On a degenerate algebraic Riccati equation

S. Kesavan

Institute of Mathematical Sciences, CIT Campus, Taramani, Chennai - 600113.

kesh@imsc.res.in

Indo-French Conference January, 2016 Let Z be a Hilbert space and let A be the infinitesimal generator of a C_0 -semigroup $\{S(t)\}_{t\geq 0}$ on Z. Let U be a Hilbert space called the space of **controls** and let $B: U \to Z$. Let $\zeta \in Z$. Consider the problem:

Let Z be a Hilbert space and let A be the infinitesimal generator of a C_0 -semigroup $\{S(t)\}_{t\geq 0}$ on Z. Let U be a Hilbert space called the space of **controls** and let $B: U \to Z$. Let $\zeta \in Z$. Consider the problem:

$$egin{array}{rll} z'(t) &=& Az(t) + Bu(t), \ 0 < t < T, \ z(0) &=& \zeta. \end{array}$$

Let Z be a Hilbert space and let A be the infinitesimal generator of a C_0 -semigroup $\{S(t)\}_{t\geq 0}$ on Z. Let U be a Hilbert space called the space of **controls** and let $B: U \to Z$. Let $\zeta \in Z$. Consider the problem:

$$egin{array}{rll} z'(t) &=& Az(t) + Bu(t), \ 0 < t < T, \ z(0) &=& \zeta. \end{array}$$

The space Z is called the **state space** and $z \in L^2(0, T; Z)$ is the state of the system. We may have several objectives from the point of view of control of the above system.

• Exact controllability

The system (1) is **exactly controllable** in time T > 0, if for any initial data ζ , and any given element ζ_1 , there exists a control $u \in L^2(0, T; U)$ such that $z(T) = \zeta_1$.

• Exact controllability

The system (1) is **exactly controllable** in time T > 0, if for any initial data ζ , and any given element ζ_1 , there exists a control $u \in L^2(0, T; U)$ such that $z(T) = \zeta_1$. This happens if, and only if, $\int_0^T \|B^* e^{tA^*} \zeta\|_Z^2 dt \ge \alpha \|\zeta\|_Z^2 \text{ for all } \zeta \in Z.$

• Exact controllability

The system (1) is **exactly controllable** in time T > 0, if for any initial data ζ , and any given element ζ_1 , there exists a control $u \in L^2(0, T; U)$ such that $z(T) = \zeta_1$. This happens if, and only if, $\int_0^T \|B^* e^{tA^*} \zeta\|_Z^2 dt \ge \alpha \|\zeta\|_Z^2 \text{ for all } \zeta \in Z.$

Approximate controllability

For every pair (ζ, ζ_1) as above there exists a control u such that z(T) is as close to ζ_1 as we please.

• Exact controllability

The system (1) is **exactly controllable** in time T > 0, if for any initial data ζ , and any given element ζ_1 , there exists a control $u \in L^2(0, T; U)$ such that $z(T) = \zeta_1$. This happens if, and only if, $\int_0^T \|B^* e^{tA^*} \zeta\|_Z^2 dt \ge \alpha \|\zeta\|_Z^2 \text{ for all } \zeta \in Z.$

Approximate controllability

For every pair (ζ, ζ_1) as above there exists a control u such that z(T) is as close to ζ_1 as we please.

Null controllability

For every initial value ζ , there exists a control u such that z(T) = 0.

• Exact controllability

The system (1) is **exactly controllable** in time T > 0, if for any initial data ζ , and any given element ζ_1 , there exists a control $u \in L^2(0, T; U)$ such that $z(T) = \zeta_1$. This happens if, and only if, $\int_0^T \|B^* e^{tA^*} \zeta\|_Z^2 dt \ge \alpha \|\zeta\|_Z^2 \text{ for all } \zeta \in Z.$

Approximate controllability

For every pair (ζ, ζ_1) as above there exists a control u such that z(T) is as close to ζ_1 as we please.

Null controllability

For every initial value ζ , there exists a control u such that z(T) = 0. This happens if, and only if, for all $\zeta \in Z$,

$$\int_0^T \|B^* e^{tA^*} \zeta\|_Z^2 dt \geq C \|e^{TA^*} \zeta\|_Z^2.$$

• Exact controllability

The system (1) is **exactly controllable** in time T > 0, if for any initial data ζ , and any given element ζ_1 , there exists a control $u \in L^2(0, T; U)$ such that $z(T) = \zeta_1$. This happens if, and only if, $\int_0^T \|B^* e^{tA^*} \zeta\|_Z^2 dt \ge \alpha \|\zeta\|_Z^2 \text{ for all } \zeta \in Z.$

Approximate controllability

For every pair (ζ, ζ_1) as above there exists a control u such that z(T) is as close to ζ_1 as we please.

Null controllability

For every initial value ζ , there exists a control u such that z(T) = 0. This happens if, and only if, for all $\zeta \in Z$,

$$\int_0^T \|B^* e^{tA^*} \zeta\|_Z^2 dt \geq C \|e^{TA^*} \zeta\|_Z^2.$$

All three notions are equivalent if the spaces are finite dimensional.

Let Y be a Hilbert space, called the space of **observation**. Let $C : Z \to Y$ be a bounded linear operator. Let $\zeta \in Z$ be fixed. Let z(t) be the state, *i.e.* the solution of (1). Define the cost functional

$$J(z, u) = \frac{1}{2} \int_0^T \|Cz(t)\|_Y^2 dt + \frac{1}{2} \int_0^T \|u(t)\|_U^2 dt.$$

Let Y be a Hilbert space, called the space of **observation**. Let $C : Z \to Y$ be a bounded linear operator. Let $\zeta \in Z$ be fixed. Let z(t) be the state, *i.e.* the solution of (1). Define the cost functional

$$J(z, u) = \frac{1}{2} \int_0^T \|Cz(t)\|_Y^2 dt + \frac{1}{2} \int_0^T \|u(t)\|_U^2 dt.$$

Problem: Find $u \in L^2(0, T; U)$ such that J is minimized. This is called an optimal control problem with **finite** time horizon. Let $\zeta \in Z$ be fixed. Let z(t) be the state, *i.e.* the solution of (1). Define the cost functional

$$J(z, u) = \frac{1}{2} \int_0^\infty \|Cz(t)\|_Y^2 dt + \frac{1}{2} \int_0^\infty \|u(t)\|_U^2 dt.$$

Problem: Find $u \in L^2(0, \infty; U)$ such that J is minimized.

Let $\zeta \in Z$ be fixed. Let z(t) be the state, *i.e.* the solution of (1). Define the cost functional

$$J(z, u) = \frac{1}{2} \int_0^\infty \|Cz(t)\|_Y^2 dt + \frac{1}{2} \int_0^\infty \|u(t)\|_U^2 dt.$$

Problem: Find $u \in L^2(0, \infty; U)$ such that J is minimized. Finite Cost Condition

For every $\zeta \in Z$, there exists a control $u \in L^2(0,\infty; U)$ such that $J(z,u) < \infty$.

If FCC holds then there exists a unique optimal control which minimizes J.

$$P = P^* \geq \mathbf{0}$$

and P satisfies the algebraic Riccati equation

$$A^*P + PA - PBB^*P + C^*C = \mathbf{0}.$$

$$P = P^* \geq \mathbf{0}$$

and P satisfies the algebraic Riccati equation

$$A^*P + PA - PBB^*P + C^*C = \mathbf{0}.$$

We also have that

$$\min J = \frac{1}{2} (P\zeta, \zeta)_Z.$$

$$P = P^* \geq \mathbf{0}$$

and P satisfies the algebraic Riccati equation

$$A^*P + PA - PBB^*P + C^*C = \mathbf{0}.$$

We also have that

$$\min J = \frac{1}{2} (P\zeta, \zeta)_Z.$$

Moreover, the optimal control is given in feedback form

$$u(t) = -B^*Pz(t), t > 0.$$

$$P = P^* \geq \mathbf{0}$$

and P satisfies the algebraic Riccati equation

$$A^*P + PA - PBB^*P + C^*C = \mathbf{0}.$$

We also have that

$$\min J = \frac{1}{2} (P\zeta, \zeta)_Z.$$

Moreover, the optimal control is given in feedback form

$$u(t) = -B^*Pz(t), t > 0.$$

Then (1) becomes

$$z'(t) = (A - BB^*P)z(t), t > 0, \text{ and } z(0) = \zeta.$$

$$\begin{array}{rcl} -p'(t) &=& A^*p(t) + C^*Cz, \ 0 < t < T, \\ p(T) &=& C^*Cz(T). \end{array}$$

$$\begin{array}{rcl} -p'(t) &=& A^*p(t) + C^*Cz, \ 0 < t < T, \\ p(T) &=& C^*Cz(T). \end{array}$$

Again

$$u(t) = -B^*p(t).$$

We can write $u(t) = -B^*P(t)z(t)$, where $P = P^* \ge 0$ and

$$\begin{array}{rcl} -p'(t) &=& A^*p(t) + C^*Cz, \ 0 < t < T, \\ p(T) &=& C^*Cz(T). \end{array}$$

Again

$$u(t) = -B^*p(t).$$

We can write $u(t) = -B^*P(t)z(t)$, where $P = P^* \ge 0$ and

$$P'(t) + A^*P(t) + P(t)A - P(t)BB^*P(t) + C^*C = 0$$

and

$$P(T) = 0.$$

$$\begin{array}{rcl} -p'(t) &=& A^*p(t) + C^*Cz, \ 0 < t < T, \\ p(T) &=& C^*Cz(T). \end{array}$$

Again

$$u(t) = -B^*p(t).$$

We can write $u(t) = -B^*P(t)z(t)$, where $P = P^* \ge 0$ and

$$P'(t) + A^*P(t) + P(t)A - P(t)BB^*P(t) + C^*C = 0$$

and

$$P(T) = 0.$$

We have

$$P(t)\zeta = p(0).$$

• The (unbounded) operator A is said to be exponentially stable if

$$\left\|e^{tA}\right\|_{\mathcal{L}(Z)} \leq Me^{-\alpha t}$$

for some constants M > 0 and $\alpha > 0$.

• The (unbounded) operator A is said to be exponentially stable if

$$\left\|e^{tA}\right\|_{\mathcal{L}(Z)} \leq M e^{-\alpha t}$$

for some constants M > 0 and $\alpha > 0$.

• The pair (A, C) is said to be **exponentially detectable** if there exists $L \in \mathcal{L}(Y, Z)$ such that the operator A + LC, with domain D(A) is exponentially stable.

• The (unbounded) operator A is said to be exponentially stable if

$$\left\|e^{tA}\right\|_{\mathcal{L}(Z)} \leq M e^{-\alpha t}$$

for some constants M > 0 and $\alpha > 0$.

- The pair (A, C) is said to be **exponentially detectable** if there exists $L \in \mathcal{L}(Y, Z)$ such that the operator A + LC, with domain D(A) is exponentially stable.
- If A is exponentially stable, then FCC automatically holds.
- If FCC holds and the pair (A, C) is exponentially detectable, then the solution to the algebraic Riccati equation is unique.

Let A_h, B_h, C_h be finite dimensional approximations to A, B, C respectively using some numerical scheme (eg. Finite element method). Problem: Find $P_h \in \mathcal{L}(\mathbb{R}^N)$ such that $P_h = P_h^* \ge \mathbf{0}$ and

$$A_h^*P_h + P_hA_h - P_hB_hB_h^*P_h + C_h^*C_h = \mathbf{0}.$$

For control of fluid flows or thermal processes, N is very large. Solution of above equation very difficult.

Let A_h, B_h, C_h be finite dimensional approximations to A, B, C respectively using some numerical scheme (eg. Finite element method). Problem: Find $P_h \in \mathcal{L}(\mathbb{R}^N)$ such that $P_h = P_h^* \ge \mathbf{0}$ and

$$A_h^* P_h + P_h A_h - P_h B_h B_h^* P_h + C_h^* C_h = \mathbf{0}.$$

For control of fluid flows or thermal processes, N is very large. Solution of above equation very difficult.

Newton-Kleinmann algorithm, for convergence, needs an initial guess P_0 such that $A_h - B_h B_h^* P_0$ is exponentially stable.

Let A_h, B_h, C_h be finite dimensional approximations to A, B, C respectively using some numerical scheme (eg. Finite element method). Problem: Find $P_h \in \mathcal{L}(\mathbb{R}^N)$ such that $P_h = P_h^* \ge \mathbf{0}$ and

$$A_h^* P_h + P_h A_h - P_h B_h B_h^* P_h + C_h^* C_h = \mathbf{0}.$$

For control of fluid flows or thermal processes, N is very large. Solution of above equation very difficult.

Newton-Kleinmann algorithm, for convergence, needs an initial guess P_0 such that $A_h - B_h B_h^* P_0$ is exponentially stable. Benner: Choose P_0 such that $P_0 = P_0^* \ge \mathbf{0}$ solution to the **degenerate** algebraic Riccati equation:

$$A_h^*P + PA_h - PB_hB_h^*P = \mathbf{0}$$

which is also such that $A_h - B_h B_h^* P_0$ is exponentially stable.

We are interested in the following problem: Find $P \in \mathcal{L}(Z)$ such that $P = P^* \ge \mathbf{0}$ such that

$$A^*P + PA - PBB^*P = \mathbf{0}$$

and such that $A - BB^*P$ is exponentially stable.

We are interested in the following problem: Find $P \in \mathcal{L}(Z)$ such that $P = P^* \ge \mathbf{0}$ such that

$$A^*P + PA - PBB^*P = \mathbf{0}$$

and such that $A - BB^*P$ is exponentially stable.

Let us assume for the time being that the spaces Z and U and Y are finite dimensional.

Lemma

Let $C_i \in \mathcal{L}(Z, Y)$ for i = 1, 2 be such that $C_1^*C_1 \ge C_2^*C_2$ Let $P_i \in \mathcal{L}(Z)$ be such that $P_i = P_i^* \ge \mathbf{0}$ and

$$A^*P_i + P_iA - P_iBB^*P_i + C_i^*C_i = \mathbf{0}$$

for i = 1, 2. If $A - BB^*P_1$ is exponentially stable, then $P_1 \ge P_2$

Lemma

Let $C_i \in \mathcal{L}(Z, Y)$ for i = 1, 2 be such that $C_1^*C_1 \ge C_2^*C_2$ Let $P_i \in \mathcal{L}(Z)$ be such that $P_i = P_i^* \ge \mathbf{0}$ and

$$A^*P_i + P_iA - P_iBB^*P_i + C_i^*C_i = \mathbf{0}$$

for i = 1, 2. If $A - BB^*P_1$ is exponentially stable, then $P_1 \ge P_2$

Corollary

The algebraic and degenerate algebraic Riccati equations admit at most one solution P such that $A - BB^*P$ is exponentially stable. In particular, if A is itself exponentially stable, then the degenerate equation has no non-trivial solutions such that $A - BB^*P$ is exponentially stable.

A Special Case

Theorem

The following are equivalent:

(i) The operator -A is exponentially stable and there exists $\alpha > 0$ such that

$$\int_0^\infty \|B^* e^{-tA^*} z\|_Z^2 dt \ge \alpha \|z\|_Z^2$$
(2)

for all $z \in Z$.

A Special Case

Theorem

The following are equivalent:

(i) The operator -A is exponentially stable and there exists $\alpha > 0$ such that

$$\int_0^\infty \|B^* e^{-tA^*} z\|_Z^2 dt \ge \alpha \|z\|_Z^2$$
 (2)

for all $z \in Z$.

(ii) The degenerate algebraic Riccati equation admits solution $P \in \mathcal{L}(Z)$ which is **invertible** and such that $A - BB^*P$ is exponentially stable.

A Special Case

Theorem

The following are equivalent:

(i) The operator -A is exponentially stable and there exists $\alpha > 0$ such that

$$\int_0^\infty \|B^* e^{-tA^*} z\|_Z^2 dt \ge \alpha \|z\|_Z^2$$
 (2)

for all $z \in Z$.

(ii) The degenerate algebraic Riccati equation admits solution $P \in \mathcal{L}(Z)$ which is **invertible** and such that $A - BB^*P$ is exponentially stable.

Proof: Step 1: If -A is exponentially stable and (2) holds,

$$Q = \int_0^\infty e^{-tA} B B^* e^{-tA^*} dt$$

is well defined and $Q = Q^*$. Further, for any $z \in Z$, (2) implies that

$$(Qz,z)_Z \geq \alpha \|z\|_Z^2.$$

Thus O is invertible and O > 0 S. Kesavan (IMSc) Degene Step 2. Let $Q(t) = e^{-tA}BB^*e^{-tA^*}$. Then

$$BB^* = Q(0) = -\int_0^\infty \frac{d}{dt}Q(t) dt$$

and so we deduce that

$$AQ + QA^* = BB^*.$$

Set $P = Q^{-1}$.

Step 2. Let $Q(t) = e^{-tA}BB^*e^{-tA^*}$. Then

$$BB^* = Q(0) = -\int_0^\infty \frac{d}{dt}Q(t) dt$$

and so we deduce that

$$AQ + QA^* = BB^*$$

Set $P = Q^{-1}$.

Step 3. Since P is invertible, and solves the degenerate equation, we see that

$$P(A-BB^*P)P^{-1} = -A^*$$

and the RHS is, by assumption, also exponentially stable. Thus $A - BB^*P$ is also exponentially stable.

Step 4. The converse is proved by essentially retracing this proof. \blacksquare

Remark 1. The operator Q is the familiar Grammian associated to the system and $AQ + QA^* = BB^*$ is the Lyapunov equation.

Remark 1. The operator Q is the familiar Grammian associated to the system and $AQ + QA^* = BB^*$ is the Lyapunov equation.

Remark 2. If the pair (-A, B) is exactly controllable in some time T > 0, then there exists $\alpha > 0$ such that

$$\int_0^T \|B^* e^{-tA^*} z\|_Z^2 dt \ge \alpha \|z\|_Z^2$$

for all $z \in Z$ and so (2) is also true. Thus, the above theorem is applicable if -A is exponentially stable and the pair (-A, B) is exactly controllable.

A Variational Characterization

We will assume that -A is exponentially stable and that (2) holds. Let P be the solution to the degenerate algebraic Riccati equation obtained in the proof of Theorem 1.

A Variational Characterization

We will assume that -A is exponentially stable and that (2) holds. Let P be the solution to the degenerate algebraic Riccati equation obtained in the proof of Theorem 1.

Lemma

Let *H* be a real Hilbert space. Let $\{G_n\}$ be a sequence in $\mathcal{L}(H)$ such that $G_n = G_n^* \ge \mathbf{0}$. Assume, further that, for every $v \in H$, the sequence $\{(G_nv, v)_H\}$ is decreasing. Then, there exists $G \in \mathcal{L}(H)$ such that $G = G^* \ge \mathbf{0}$ and, for every $v \in H$, $G_nv \to Gv$ in H.

We will assume that -A is exponentially stable and that (2) holds. Let P be the solution to the degenerate algebraic Riccati equation obtained in the proof of Theorem 1.

Lemma

Let H be a real Hilbert space. Let $\{G_n\}$ be a sequence in $\mathcal{L}(H)$ such that $G_n = G_n^* \ge \mathbf{0}$. Assume, further that, for every $v \in H$, the sequence $\{(G_nv, v)_H\}$ is decreasing. Then, there exists $G \in \mathcal{L}(H)$ such that $G = G^* \ge \mathbf{0}$ and, for every $v \in H$, $G_nv \to Gv$ in H.

Since $A - BB^*P$ is exponentially stable, (A, I) is exponentially detectable. So is the pair (A, kI) for any $k \in \mathbb{R}$. In particular, for every $\varepsilon > 0$, there exists a unique $P_{\varepsilon} = P_{\varepsilon}^* \ge \mathbf{0}$ such that

$$P_{\varepsilon}A + A^*P_{\varepsilon} - P_{\varepsilon}BB^*P_{\varepsilon} + \varepsilon^2I = \mathbf{0}.$$

Further, $A - BB^*P_{\varepsilon}$ is exponentially stable.

Then, by lemma, there exists $P_0 = P_0^* \ge \mathbf{0}$ solution of the degenerate algebraic Riccati equation.

Further, $A - BB^*P_{\varepsilon}$ is exponentially stable.

Then, by lemma, there exists $P_0 = P_0^* \ge \mathbf{0}$ solution of the degenerate algebraic Riccati equation.

Since $A - BB^*P$ is exponentially stable, we get, by the comparison principle, that $P \ge P_0$. Again, by the same principle, we have $P_{\varepsilon} \ge P$ and, passing to the limit, $P_0 \ge P$. Thus, $P_0 = P$.

Further, $A - BB^*P_{\varepsilon}$ is exponentially stable.

Then, by lemma, there exists $P_0 = P_0^* \ge \mathbf{0}$ solution of the degenerate algebraic Riccati equation.

Since $A - BB^*P$ is exponentially stable, we get, by the comparison principle, that $P \ge P_0$. Again, by the same principle, we have $P_{\varepsilon} \ge P$ and, passing to the limit, $P_0 \ge P$. Thus, $P_0 = P$.

Let $\zeta \in Z$ be fixed such that $\zeta \neq 0$.

Now, for $u \in L^2(0, \infty; U)$, set z_u to be the solution of (1). Define

$$E_{\zeta} = \{ u \in L^{2}(0,\infty; U) \mid z_{u} \in L^{2}(0,\infty; Z) \}.$$

Consider

$$\min_{u\in E_{\zeta}}\int_0^\infty \|u(t)\|_U^2 dt.$$

 $\begin{aligned} \mathsf{FCC} &\Rightarrow E_{\zeta} \neq \emptyset. \\ E_{\zeta} \text{ closed?} \end{aligned}$

Proposition

If -A is exponentially stable and (2) holds, then the above minimization problem admits a solution. We have

$$(P\zeta,\zeta)_Z = \min_{u\in E_\zeta} \int_0^\infty \|u(t)\|_U^2 dt$$

and the minimizer is given by

$$u(t) = -B^* e^{-tA^*} P\zeta. \blacksquare$$

Proposition

If -A is exponentially stable and (2) holds, then the above minimization problem admits a solution. We have

$$(P\zeta,\zeta)_Z = \min_{u\in E_\zeta} \int_0^\infty \|u(t)\|_U^2 dt$$

and the minimizer is given by

$$u(t) = -B^* e^{-tA^*} P\zeta. \blacksquare$$

Remark 3. Since -A is exponentially stable, A is NOT and so $0 \notin E_{\zeta}$.

Henceforth, we will assume the following to hold: (H) There exist subspaces Z_s and Z_u of Z such that (i) $Z = Z_s \oplus Z_u$. (ii) Z_s and Z_u are invariant under A. (iii) The restriction of A to Z_s is exponentially stable. (iv) The restriction of -A to Z_u is exponentially stable. Henceforth, we will assume the following to hold: (H) There exist subspaces Z_s and Z_u of Z such that (i) $Z = Z_s \oplus Z_u$. (ii) Z_s and Z_u are invariant under A. (iii) The restriction of A to Z_s is exponentially stable. (iv) The restriction of -A to Z_u is exponentially stable. **Example** The matrix A has no eigenvalues on the imaginary axis. Then we can find invariant subspaces Z_s and Z_u such that all the eigenvalues of the restriction of A to Z_s are with negative real part and all the eigenvalues of the restriction of A to Z_u have positive real part. Let $\pi_s: Z \to Z_s$ and $\pi_u: Z \to Z_u$ be the canonical projections with respect to this decomposition of Z.

$$\pi_u A = A \pi_u = \pi_u A \pi_u.$$
$$\pi_u + \pi_s = I.$$

Let $\pi_s : Z \to Z_s$ and $\pi_u : Z \to Z_u$ be the canonical projections with respect to this decomposition of Z.

$$\pi_u A = A \pi_u = \pi_u A \pi_u.$$
$$\pi_u + \pi_s = I.$$

Assume that the pair $(\pi_u A, \pi_u B)$ is such that there exists $\alpha > 0$ satisfying:

$$\int_0^\infty \|(\pi_u B)^* e^{-t(\pi_u A)^*} z\|_Z^2 dt \ge \alpha \|z\|_Z^2$$
(3)

for all $z \in Z_u$.

Let $\pi_s : Z \to Z_s$ and $\pi_u : Z \to Z_u$ be the canonical projections with respect to this decomposition of Z.

$$\pi_u A = A \pi_u = \pi_u A \pi_u.$$
$$\pi_u + \pi_s = I.$$

Assume that the pair $(\pi_u A, \pi_u B)$ is such that there exists $\alpha > 0$ satisfying:

$$\int_0^\infty \|(\pi_u B)^* e^{-t(\pi_u A)^*} z\|_Z^2 dt \ge \alpha \|z\|_Z^2$$
(3)

for all $z \in Z_u$. Then, by Theorem 1, there exists $P_u \in \mathcal{L}(Z_u)$ such that $P_u = P_u^* \ge \mathbf{0}$ and

$$P_u(\pi_u A) + (\pi_u)^* P_u - P_u(\pi_u B)(\pi_u B)^* P_u = \mathbf{0}.$$

Further, $\pi_u A - (\pi_u B)(\pi_u B)^* P_u$ is exponentially stable.

Theorem

Assume that the hypothesis (H) holds and that (3) is true. Let $P_u \in \mathcal{L}(Z_u)$ be as detailed earlier. Define

$$P = \pi_u^* P_u \pi_u.$$

Then $P = P^* \ge \mathbf{0}$; *P* satisfies the degenerate algebraic Riccati equation and $A - BB^*P$ is exponentially stable.

Theorem

Assume that the hypothesis (H) holds and that (3) is true. Let $P_u \in \mathcal{L}(Z_u)$ be as detailed earlier. Define

$$P = \pi_u^* P_u \pi_u.$$

Then $P = P^* \ge \mathbf{0}$; *P* satisfies the degenerate algebraic Riccati equation and $A - BB^*P$ is exponentially stable.

Proof: Clearly *P* is self-adjoint and non-negative. That it satisfies the degenerate algebraic Riccati equation follows by multiplying the equation for P_u on the left by π_u^* and on the right by π_u and using the fact that π_u commutes with *A* (and so its adjoint commutes with A^*) and that π_u is a projection.

Finally we see that (with respect to the decomposition $Z = Z_s \oplus Z_u$),

$$\left[\begin{array}{c} \pi_s(A - BB^*P)z\\ \pi_u(A - BB^*P)z\end{array}\right] =$$

$$= \begin{bmatrix} \pi_s A & -\pi_s BB^* \pi_u^* P_u \\ \mathbf{0} & \pi_u A - \pi_u BB^* \pi_u^* P_u \end{bmatrix} \begin{bmatrix} \pi_s z \\ \pi_u z \end{bmatrix}.$$

Since both diagonal blocks of the upper triangular matrix are exponentially stable, it follows that $A - BB^*P$ is also exponentially stable.

Assume that A has no eigenvalues on the imaginary axis.

If (-A, B) is exactly controllable in time T > 0, then so is $(-\pi_u A, \pi_u B)$. The eigenvalues of $\pi_s A$ are precisely those of A with negative real part. Since $\pi_u A - \pi_u BB^* \pi_u^* P_u$ is similar to $-(\pi_u A)^*$, the eigenvalues of this matrix are the reflections on the imaginary axis of those of A with positive real part.

Thus, the eigenvalues of $A - BB^*P$ are those of A with negative real part and the reflections on the imaginary axis of those eigenvalues of A with positive real part.

Degenerate Equation:

$$2ap-b^2p^2 = 0.$$

Degenerate Equation:

$$2ap-b^2p^2 = 0.$$

Solutions: p = 0 and $p = \frac{2a}{b^2}$ (when $b \neq 0$; if b = 0, then (-a, b) is not exactly controllable).

Degenerate Equation:

$$2ap-b^2p^2 = 0.$$

Solutions: p = 0 and $p = \frac{2a}{b^2}$ (when $b \neq 0$; if b = 0, then (-a, b) is not exactly controllable). Perturbed Equation:

$$2ap_{arepsilon}-b^2p_{arepsilon}^2+arepsilon^2~=~0.$$

Degenerate Equation:

$$2ap-b^2p^2 = 0.$$

Solutions: p = 0 and $p = \frac{2a}{b^2}$ (when $b \neq 0$; if b = 0, then (-a, b) is not exactly controllable). Perturbed Equation:

$$2ap_{\varepsilon}-b^2p_{\varepsilon}^2+\varepsilon^2 = 0.$$

Positive solution:

$$p_{arepsilon} \;=\; rac{a+\sqrt{a^2+arepsilon^2b^2}}{b^2}.$$

Degenerate Equation:

$$2ap-b^2p^2 = 0.$$

Solutions: p = 0 and $p = \frac{2a}{b^2}$ (when $b \neq 0$; if b = 0, then (-a, b) is not exactly controllable). Perturbed Equation:

$$2ap_{\varepsilon}-b^2p_{\varepsilon}^2+\varepsilon^2 = 0.$$

Positive solution:

$$p_{\varepsilon} = rac{a + \sqrt{a^2 + \varepsilon^2 b^2}}{b^2}$$

ł

When a < 0, $p_{\varepsilon} \rightarrow p = 0$. When a > 0, $p_{\varepsilon} \rightarrow p = \frac{2a}{b^2}$.

Degenerate Equation:

$$2ap-b^2p^2 = 0.$$

Solutions: p = 0 and $p = \frac{2a}{b^2}$ (when $b \neq 0$; if b = 0, then (-a, b) is not exactly controllable). Perturbed Equation:

$$2ap_{\varepsilon}-b^2p_{\varepsilon}^2+\varepsilon^2 = 0.$$

Positive solution:

$$p_arepsilon \; = \; rac{a+\sqrt{a^2+arepsilon^2b^2}}{b^2}$$

When a < 0, $p_{\varepsilon} \rightarrow p = 0$. When a > 0, $p_{\varepsilon} \rightarrow p = \frac{2a}{b^2}$. Thus, $a - b^2 p = \begin{cases} a & \text{when } a < 0 \\ -a & \text{when } a > 0. \end{cases}$

Infinite Dimensions

Let Z be a Hilbert space and let A be the infinitesimal generator of a C_0 -semigroup which is exponentially stable. Thus, there exists c > 0 such that, for all $t \ge 0$, we have

$$\|e^{tA}\| \leq Me^{-ct}.$$

Infinite Dimensions

Let Z be a Hilbert space and let A be the infinitesimal generator of a C_0 -semigroup which is exponentially stable. Thus, there exists c > 0 such that, for all $t \ge 0$, we have

$$\|e^{tA}\| \leq Me^{-ct}.$$

Let $\alpha > 0$. We define

$$(-A)^{-\alpha}z = \frac{1}{\Gamma(\alpha)}\int_0^\infty t^{\alpha-1}e^{tA}z \ dt, \ z \in Z.$$

Then $(-A)^{-\alpha} \in \mathcal{L}(Z)$.

Infinite Dimensions

Let Z be a Hilbert space and let A be the infinitesimal generator of a C_0 -semigroup which is exponentially stable. Thus, there exists c > 0 such that, for all $t \ge 0$, we have

$$\|e^{tA}\| \leq Me^{-ct}.$$

Let $\alpha > 0$. We define

$$(-A)^{-\alpha}z = \frac{1}{\Gamma(\alpha)}\int_0^\infty t^{\alpha-1}e^{tA}z \ dt, \ z \in Z.$$

Then $(-A)^{-\alpha} \in \mathcal{L}(Z)$. If $0 \le \alpha \le 1$, we set

$$(-A)^{\alpha} = (-A)(-A)^{\alpha-1}$$

with the domain

$$D((-A)^{\alpha}) = \{z \in Z \mid (-A)^{\alpha-1}z \in D(A)\}.$$

We have

$$e^{tA}Z \subset D((-A)^{lpha}), \; (-A)^{lpha}e^{tA} \in \mathcal{L}(Z)$$
 for all $t>0$

and there exists k > 0 and $C(\alpha) > 0$ such that

$$\|(-A)^{\alpha}e^{tA}\| \leq C(\alpha)t^{-\alpha}e^{-kt}, t \geq 0.$$

Let A be the infinitesimal generator of a C_0 -semigroup on a Hilbert space Z. Let A^* denote the Z-adjoint of A and let $(D(A^*))'$ denote the dual of $D(A^*)$ with respect to the Z-topology. Let $B \in \mathcal{L}(U, (D(A^*)')$.

Let A be the infinitesimal generator of a C_0 -semigroup on a Hilbert space Z. Let A^* denote the Z-adjoint of A and let $(D(A^*))'$ denote the dual of $D(A^*)$ with respect to the Z-topology. Let $B \in \mathcal{L}(U, (D(A^*)')$. Let $\lambda \in \rho(A)$, the resolvent set of A. Then $(\lambda I - A) \in \mathcal{L}(D(A), Z)$ and has a bounded inverse in Z. Further $(\lambda I - (A^*)^*)$, the extension of $(\lambda I - A)$ to $D(A^*))'$, also denoted by $(\lambda I - A)$ has a bounded inverse from $(D(A^*))'$ into Z. Thus, there exists $B_0 \in \mathcal{L}(U, Z)$ such that $B = (\lambda I - A)B_0$. Let A be an analytic semigroup and let $A - \lambda_0 I$ be exponentially stable.Let $B_1 \in \mathcal{L}(U, Z)$ and $0 < \alpha < 1$ be such that

$$B = (\lambda_0 I - A)^{1-\alpha} B_1$$

in the sense explained earlier. In other words, we have $B \in \mathcal{L}(U, (D(A^*)'))$ and

$$B_1 = (\lambda_0 I - A)^{\alpha - 1} B \in \mathcal{L}(U, Z).$$

Find
$$P \in \mathcal{L}(Z)$$
 such that $P = P^* \ge \mathbf{0}$ and

$$A^*P + PA - P(\lambda_0 I - A)^{1-\alpha}B_1B_1^*(\lambda_0 I - A^*)^{1-\alpha}P = \mathbf{0}$$

and such that

$$A-(\lambda_0I-A)^{1-\alpha}B_1B_1^*(\lambda_0I-A^*)^{1-\alpha}P$$

is exponentially stable.

Find $P \in \mathcal{L}(Z)$ such that $P = P^* \ge \mathbf{0}$ and

$$A^*P + PA - P(\lambda_0 I - A)^{1-\alpha}B_1B_1^*(\lambda_0 I - A^*)^{1-\alpha}P = \mathbf{0}$$

and such that

$$A - (\lambda_0 I - A)^{1-\alpha} B_1 B_1^* (\lambda_0 I - A^*)^{1-\alpha} P$$

is exponentially stable.

The equation is interpreted as follows: for all $\xi, \eta \in D(A)$,

$$(P\xi, A\eta) + (PA\xi, \eta) - (PBB^*P\xi, \eta) = 0.$$

• $Z = Z_u \oplus Z_s$, with Z_u finite dimensional.

- $Z = Z_u \oplus Z_s$, with Z_u finite dimensional.
- $Z_u \cap D(A) = Z_u$ and $Z_s \cap D(A)$ invariant under A.

- $Z = Z_u \oplus Z_s$, with Z_u finite dimensional.
- $Z_u \cap D(A) = Z_u$ and $Z_s \cap D(A)$ invariant under A.
- $A|_{Z_s}$ and $-A|_{Z_u}$ exponentially stable.

- $Z = Z_u \oplus Z_s$, with Z_u finite dimensional.
- $Z_u \cap D(A) = Z_u$ and $Z_s \cap D(A)$ invariant under A.
- $A|_{Z_s}$ and $-A|_{Z_u}$ exponentially stable.
- Let π_u and π_s be the projections of Z onto Z_u and Z_s respectively.

- $Z = Z_u \oplus Z_s$, with Z_u finite dimensional.
- $Z_u \cap D(A) = Z_u$ and $Z_s \cap D(A)$ invariant under A.
- $A|_{Z_s}$ and $-A|_{Z_u}$ exponentially stable.
- Let π_u and π_s be the projections of Z onto Z_u and Z_s respectively. There exists $\beta > 0$ such that

$$\int_0^\infty \|(\pi_u B)^* e^{-t(\pi_u A)^*} z\|_U \ dt \ \ge \ \beta \|z\|_Z^2$$

for all $z \in Z_u$.

Under the preceding hypotheses, there exists $P = P^* \ge 0$ in $\mathcal{L}(Z)$ such that

(i)

$$A^*P + PA - PBB^*P = \mathbf{0},$$

(ii) $A - BB^*P$ is exponentially stable and (iii) $P \in \mathcal{L}(D(A), D(A^*))$.

Under the preceding hypotheses, there exists $P = P^* \ge 0$ in $\mathcal{L}(Z)$ such that

(i)

$$A^*P + PA - PBB^*P = \mathbf{0},$$

(ii) $A - BB^*P$ is exponentially stable and (iii) $P \in \mathcal{L}(D(A), D(A^*))$.

Proof: Z_u is finite dimensional and we have $P_u \in \mathcal{L}(Z_u)$ as in Theorem 2. We can set $P = \pi_u^* P_u \pi_u$ and verify that (i) and (ii) are true. We will prove (iii).

$$\pi_u B = \pi_u (\lambda_0 I - A) (\lambda_0 I - A)^{-\alpha} B_1$$

= $(\lambda_0 I - A) \pi_u (\lambda_0 I - A)^{-\alpha} B_1.$

$$\pi_{u}B = \pi_{u}(\lambda_{0}I - A)(\lambda_{0}I - A)^{-\alpha}B_{1}$$

= $(\lambda_{0}I - A)\pi_{u}(\lambda_{0}I - A)^{-\alpha}B_{1}.$

But $(\lambda_0 I - A)^{-\alpha} B_1 \in \mathcal{L}(U, Z)$ and so $\pi_u (\lambda_0 I - A)^{-\alpha} B_1 \in \mathcal{L}(U, Z_u)$. Since Z_u is finite dimensional $A|_{Z_u} \in \mathcal{L}(Z_u)$ and so $\pi_u B \in \mathcal{L}(U, Z_u)$.

$$\pi_{u}B = \pi_{u}(\lambda_{0}I - A)(\lambda_{0}I - A)^{-\alpha}B_{1}$$

= $(\lambda_{0}I - A)\pi_{u}(\lambda_{0}I - A)^{-\alpha}B_{1}.$

But $(\lambda_0 I - A)^{-\alpha} B_1 \in \mathcal{L}(U, Z)$ and so $\pi_u (\lambda_0 I - A)^{-\alpha} B_1 \in \mathcal{L}(U, Z_u)$. Since Z_u is finite dimensional $A|_{Z_u} \in \mathcal{L}(Z_u)$ and so $\pi_u B \in \mathcal{L}(U, Z_u)$. Then

$$PBB^*P = (\pi_u^*P)(\pi_u B)(\pi_u B)^*(P\pi_u) \in \mathcal{L}(Z).$$

$$(A^*Px, y) = (PBB^*Px, y) - (PAx, y).$$

$$(A^*Px, y) = (PBB^*Px, y) - (PAx, y).$$

$$(PAx, y) = (\pi_u^* P_u \pi_u Ax, y) = (\pi_u^* P_u A \pi_u x, y)$$

whence since $A|_{Z_u} \in \mathcal{L}(Z_u)$,

 $|(PAx, y)| \leq C ||x||_Z ||y||_Z.$

$$(A^*Px, y) = (PBB^*Px, y) - (PAx, y).$$

$$(PAx, y) = (\pi_u^* P_u \pi_u Ax, y) = (\pi_u^* P_u A \pi_u x, y)$$

whence since $A|_{Z_u} \in \mathcal{L}(Z_u)$,

$$|(PAx, y)| \leq C ||x||_Z ||y||_Z.$$

As we have seen $PBB^*P \in \mathcal{L}(Z)$ and so

$$|((PBB^* - \lambda_0 I)Px, y)| \leq C ||x||_Z ||y||_Z.$$

$$(A^*Px, y) = (PBB^*Px, y) - (PAx, y).$$

$$(PAx, y) = (\pi_u^* P_u \pi_u Ax, y) = (\pi_u^* P_u A \pi_u x, y)$$

whence since $A|_{Z_u} \in \mathcal{L}(Z_u)$,

$$|(PAx, y)| \leq C ||x||_Z ||y||_Z.$$

As we have seen $PBB^*P \in \mathcal{L}(Z)$ and so

$$|((PBB^* - \lambda_0 I)Px, y)| \leq C ||x||_Z ||y||_Z.$$

Thus

$$|((A^* - \lambda_0 I)Px, y)| \leq C ||x||_Z ||y||_Z$$

which gives

$$\|Px\|_{D(A^*)} \leq C\|x\|_Z \leq C\|x\|_{D(A)}$$

Thus $P \in \mathcal{L}(D(A), D(A^*)) \blacksquare$.

S. Kesavan (IMSc)

for all $x \in D(A)$.

Variational Characterization

Let $\zeta \in Z$ and let $z_{\zeta,\nu}$ be the solution of

$$egin{array}{rcl} z'(t) &=& Az(t)+Bv(t), \ t>0, \ z(0) &=& \zeta. \end{array}$$

Variational Characterization

Let $\zeta \in Z$ and let $z_{\zeta,v}$ be the solution of

$$egin{array}{rcl} z'(t) &=& Az(t)+Bv(t), \ t>0, \ z(0) &=& \zeta. \end{array}$$

Let

$$E_{\zeta} = \left\{ v \in L^2(0,\infty;U) \mid z_{\zeta,v}(t) \to 0 \text{ as } t \to \infty \right\}.$$

Variational Characterization

Let $\zeta \in Z$ and let $z_{\zeta, v}$ be the solution of

$$egin{array}{rcl} z'(t) &=& Az(t)+Bv(t), \ t>0, \ z(0) &=& \zeta. \end{array}$$

Let

$$E_{\zeta} = \left\{ v \in L^2(0,\infty;U) \mid z_{\zeta,v}(t) \to 0 \text{ as } t \to \infty \right\}.$$

Theorem

Let $\zeta \in D(A)$. Then $E_{\zeta} \neq \emptyset$ and

$$(P\zeta,\zeta) = \min_{v\in E_{\zeta}}\int_0^\infty \|v(t)\|_U^2 dt$$

and the optimal solution is given by

$$v(t) = -B^* P e^{t(A - BB^* P)} \zeta$$

Let $\zeta \in Z$. Then

$$(P\zeta,\zeta) = \min_{v\in E_{\zeta}^{u}} \int_{0}^{\infty} \|v(t)\|_{U}^{2} dt$$

where

Let $\zeta \in Z$. Then

$$(P\zeta,\zeta) = \min_{v\in E_{\zeta}^{u}} \int_{0}^{\infty} \|v(t)\|_{U}^{2} dt$$

where

$$E^{u}_{\zeta} = \left\{ v \in L^{2}(0,\infty;U) \mid z^{u}_{\zeta,v}(t) \to 0 \text{ as } t \to \infty \right\}$$

and $z^u_{\zeta,v}$ is the solution of

Let $\zeta \in Z$. Then

$$(P\zeta,\zeta) = \min_{v\in E_{\zeta}^{u}}\int_{0}^{\infty} \|v(t)\|_{U}^{2} dt$$

where

$$E^{u}_{\zeta} = \left\{ v \in L^{2}(0,\infty;U) \mid z^{u}_{\zeta,v}(t) \to 0 \text{ as } t \to \infty \right\}$$

and $z^u_{\zeta,v}$ is the solution of

$$\begin{aligned} z'(t) &= \pi_u A z(t) + \pi_u B v(t), \ t > 0, \\ z(0) &= \pi_u \zeta. \end{aligned}$$

Let $\zeta \in Z$. Then

$$(P\zeta,\zeta) = \min_{v\in E_{\zeta}^{u}} \int_{0}^{\infty} \|v(t)\|_{U}^{2} dt$$

where

$$E^{u}_{\zeta} = \left\{ v \in L^{2}(0,\infty;U) \mid z^{u}_{\zeta,v}(t) \to 0 \text{ as } t \to \infty \right\}$$

and $z^{u}_{\zeta,v}$ is the solution of

$$\begin{aligned} z'(t) &= \pi_u A z(t) + \pi_u B v(t), \ t > 0, \\ z(0) &= \pi_u \zeta. \end{aligned}$$

Proof:

$$(P\zeta,\zeta) = (\pi_u^* P_u \pi_u \zeta,\zeta) = (P_u \pi_u \zeta, \pi_u \zeta)$$

and the result follows from the finite-dimensional version. \blacksquare

S. Kesavan (IMSc)

Since $A - BB^*P$ is exponentially stable, the pair (A, I) is exponentially detectable. Thus for every $\varepsilon > 0$, we have a unique $P_{\varepsilon} \in \mathcal{L}(Z)$ with $P_{\varepsilon} = P_{\varepsilon}^* \ge \mathbf{0}$ and

$$P_{\varepsilon}A + A^*P_{\varepsilon} - P_{\varepsilon}BB^*P_{\varepsilon} + \varepsilon^2I = \mathbf{0}.$$

Further $A - BB^*P_{\varepsilon}$ is exponentially stable.

Since $A - BB^*P$ is exponentially stable, the pair (A, I) is exponentially detectable. Thus for every $\varepsilon > 0$, we have a unique $P_{\varepsilon} \in \mathcal{L}(Z)$ with $P_{\varepsilon} = P_{\varepsilon}^* \ge \mathbf{0}$ and

$$P_{\varepsilon}A + A^*P_{\varepsilon} - P_{\varepsilon}BB^*P_{\varepsilon} + \varepsilon^2I = \mathbf{0}.$$

Further $A - BB^*P_{\varepsilon}$ is exponentially stable.

By the comparison principle $(P_{\varepsilon}\zeta,\zeta)$ decreases as $\varepsilon \downarrow 0$ for all $\zeta \in Z$ and so there exists $P_0 \in \mathcal{L}(Z)$ such that $P_0 = P_0^* \ge \mathbf{0}$ and $P_{\varepsilon}\zeta \to P_0\zeta$ for all $\zeta \in Z$.

Since $A - BB^*P$ is exponentially stable, the pair (A, I) is exponentially detectable. Thus for every $\varepsilon > 0$, we have a unique $P_{\varepsilon} \in \mathcal{L}(Z)$ with $P_{\varepsilon} = P_{\varepsilon}^* \ge \mathbf{0}$ and

$$P_{\varepsilon}A + A^*P_{\varepsilon} - P_{\varepsilon}BB^*P_{\varepsilon} + \varepsilon^2I = \mathbf{0}.$$

Further $A - BB^*P_{\varepsilon}$ is exponentially stable.

By the comparison principle $(P_{\varepsilon}\zeta,\zeta)$ decreases as $\varepsilon \downarrow 0$ for all $\zeta \in Z$ and so there exists $P_0 \in \mathcal{L}(Z)$ such that $P_0 = P_0^* \ge \mathbf{0}$ and $P_{\varepsilon}\zeta \to P_0\zeta$ for all $\zeta \in Z$. Question: $P_0 = P(=\pi_u^*P_u\pi_u)$?

Since $A - BB^*P$ is exponentially stable, the pair (A, I) is exponentially detectable. Thus for every $\varepsilon > 0$, we have a unique $P_{\varepsilon} \in \mathcal{L}(Z)$ with $P_{\varepsilon} = P_{\varepsilon}^* \ge \mathbf{0}$ and

$$P_{\varepsilon}A + A^*P_{\varepsilon} - P_{\varepsilon}BB^*P_{\varepsilon} + \varepsilon^2 I = \mathbf{0}.$$

Further $A - BB^*P_{\varepsilon}$ is exponentially stable.

By the comparison principle $(P_{\varepsilon}\zeta,\zeta)$ decreases as $\varepsilon \downarrow 0$ for all $\zeta \in Z$ and so there exists $P_0 \in \mathcal{L}(Z)$ such that $P_0 = P_0^* \ge \mathbf{0}$ and $P_{\varepsilon}\zeta \to P_0\zeta$ for all $\zeta \in Z$.

Question: $P_0 = P(=\pi_u^* P_u \pi_u)$?

By the comparison principle we get $P_{\varepsilon} \ge P$ and so, for $\zeta \in Z$, we have

$$(P_0\zeta,\zeta) \geq (P\zeta,\zeta).$$

Let $\zeta \in D(A)$. Then

$$(P_{\varepsilon}\zeta,\zeta) = \min_{v\in E_{\zeta}}\left\{\varepsilon^{2}\int_{0}^{\infty}\|z(t)\|_{Z}^{2} dt + \int_{0}^{\infty}\|v(t)\|_{U}^{2} dt\right\}.$$

Let $\zeta \in D(A)$. Then

$$(P_{\varepsilon}\zeta,\zeta) = \min_{v\in E_{\zeta}}\left\{\varepsilon^{2}\int_{0}^{\infty}\|z(t)\|_{Z}^{2} dt + \int_{0}^{\infty}\|v(t)\|_{U}^{2} dt\right\}.$$

Thus, for any fixed $v \in E_{\zeta}$, we get, on passing to the limit,

$$(P_0\zeta,\zeta) \leq \int_0^\infty \|v(t)\|_U^2 dt$$

and so

Let $\zeta \in D(A)$. Then

$$(P_{\varepsilon}\zeta,\zeta) = \min_{v\in E_{\zeta}}\left\{\varepsilon^{2}\int_{0}^{\infty}\|z(t)\|_{Z}^{2} dt + \int_{0}^{\infty}\|v(t)\|_{U}^{2} dt\right\}.$$

Thus, for any fixed $v \in E_{\zeta}$, we get, on passing to the limit,

$$(P_0\zeta,\zeta) \leq \int_0^\infty \|v(t)\|_U^2 dt$$

and so

$$(P_0\zeta,\zeta) \leq \min_{v\in E_\zeta}\int_0^\infty \|v(t)\|_U^2 dt = (P\zeta,\zeta).$$

Thus, for all $\zeta \in D(A)$, we have $(P_0\zeta, \zeta) = (P\zeta, \zeta)$ and, by density, it also holds for all $z \in Z$, which proves that $P_0 = P$.

Thus, for all $\zeta \in D(A)$, we have $(P_0\zeta, \zeta) = (P\zeta, \zeta)$ and, by density, it also holds for all $z \in Z$, which proves that $P_0 = P$.

Remark; When *B* is bounded, we can independently prove that $P = P_0$ as and the variational characterization. When *B* is unbounded we need stronger convergence properties of $P_{\varepsilon}\zeta$ to pass to the limit in the term $P_{\varepsilon}BB^*P_{\varepsilon}$. So we first prove the variational characterization and use it to show that $P_0 = P$.

Finally, when B is bounded, we can prove the infinite dimensional analogue of of the theorem where -A is exponentially stable.

Theorem

Let $B \in \mathcal{L}(U, Z)$. Let A be the infinitesimal generator of a C_0 -group and assume that -A is exponentially stable. Assume that there exists $\beta > 0$ such that for all $z \in Z$,

$$\int_0^\infty \left\| B^* e^{-tA^*} z \right\|_U^2 dt \geq \beta \|z\|_Z^2.$$

Then, there exists $P \in \mathcal{L}(Z)$, $P = P^* \ge \mathbf{0}$ which is invertible and such that (i) P maps D(A) onto $D(A^*)$ (and so P^{-1} maps $D(A^*)$ onto D(A)). (ii) $PA + A^*P - PBB^*P = \mathbf{0}$. (iii) $A - BB^*P$ is exponentially stable.

Proof:

Step 1 Define

$$Q=\int_0^\infty e^{-tA}BB^*e^{-tA^*} dt.$$

then Q is well-defined, $Q = Q^* \ge \boldsymbol{0}$ and by hypothesis

$$(Qz,z) \geq \beta \|z\|_Z^2.$$

By Lax-Milgram, Q is invertible. Set $P = Q^{-1}$.

Proof:

Step 1 Define

$$Q=\int_0^\infty e^{-tA}BB^*e^{-tA^*} dt.$$

then ${\it Q}$ is well-defined, ${\it Q}={\it Q}^*\geq {\bf 0}$ and by hypothesis

$$(Qz,z) \geq \beta \|z\|_Z^2.$$

By Lax-Milgram, Q is invertible. Set $P = Q^{-1}$. Step 2 Let $y, z \in D(A^*)$. Then

$$(Qy, A^*z) + (A^*y, Qz) = (B^*y, B^*z).$$

In particular,

$$|(Qy, A^*z)| \leq C||z||_Z.$$

Thus $Qy \in D(A)$ and we can formally write

$$AQ + QA^* = BB^*$$

$$-A^* = P(A - BB^*P)P^{-1}$$

and so $A - BB^*P$ is exponentially stable. If $y \in D(A^*)$, then $Qy \in D(A)$ and

$$PA(Qy) + A^*y - PBB^*P(Qy) = \mathbf{0}.$$

$$-A^* = P(A - BB^*P)P^{-1}$$

and so $A - BB^*P$ is exponentially stable. If $y \in D(A^*)$, then $Qy \in D(A)$ and

$$PA(Qy) + A^*y - PBB^*P(Qy) = \mathbf{0}.$$

Step 4 Further (A, I) is exponentially detectable and so for every $\varepsilon > 0$, we have $P_{\varepsilon} \in \mathcal{L}(Z), P_{\varepsilon} = P_{\varepsilon}^* \ge \mathbf{0}, A - BB^*P_{\varepsilon}$ exponentially stable and

$$P_{\varepsilon}A + A^*P_{\varepsilon} - P_{\varepsilon}BB^*P_{\varepsilon} + \varepsilon^2I = \mathbf{0}.$$

$$-A^* = P(A - BB^*P)P^{-1}$$

and so $A - BB^*P$ is exponentially stable. If $y \in D(A^*)$, then $Qy \in D(A)$ and

$$PA(Qy) + A^*y - PBB^*P(Qy) = \mathbf{0}.$$

Step 4 Further (A, I) is exponentially detectable and so for every $\varepsilon > 0$, we have $P_{\varepsilon} \in \mathcal{L}(Z), P_{\varepsilon} = P_{\varepsilon}^* \ge \mathbf{0}, A - BB^*P_{\varepsilon}$ exponentially stable and

$$P_{\varepsilon}A + A^*P_{\varepsilon} - P_{\varepsilon}BB^*P_{\varepsilon} + \varepsilon^2I = \mathbf{0}.$$

That is, if $x \in D(A)$, then $P_{\varepsilon}x \in D(A^*)$ and

$$P_{\varepsilon}Ax + A^*P_{\varepsilon}x - P_{\varepsilon}BB^*P_{\varepsilon}x + \varepsilon^2x = 0.$$

$$-A^* = P(A - BB^*P)P^{-1}$$

and so $A - BB^*P$ is exponentially stable. If $y \in D(A^*)$, then $Qy \in D(A)$ and

$$PA(Qy) + A^*y - PBB^*P(Qy) = \mathbf{0}.$$

Step 4 Further (A, I) is exponentially detectable and so for every $\varepsilon > 0$, we have $P_{\varepsilon} \in \mathcal{L}(Z), P_{\varepsilon} = P_{\varepsilon}^* \ge \mathbf{0}, A - BB^*P_{\varepsilon}$ exponentially stable and

$$P_{\varepsilon}A + A^*P_{\varepsilon} - P_{\varepsilon}BB^*P_{\varepsilon} + \varepsilon^2I = \mathbf{0}.$$

That is, if $x \in D(A)$, then $P_{\varepsilon}x \in D(A^*)$ and

$$P_{\varepsilon}Ax + A^*P_{\varepsilon}x - P_{\varepsilon}BB^*P_{\varepsilon}x + \varepsilon^2x = 0.$$

In particular, for $y \in D(A^*)$, we have $Qy \in D(A)$ and so $P_{\varepsilon}(Qy) \in D(A^*)$ and

$$P_{\varepsilon}A(Qy) + A^*P_{\varepsilon}(Qy) - P_{\varepsilon}BB^*P_{\varepsilon}(Qy) + \varepsilon^2Qy = 0.$$

From the above two equations for Qy and the comparison principle, we have

$$((P_{\varepsilon}-P)Qy, Qy) \geq 0$$

for all $y \in D(A^*)$.

From the above two equations for Qy and the comparison principle, we have

$$((P_{\varepsilon}-P)Qy, Qy) \geq 0$$

for all $y \in D(A^*)$. Step 5 As usual there exists $P_0 \in \mathcal{L}(Z), P_0 = P_0^* \ge \mathbf{0}$ such that $P_{\varepsilon}z \to P_0z$ for every $z \in Z$. Then (since *B* is bounded)

$$P_0 A + A^* P_0 - P_0 B B^* P_0 = 0.$$

That is if $x \in D(A)$, we have $P_0x \in D(A^*)$ and

$$P_0Ax + A^*P_0x - P_0BB^*P_0x = 0.$$

From the above two equations for Qy and the comparison principle, we have

$$((P_{\varepsilon}-P)Qy,Qy) \geq 0$$

for all $y \in D(A^*)$. Step 5 As usual there exists $P_0 \in \mathcal{L}(Z), P_0 = P_0^* \ge \mathbf{0}$ such that $P_{\varepsilon}z \to P_0z$ for every $z \in Z$. Then (since *B* is bounded)

$$P_0 A + A^* P_0 - P_0 B B^* P_0 = 0.$$

That is if $x \in D(A)$, we have $P_0 x \in D(A^*)$ and

$$P_0Ax + A^*P_0x - P_0BB^*P_0x = 0.$$

Further,

$$((P_0 - P)Qy, Qy) \ge 0, y \in D(A^*).$$

Again from the comparison principle, since $A - BB^*P$ is exponentially stable, we get

$$((P - P_0)Qy, Qy) \ge 0, y \in D(A^*).$$

Thus, $((P - P_0)Qy, Qy) = 0$ for all $y \in D(A^*)$ and so for all $y \in Z$ by density. Since Q is invertible, we have $((P - P_0)z, z) = 0$ for all $z \in Z$ and so $P = P_0$. Thus P solves the degenerate Riccati equation, which shows that $P : D(A) \to D(A^*)$ and we already saw that $Q : D(A^*) \to D(A)$ and so these maps are onto.

Thank You!