
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Let ¢ € D(A). Then

_ : 2 * 2 > 2
(P.6.) = min {2 [Tzl o+ [Tl .

Thus, for any fixed v € E;, we get, on passing to the limit,

(PoC.C) < /0 T I3 ot

and so

(Poc.¢) < min [ IVl dt = (Pe.0).

VGEC 0
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Thus, for all ¢ € D(A), we have (Po(, () = (P¢, () and, by density, it also
holds for all z € Z, which proves that Py = P.
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Thus, for all ¢ € D(A), we have (Po(, () = (P¢, () and, by density, it also
holds for all z € Z, which proves that Py = P.

Remark; When B is bounded, we can independently prove that P = Py as
and the variational characterization. When B is unbounded we need
stronger convergence properties of P.( to pass to the limit in the term

P.BB*P.. So we first prove the variational characterization and use it to
show that Py = P.
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Finally, when B is bounded, we can prove the infinite dimensional
analogue of of the theorem where —A is exponentially stable.

Theorem
Let B € L(U,Z). Let A be the infinitesimal generator of a Cy-group and
assume that —A is exponentially stable. Assume that there exists 8 > 0
such that for all z € Z,

€3 *
/ HB*e_tA z
0

Then, there exists P € L£(Z), P = P* > 0 which is invertible and such that
(i) P maps D(A) onto D(A*) (and so P~ maps D(A*) onto D(A)).

(i) PA+ A*P — PBB*P = 0.

(iii)A — BB*P is exponentially stable.

? dt > 8 2
t .
’U > Bllzllz
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Step 1 Define
Q= / T e BBt dt.
then Q is well-defined, Q = (3* > 0 and by hypothesis
(Qz,2) > Blz|%.
By Lax-Milgram, Q is invertible. Set P = Q1.
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Step 1 Define
Q= / e ABB*e™ A" dt.
0
then @ is well-defined, @ = Q" > 0 and by hypothesis
(Qz,2) > Blz||3

By Lax-Milgram, Q is invertible. Set P = Q1.
Step 2 Let y,z € D(A*). Then

(Qy,A*z) + (A"y,Qz) = (B*y,B*z).

In particular,
(Qy,A"z)| < Cllz|z.
Thus Qy € D(A) and we can formally write

AQ + QA* = BB™.
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Step 3 We have PAQ + A* = PBB*. Thus
—A* = P(A—BB*P)P1

and so A— BB*P is exponentially stable. If y € D(A*), then Qy € D(A)
and
PA(Qy) + A*y — PBB*P(Qy) = 0.
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Step 3 We have PAQ + A* = PBB*. Thus
—A* = P(A—BB*P)P!

and so A— BB*P is exponentially stable. If y € D(A*), then Qy € D(A)
and
PA(Qy) + A*y — PBB*P(Qy) = 0.

Step 4 Further (A, 1) is exponentially detectable and so for every € > 0, we
have P. € £(Z),P. = P} > 0, A — BB* P, exponentially stable and

P.A+ A*P. — P.BB*P. + £’ = 0.
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Step 3 We have PAQ + A* = PBB*. Thus
—A* = P(A—BB*P)P!

and so A— BB*P is exponentially stable. If y € D(A*), then Qy € D(A)
and
PA(Qy) + A*y — PBB*P(Qy) = 0.

Step 4 Further (A, 1) is exponentially detectable and so for every € > 0, we
have P. € £(Z),P. = P} > 0, A — BB* P, exponentially stable and

P.A+ A*P. — P.BB*P. + £’ = 0.
That is, if x € D(A), then P.x € D(A*) and

P.Ax + A*P.x — P.BB*P.x + &’x = 0.
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Step 3 We have PAQ + A* = PBB*. Thus
—A* = P(A—BB*P)P!

and so A— BB*P is exponentially stable. If y € D(A*), then Qy € D(A)
and
PA(Qy) + A*y — PBB*P(Qy) = 0.

Step 4 Further (A, 1) is exponentially detectable and so for every € > 0, we
have P. € £(Z),P. = P} > 0, A — BB* P, exponentially stable and

P.A+ A*P. — P.BB*P. + £’ = 0.
That is, if x € D(A), then P.x € D(A*) and
P.Ax + A*P.x — P.BB*P.x + ¢*x = 0.

In particular, for y € D(A*), we have Qy € D(A) and so P.(Qy) € D(A*)
and
P.A(Qy) + A*P.(Qy) — P.BB*P.(Qy) +c*Qy = 0.

S. Kesavan (IMSc) Degenerate Riccati equation / 43



From the above two equations for Qy and the comparison principle, we
have

for all y € D(A*).
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From the above two equations for Qy and the comparison principle, we
have

for all y € D(A*).
Step 5 As usual there exists Py € £(Z), Py = P§ > 0 such that
P.z — Pyz for every z € Z. Then (since B is bounded)
PoA+ A*Po — PoBB*Py = 0.
That is if x € D(A), we have Pox € D(A*) and

PoAx + A*Pox — PoBB*Pox = 0.
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From the above two equations for Qy and the comparison principle, we
have

for all y € D(A*).
Step 5 As usual there exists Py € £(Z), Py = P§ > 0 such that
P.z — Pyz for every z € Z. Then (since B is bounded)
PoA+ A*Py — PoBB*Py = 0.
That is if x € D(A), we have Pox € D(A*) and
PoAx + A*Pox — PoBB*Pox = 0.

Further,
((Po— P)Qy.Qy) =0, y € D(AY).
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Again from the comparison principle, since A — BB*P is exponentially
stable, we get
((P—Po)Qy,Qy) > 0, y € D(A").

Thus, ((P — Py)Qy, Qy) =0 for all y € D(A*) and so for all y € Z by
density. Since Q is invertible, we have ((P — Py)z,z) =0 forall z € Z
and so P = Py. Thus P solves the degenerate Riccati equation, which
shows that P : D(A) — D(A*) and we already saw that

Q : D(A*) — D(A) and so these maps are onto. l
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Thank You!
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