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Holomorphic correspondences

Let X1, X2 be compact k-dim’l. complex manifolds.

A holomorphic
correspondence from X1 to X2 is just an analytic k-chain

Γ =
N∑
j=1

mjΓj , (which means

I Γ1, . . . ,ΓN : distinct irred. complex subvarieties of X1 ×X2 of dim. k;

I mj ’s are +ve integers)

with the following properties: for each Γj ,

π1|Γj
& π2|Γj

are

surjective ∀j; and

for x ∈ X, the set

∪1≤j≤N
(
π−1

1 {x} ∩ Γj
)

is

finite.
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Why should we care ?

In this talk, X1 = X2 (= X, say), both Riemann surfaces. A
correspondence can be composed with itself (which we’ll define).
Wish to study the dynamical system that arises.

Why would one want to do this ?

By the de Franchis Theorem, there are only finitely many holomorphic
self-maps on a compact hyperbolic Riemann surface. I.e., no interesting
holomorphic dynamics!

But not too hard to show that there are infinitely many holomorphic
correspondences Γ on a compact hyperbolic Riemann surface; even
satisfying

dtop(Γ ) > dtop(
†Γ ).
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Point of entry

In 2006, Dinh–Sibony proved a result that, paraphrased for holomorphic
correspondences, is:

Result. Let Γ be a holomorphic correspondence on a k-dim’l. compact
Kähler manifold (X,ω) and assume that dtop(Γ ) > dtop(

†Γ ). Suppose∫
X ω

k = 1. Then, ∃µΓ − a Borel prob. measure on X − that satisfies
Γ ∗(µΓ ) = dtop(Γ )µΓ , and

1

dtop(Γ )n
(Γn)∗(ωk)

weak∗−−−→ µΓ as measures, as n→∞.

Clarifications:

The pullback Γ ∗(ωk) is carried out in the sense of currents.

dtop(Γ ) :=
∑

1≤j≤N mjdegree(π2).
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Early questions

Some natural questions arise that may be tractable when k = 1.

When k = 1, X = CP1 and Γ = graph(f), f a rational map, then
supp(µΓ ) is the Julia set− denoted J(f) − of f .

J(f) is the complement of the Fatou set of f , i.e. CP1 \F (f).

Problem 1. Describe the set F (Γ ) on which the orbits of Γ are
insensitive to small perturbations of initial condition.

Problem 2. Describe the complex geometry of the components of
F (Γ ) in terms analogous to classical complex dynamics.

In classical complex dynamics, a crucial part of studying geometric
structure is the fact that J(f) ∪F (f) = CP1.

I Theorem A will address Problem 1 above.

I Theorem B (time permitting) will address the issue in the box above.
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Composing two holomorphic correspondences

Given a holomorphic correspondence Γ , we denote by

|Γ | := ∪Nj=1Γj

the set underlying Γ . Now, |Γ | is a relation on X.

If Γ 1 and Γ 2 are correspondences on X, we view Γ 2 ◦Γ 1 as essentially the
classical composition of two relations. Denote the latter operation by ? :

|Γ 2| ? |Γ 1| := {(x, z) ∈ X ×X : ∃y s.t.(x, y) ∈ |Γ 1|, (y, z) ∈ |Γ 2|}. (∗)

To code the k-chain data into the above “composition” we need to do
some work. . .
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Composing two holomorphic correspondences, cont’d.

To begin with, we now use an alternative representation:

Γ 1 =
∑′

1≤j≤L1

Γ•1, j , Γ 2 =
∑′

1≤j≤L2

Γ•2, j ,

primed sums indicating that the irred. subvarieties Γ•s, j , j = 1, . . . , Ls,
s = 1, 2, are not necessarily distinct and repeated according to the
coeffs. ms, j .

We then define

Γ 2 ◦ Γ 1 :=

L1∑
j=1

L2∑
l=1

∑
S∈S(j, l)

νSS,

where :

S(j, l) := set of distinct irred. components of Γ•2, l ? Γ•1, j .
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Composing two holomorphic correspondences, cont’d.
To understand the coefficient νS , consider the following:

Example. Take the correspondences
Γ 1 = Γ 2 = the completion in CP1 × CP1 of {(z, w) ∈ C2 : w2 = z2 + 1} =: Γ.

Pick z0 ∈ C and consider its 2-orbit:

z0 //

##

√
z20 + 1 //

&&

√
z20 + 2

−
√

z20 + 1

&&��

−
√

z20 + 2

√
z20 + 2 −

√
z20 + 2

Two distinct occurences of y indicated by (∗) associated to the point
(z0,

√
z2

0 + 2 ) ∈ Γ ? Γ.

νS := generic no. of y’s− as (x, z) varies through S− for which the
memberships given in (∗) hold.
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Statement of main results

Recall that when X = CP1 and Γ is the graph of a rational map f ,

dtop(
†Γ ) = 1, µΓ exists and supp(µΓ ) equals the Julia set J(f).

For various reasons (e.g., see the Dinh–Sibony theorem) supp(µΓ ) is a
natural analogue of the Julia set for general correspondences.

The following theorem provides a relationship between supp(µΓ ) and the
Fatou set F (Γ ).

Theorem A (B., 2014)

Let X be a compact Riemann surface and let Γ be a holomorphic
correspondence on X such that dtop(Γ ) > dtop(

†Γ ). Let µΓ denote the
Dinh–Sibony measure associated to Γ . Then, the Fatou set of Γ , F (Γ ),
is disjoint from supp(µΓ ).
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The Fatou set: preliminary notations/notions

Fix a compact Riemann surface X and a correspondence Γ on it.

N -path:
(z0, . . . , zN ; α1, . . . , αN ) ∈ XN+1 × [1 . . L]N : (zj−1, zj) ∈ Γ•αj

, j ≤ N.

PN(z0) = set of all N -paths starting at z0.

Given a multi-index α ∈ [1 . . L]j

Γ•α := {(x0, . . . , xj) ∈ Xj+1 : (xi−1, xi) ∈ Γ•αi
, 1 ≤ i ≤ j}.

Basic idea underlying the Fatou set:
A point z0 belongs to the Fatou set if there exists a nbhd. U 3 z0 such that for

every infinite path (z0, z1, z2, . . . ;α1, α2, α3, . . . ), each sequence of analytic

germs of Γ•(α1,...,αn) at (z0, z1, . . . , zn), n = 1, 2, 3, . . . , determined by lifting U

into these varieties admits a subsequence that converges to an analytic set.
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The Fatou set: secondary notations

A useful map:

π
(k)
j : Xk+1 −→ X, π

(k)
j : (z0, z1, . . . , zk) 7−→ zj , 0 ≤ j ≤ k.

Let z0 ∈ X and U 3 x0 be an open nbhd. Denote paths in PN (z0) by
Z ≡ (Z;α). Then

Z [j] := (z0, . . . , zj ; α1, . . . , αj), 1 ≤ j ≤ N
pre(Z) := Z [N−1], N ≥ 2.

Next, we define sequences of analytic germs:

S (U,Z) := set of irred. components of

Γ•α ∩ (U ×X) containing Z, if Z ∈P1(z0),

S (U,Z) := set of irred. components of

Γ•α ∩
(
U×

(
XN−1
k=1 π

(k)
k (S)

)
×X

)
containing Z, if Z ∈PN (z0), N ≥ 2.

where Fundamental

S is an element of S (U, pre(Z)), compositional

relation

Gautam Bharali Dynamics of holomorphic correspondences



The Fatou set: secondary notations

A useful map:

π
(k)
j : Xk+1 −→ X, π

(k)
j : (z0, z1, . . . , zk) 7−→ zj , 0 ≤ j ≤ k.

Let z0 ∈ X and U 3 x0 be an open nbhd. Denote paths in PN (z0) by
Z ≡ (Z;α).

Then

Z [j] := (z0, . . . , zj ; α1, . . . , αj), 1 ≤ j ≤ N
pre(Z) := Z [N−1], N ≥ 2.

Next, we define sequences of analytic germs:

S (U,Z) := set of irred. components of

Γ•α ∩ (U ×X) containing Z, if Z ∈P1(z0),

S (U,Z) := set of irred. components of

Γ•α ∩
(
U×

(
XN−1
k=1 π

(k)
k (S)

)
×X

)
containing Z, if Z ∈PN (z0), N ≥ 2.

where Fundamental

S is an element of S (U, pre(Z)), compositional

relation

Gautam Bharali Dynamics of holomorphic correspondences



The Fatou set: secondary notations

A useful map:

π
(k)
j : Xk+1 −→ X, π

(k)
j : (z0, z1, . . . , zk) 7−→ zj , 0 ≤ j ≤ k.

Let z0 ∈ X and U 3 x0 be an open nbhd. Denote paths in PN (z0) by
Z ≡ (Z;α). Then

Z [j] := (z0, . . . , zj ; α1, . . . , αj), 1 ≤ j ≤ N
pre(Z) := Z [N−1], N ≥ 2.

Next, we define sequences of analytic germs:

S (U,Z) := set of irred. components of

Γ•α ∩ (U ×X) containing Z, if Z ∈P1(z0),

S (U,Z) := set of irred. components of

Γ•α ∩
(
U×

(
XN−1
k=1 π

(k)
k (S)

)
×X

)
containing Z, if Z ∈PN (z0), N ≥ 2.

where Fundamental

S is an element of S (U, pre(Z)), compositional

relation

Gautam Bharali Dynamics of holomorphic correspondences



The Fatou set: secondary notations

A useful map:

π
(k)
j : Xk+1 −→ X, π

(k)
j : (z0, z1, . . . , zk) 7−→ zj , 0 ≤ j ≤ k.

Let z0 ∈ X and U 3 x0 be an open nbhd. Denote paths in PN (z0) by
Z ≡ (Z;α). Then

Z [j] := (z0, . . . , zj ; α1, . . . , αj), 1 ≤ j ≤ N
pre(Z) := Z [N−1], N ≥ 2.

Next, we define sequences of analytic germs:

S (U,Z) := set of irred. components of

Γ•α ∩ (U ×X) containing Z, if Z ∈P1(z0),

S (U,Z) := set of irred. components of

Γ•α ∩
(
U×

(
XN−1
k=1 π

(k)
k (S)

)
×X

)
containing Z, if Z ∈PN (z0), N ≥ 2.

where Fundamental

S is an element of S (U, pre(Z)), compositional

relation

Gautam Bharali Dynamics of holomorphic correspondences



The Fatou set: secondary notations

A useful map:

π
(k)
j : Xk+1 −→ X, π

(k)
j : (z0, z1, . . . , zk) 7−→ zj , 0 ≤ j ≤ k.

Let z0 ∈ X and U 3 x0 be an open nbhd. Denote paths in PN (z0) by
Z ≡ (Z;α). Then

Z [j] := (z0, . . . , zj ; α1, . . . , αj), 1 ≤ j ≤ N
pre(Z) := Z [N−1], N ≥ 2.

Next, we define sequences of analytic germs:

S (U,Z) := set of irred. components of

Γ•α ∩ (U ×X) containing Z, if Z ∈P1(z0),

S (U,Z) := set of irred. components of

Γ•α ∩
(
U×

(
XN−1
k=1 π

(k)
k (S)

)
×X

)
containing Z, if Z ∈PN (z0), N ≥ 2.

where

Fundamental

S is an element of S (U, pre(Z)), compositional

relation

Gautam Bharali Dynamics of holomorphic correspondences



The Fatou set: secondary notations

A useful map:

π
(k)
j : Xk+1 −→ X, π

(k)
j : (z0, z1, . . . , zk) 7−→ zj , 0 ≤ j ≤ k.

Let z0 ∈ X and U 3 x0 be an open nbhd. Denote paths in PN (z0) by
Z ≡ (Z;α). Then

Z [j] := (z0, . . . , zj ; α1, . . . , αj), 1 ≤ j ≤ N
pre(Z) := Z [N−1], N ≥ 2.

Next, we define sequences of analytic germs:

S (U,Z) := set of irred. components of

Γ•α ∩ (U ×X) containing Z, if Z ∈P1(z0),

S (U,Z) := set of irred. components of

Γ•α ∩
(
U×

(
XN−1
k=1 π

(k)
k (S)

)
×X

)
containing Z, if Z ∈PN (z0), N ≥ 2.

where Fundamental

S is an element of S (U, pre(Z)), compositional

relation

Gautam Bharali Dynamics of holomorphic correspondences



The Fatou set

Definition

Given a path Z ∈PN (z0), the list (A1, . . . ,AN ;U) is called an analytic branch
of Γ along Z if U is a connected open nbhd. of z0 and

(a) Aj ∈ S (U,Z [j]), j = 1, . . . , N , and each Aj+1 is related to Aj ,
j = 1, . . . , N − 1 by the fundamental compositional relation;

(b) [Aj ]p is irreducible ∀p ∈ Aj , j = 1, . . . , N .

Definition (The Fatou set)

A point z0 is said to belong to the Fatou set of Γ if there exists a single
connected open nbhd. U 3 z0 such that for each n ∈ Z+, each Z ∈Pn(z0)
admits an analytic branch (A1, . . . ,An;U) of Γ along Z, and such that the set

F (z0) :=
{
π

(n)
0 ×π(n)

n (An) : n ∈ Z+, Z ∈Pn(z0), and (A1, . . . ,An;U)

is an analytic branch of Γ along Z} ,

viewed as a set comprising currents of integration, is relatively compact in the
space of (1, 1)-currents on U ×X.

Gautam Bharali Dynamics of holomorphic correspondences



The Fatou set

Definition

Given a path Z ∈PN (z0), the list (A1, . . . ,AN ;U) is called an analytic branch
of Γ along Z if U is a connected open nbhd. of z0 and

(a) Aj ∈ S (U,Z [j]), j = 1, . . . , N , and each Aj+1 is related to Aj ,
j = 1, . . . , N − 1 by the fundamental compositional relation;

(b) [Aj ]p is irreducible ∀p ∈ Aj , j = 1, . . . , N .

Definition (The Fatou set)

A point z0 is said to belong to the Fatou set of Γ if there exists a single
connected open nbhd. U 3 z0 such that for each n ∈ Z+, each Z ∈Pn(z0)
admits an analytic branch (A1, . . . ,An;U) of Γ along Z, and such that the set

F (z0) :=
{
π

(n)
0 ×π(n)

n (An) : n ∈ Z+, Z ∈Pn(z0), and (A1, . . . ,An;U)

is an analytic branch of Γ along Z} ,

viewed as a set comprising currents of integration, is relatively compact in the
space of (1, 1)-currents on U ×X.

Gautam Bharali Dynamics of holomorphic correspondences



The Fatou set

Definition

Given a path Z ∈PN (z0), the list (A1, . . . ,AN ;U) is called an analytic branch
of Γ along Z if U is a connected open nbhd. of z0 and

(a) Aj ∈ S (U,Z [j]), j = 1, . . . , N , and each Aj+1 is related to Aj ,
j = 1, . . . , N − 1 by the fundamental compositional relation;

(b) [Aj ]p is irreducible ∀p ∈ Aj , j = 1, . . . , N .

Definition (The Fatou set)

A point z0 is said to belong to the Fatou set of Γ if there exists a single
connected open nbhd. U 3 z0 such that for each n ∈ Z+, each Z ∈Pn(z0)
admits an analytic branch (A1, . . . ,An;U) of Γ along Z, and such that the set

F (z0) :=
{
π

(n)
0 ×π(n)

n (An) : n ∈ Z+, Z ∈Pn(z0), and (A1, . . . ,An;U)

is an analytic branch of Γ along Z} ,

viewed as a set comprising currents of integration, is relatively compact in the
space of (1, 1)-currents on U ×X.

Gautam Bharali Dynamics of holomorphic correspondences



The Fatou set

Definition

Given a path Z ∈PN (z0), the list (A1, . . . ,AN ;U) is called an analytic branch
of Γ along Z if U is a connected open nbhd. of z0 and

(a) Aj ∈ S (U,Z [j]), j = 1, . . . , N , and each Aj+1 is related to Aj ,
j = 1, . . . , N − 1 by the fundamental compositional relation;

(b) [Aj ]p is irreducible ∀p ∈ Aj , j = 1, . . . , N .

Definition (The Fatou set)

A point z0 is said to belong to the Fatou set of Γ if there exists a single
connected open nbhd. U 3 z0 such that for each n ∈ Z+, each Z ∈Pn(z0)
admits an analytic branch (A1, . . . ,An;U) of Γ along Z, and

such that the set

F (z0) :=
{
π

(n)
0 ×π(n)

n (An) : n ∈ Z+, Z ∈Pn(z0), and (A1, . . . ,An;U)

is an analytic branch of Γ along Z} ,

viewed as a set comprising currents of integration, is relatively compact in the
space of (1, 1)-currents on U ×X.

Gautam Bharali Dynamics of holomorphic correspondences



The Fatou set

Definition

Given a path Z ∈PN (z0), the list (A1, . . . ,AN ;U) is called an analytic branch
of Γ along Z if U is a connected open nbhd. of z0 and

(a) Aj ∈ S (U,Z [j]), j = 1, . . . , N , and each Aj+1 is related to Aj ,
j = 1, . . . , N − 1 by the fundamental compositional relation;

(b) [Aj ]p is irreducible ∀p ∈ Aj , j = 1, . . . , N .

Definition (The Fatou set)

A point z0 is said to belong to the Fatou set of Γ if there exists a single
connected open nbhd. U 3 z0 such that for each n ∈ Z+, each Z ∈Pn(z0)
admits an analytic branch (A1, . . . ,An;U) of Γ along Z, and such that the set

F (z0) :=
{
π

(n)
0 ×π(n)

n (An) : n ∈ Z+, Z ∈Pn(z0), and (A1, . . . ,An;U)

is an analytic branch of Γ along Z} ,

viewed as a set comprising currents of integration, is relatively compact in the
space of (1, 1)-currents on U ×X.

Gautam Bharali Dynamics of holomorphic correspondences



The iterative tree

Suppose, for z0 ∈ X, ∃U 3 z0, a connected nbhd. of z0, such that for each
n ∈ Z+, each Z ∈Pn(z0) admits an analytic branch (A1, . . . ,AN ;U) of
Γ along Z. We can define an infinite tree τ(Γ,U) as follows.

V (τ(Γ,U)) :=
⋃
n∈Z+

⋃
Z∈Pn(z0)

S (U,Z),

E(τ(Γ,U)) is defined by the condition

there is an edge between A ,B ∈ V (τ(Γ,U)

⇐⇒ A ∈ S (U,Z) for some Z ∈Pn(z0), n ≥ 2, and

B ∈ S (U, pre(Z)).

Such a tree is called the iterative tree at z0.
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The Fatou set: very basic properties

Unlike the case with rational maps, F (Γ ) and supp(µΓ ) do not, in
general, partition X under the condition

dtop(Γ ) > dtop(
†Γ ) ≥ 2.

This follows from certain computer experiments by Shaun Bullett from the
1990s, read together with an entropy estimate of Dinh–Sibony.

This is the motivation of Theorem B, which we shall see soon.
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Preliminaries to proving Theorem A

Formal principle behind the pull-back of a current:

For a k-dim’l. manifold X and a (p, p)-current

Γ ∗(S) := (π1)∗ (π∗2(S) ∧ [Γ ]) ,

whenever the intersection of π∗2(S) with [Γ ] makes sense.

So, for instance, viewing a smooth (k, k)-form Ω as a current, and a test
function as a (0, 0)-form,

〈Γ ∗(Ω), ϕ〉 :=

N∑
j=1

mj

∫
reg(Γj)

(
π1|Γj

)∗
ϕ
(
π2|Γj

)∗
Ω.

• comes from dualising (π1)∗,

• is the interpretation of “(π∗2(Ω) ∧ [Γ ])” in this case.
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The proof of Theorem A

Assume F (Γ ) 6= ∅. Nothing to prove otherwise.

Pick a z0 in F (Γ ), and let U 3 z0 be as given by the definition. It suffices
to show that for any non-negative function ϕ ∈ C(X;R) with
supp(ϕ) ⊂ U ,

∫
X ϕdµΓ = 0.

Let ωX denote the normalized Kähler form associated to the hyperbolic
metric. Call dtop(Γ ) =: d1 and dtop(

†Γ ) =: d0. Easy to show that

〈(Γn)∗(ωX), ϕ〉 =
∑

Z∈Pn(z0)

∑
A∈S (U,Z)

∫
reg(Ã )

(
π1|Γj

)∗
ϕ
(
π2|Γj

)∗
ωX ,

where Ã = π
(n)
0 ×π

(n)
n (A ). Thus:

d−n1 |〈(Γn)∗(ωX), ϕ〉| ≤ d−n1 sup |ϕ|
∑

Z∈Pn(z0)

∑
A∈S (U,Z)

∫
reg(Ã )

(
π2|Γj

)∗
ωX ,
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The proof of Theorem A
Hence

d−n1 |〈(Γn)∗(ωX), ϕ〉| ≤ C d−n1

∑
Z∈Pn(z0)

∑
A∈S (U,Z)

Vol(Ã ). (∗∗)

At this stage, we need a new tool:

Bishop’s Compactness Theorem (in the style of Harvey–Schiffman).
Let (X1, ω1) and (X2, ω2) be compact k-dim’l. Kähler manifolds, and let
U be a relatively compact open subset of X1. Let F be a family of
reduced, irreducible, analytic subsets of U ×X2 of pure dimension
p : 1 ≤ p ≤ k. Then, F is compact in the space of currents of bidimension
(p, p) if & only if

(a) The volumes of the sets in F are uniformly bounded; and

(b) Given a compact K ⊂ U , there ∃CK > 0 such that, for A ,B ∈ F ,
A ∩ (K ×X2) and B ∩ (K ×X2) are no farther than CK in the
Hausdorff metric.
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The proof of Theorem A

Thus, from (∗∗), we have that

d−n1 |〈(Γn)∗(ωX), ϕ〉| ≤ C

(
d0

d1

)n
,

whence ∫
X

ϕdµΓ = lim
n→∞

d−n1 〈(Γn)∗(ωX), ϕ〉 = 0.

Hence the result. �
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Theorem B: preliminaries

Observe: (∗∗) suggests that one could allow the volumes of branches to
grow at a certain exponential rate. This motivates the following:

We say that most analytic branches of Γ around z0 converge if there exist
a connected nbhd. U 3 z0 that admits an iterative tree τ(Γ,U), and an
ε ∈ (0, 1) such that there is a connected subtree τ̃(Γ,U), and so that

The n-th generation of τ̃(Γ,U) contains at least (1− εn) dn0 vertices
from the n-th generation of the iterative tree; and

The family

F (z0) := {π(n)
0 ×π(n)

n (An) : n ∈ Z+, and An ∈ Vn(τ̃(Γ,U))}

is relatively compact in the space of (1, 1)-currents on U ×X.
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Theorem B

Theorem B (B., 2015)

Let X be a compact Riemann surface. Let Γ and µΓ be as in Theorem A.
Suppose the postcritical set of Γ is disjoint from supp(µΓ ).

Define:

F (Γ ) := the largest open subset of X consisting of points z0 ∈ X such

that most analytic branches of Γ around z0 converge.

Then, F (Γ )C = supp(µΓ ).

The proof of

F (Γ )C ⊇ supp(µΓ )

follows from the fact that there is at most exponential volume-growth of
analytic branches of Γ , and that F (Γ ) does not depend on the size of ε a
long as 0 < ε < 1. We then apply (∗∗).
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Theorem B

Theorem B (B., 2015)

Let X be a compact Riemann surface. Let Γ and µΓ be as in Theorem A.
Suppose the postcritical set of Γ is disjoint from supp(µΓ ). Define:

F (Γ ) := the largest open subset of X consisting of points z0 ∈ X such

that most analytic branches of Γ around z0 converge.

Then, F (Γ )C = supp(µΓ ).

The proof of

F (Γ )C ⊇ supp(µΓ )

follows from the fact that there is at most exponential volume-growth of
analytic branches of Γ , and that F (Γ ) does not depend on the size of ε a
long as 0 < ε < 1. We then apply (∗∗).
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