Eigenvalue statistics of random operators M Krishna

19 January 2016 Indo – French Conference IMSc , Chennaí

Best Wishes to Kesavan

On completing his tenure at IMSc

and starting a new leaf

Eigenvalue statistics

The problem is to determine how eigenvalues of some random operators are distributed.

We look at the Anderson Model $H^{\omega} = \Delta + V^{\omega}$

 $(V^{\omega}u)(n) = \omega_n u(n), \quad (\Delta u)(n) = \sum_{|j|=1|} u(n+j)$ where ω_n are i.i.d real random variables distributed according to μ with the operators defined on $\ell^2(\mathbb{Z}^d)$ where *u* belongs.

When variance of μ is large the spectrum of H^{ω} has only eigenvalues and the corresponding eigenfunctions are exponentially decreasing sequences. We also have

 $\sigma(H^{\omega}) = [-2d, 2d] + \operatorname{supp}(\mu)$

This shows that the eigenvalues are dense in the spectrum. Our attempt is to find out how they behave in the vicinity of a point in the spectrum. To be able to do this we have to somehow separate the eigenvalues and count them.

It is known that when μ is absolutely continuous, the integrated density of states measure N given by $\mathcal{N} = \mathbb{E}\langle \delta_0, E_{H^{\omega}}(\cdot)\delta_0 \rangle = \mathbb{E}\langle \delta_n, E_{H^{\omega}}(\cdot)\delta_n \rangle$ is also a.c. and we denote its density by the symbol n

Take a box Λ_L centered at the origin with the side length 2L+1 in \mathbb{Z}^d Consider the finite matrices $H_L^{\omega} = \chi_{\Lambda_L} H^{\omega} \chi_{\Lambda_L}$ with χ_{Λ_L} denoting the projection onto $\ell^2(\Lambda_L)$. Being finite matrices, they have finitely many eigenvalues.

These eigenvalues come together as L increases, so we have to separate them to understand their local behavior. We separate the eigenvalues by scaling and centering at a point in the spectrum. The point is chosen so there are enough of these around.

namely the point E is chosen such that n(E) > 0. Then we look at $H_{L,E}^{\omega} = |\Lambda_L| (H_L^{\omega} - E)$ and consider the random measures $\xi_{L,E}^{\omega}(I) = \#(\sigma(H_{L,E}^{\omega}) \cap I)$ for any interval I.

An alternate expression is

 $\xi_{L,E}^{\omega}(I) = Tr(E_{H_{L,E}^{\omega}}(I)).$

The question then is what is the limit

of the point random measures above.

Minamí [1] gave the first proof that $\xi_{L,E}^{\omega}(I) \to X^{\omega}(I)$

where $X^{\omega}()$ is a Poisson random measure with intensity $\mathbb{E}(X^{\omega}()) = n(E)\mathcal{L}$ with \mathcal{L} the Lebesgue measure.

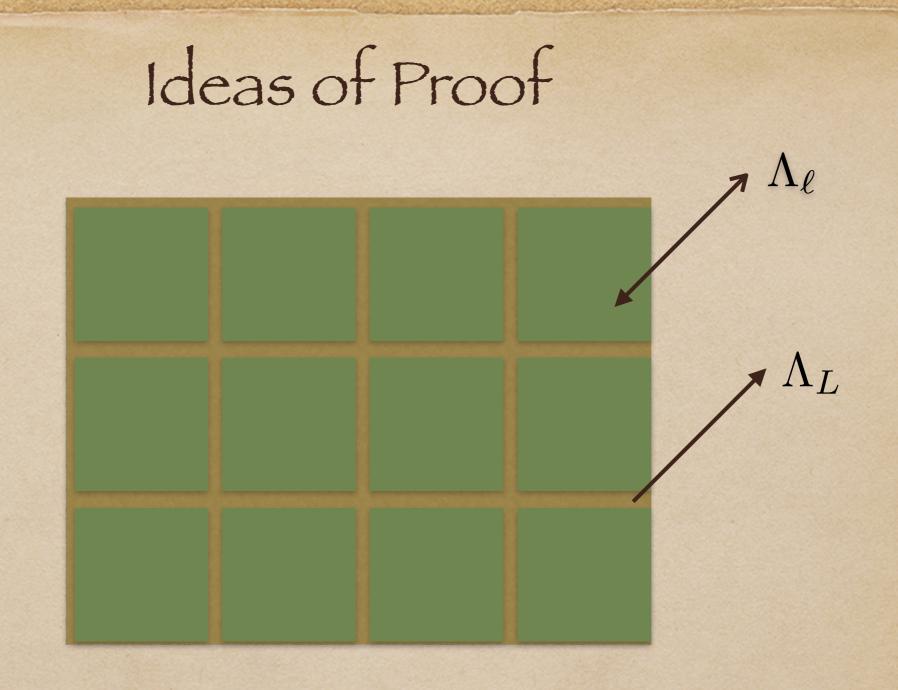
 $\mathbb{P}\left(X^{\omega}(I) = k\right) = \frac{\left(n(E)|I|\right)^k}{k!} e^{-n(E)|I|}$

A simple way to recognize the nature of the random variable X is to look at the Fourier transform $\mathbb{E}(e^{itX})$. X is infinitely divisible iff the Levy-Khintchine formula below $\mathbb{E}\left(e^{itX}\right) = e^{ita+bt^2 + \int \left(e^{itx} - itx - \frac{(itx)^2}{2!}\right)d\nu(x)}.$ holds and ν is called the Levy measure. For the Anderson model Minami showed that a, b = 0

and the measure ν

is atomic supported at the point

{1}.



$$H_{j,\ell}^{\omega} = \chi_{\Lambda_{\ell}(j)} H^{\omega} \chi_{\lambda_{\ell}(j)}$$

Write $H_L^{\omega} = \oplus H_{i,\ell}^{\omega} + \mathbf{M}$ $H^{\omega} = H_L^{\omega} \oplus H_{\Lambda_T^c}^{\omega} + M_1$ and M, M_1 are some constant matrices. Associated with these operators we form three sequences of processes.

$$\eta_L^{\omega}(I) = Tr\left(E_{|\Lambda_L|(H_{j,\ell}^{\omega} - E)}(I)\right)$$

$$\xi_L^{\omega}(I) = Tr\left(E_{|\Lambda_L|(H_L^{\omega} - E)}(I)\right)$$

 $\zeta_L^{\omega}(I) = Tr\left(\chi_{\Lambda_L} E_{|\Lambda_L|(H^{\omega} - E)}(I)\right)$

and show that as $L \to \infty$, $\lim \sum_{j=1}^{N_L} \eta_L^{\omega}(I) = \lim \xi_L^{\omega}(I) = \lim \zeta_L^{\omega}(I).$ We have to compute the middle limit. The first limit gives infinite divisibility with a bit more specifies support of the Levy measure and the last limit computes the mass there.

There are two estimates that play a role in the calculations. The Wegner estimate

$$\mathbb{E}\left(\frac{1}{|\Lambda_L|}Tr\left(E_{H_L^{\omega}(I)}\right)\right) \le c|I|$$

and the Minami estimate

 $\mathbb{P}(\eta_L^{\omega}(I) \ge 2) \to 0, \text{ as } L \to \infty.$

It was not clear if the above result extends to the Schrodinger operators

 $-\Delta + \sum_{n \in \mathbb{Z}^d} \omega_n \chi_{\Lambda(n)}$

on $L^2(\mathbb{R}^d)$.

The main difference is that the operator coefficients of ω_n are infinite rank here.

Peter Hislop, MK [2] considered $\Delta + \sum_{n \in \mathcal{J}} \omega_n P_n$ on $\ell^2(\mathbb{Z}^d)$ with finite rank P_n and showed that as random variables $\xi^{\omega}_{L,E}(I) \to X^{\omega}(I)$ with the limit being a compound Poisson random variable for each I.

This means that there are i.i.d random variables Y_i such that

 $X^{\omega}(I) = \sum_{j=1}^{N^{\omega}(I)} Y_i$

with $N^{\omega}(I)$ being Poisson random

variables.

They showed that the associated Levy measure is supported in the set $\{1, 2, 3, ..., \operatorname{rank}(P_n)\}.$ In the random Schrodinger case also they show that it is Compound Poisson and the Levy measure sits on \mathbb{Z}^+ .

 They showed that Wegner estimate is enough together with exponential decay of eigenfunctions to get Compound Poisson limit

• They generalized Minami estimate to $\mathbb{P}(\eta_{\ell}^{\omega}(I) \ge k) \to 0, \quad k = \operatorname{rank}(P_0).$

In all these cases it is a consequence that the level spacing distribution which is the distribution of the distance $E_{j+1}^{\omega} - E_j^{\omega}$ between eigenvalues of the random operators is exponential.

In a series of papers [3], [4], [5]

Dhriti Ranjan Dolai Anish Mallick

worked out the statistics.

 Eigenfunction statistics when µ is singular they show that the centers of localization of eigenfunctions are uniformly distributed. Centre of localization is the point where the eigenfunction attains its maximum. • When ω_n is replaced by $a_n \omega_n$ in the model, where a_n decays or grows as $n \to \infty$. In this model they showed when the dimension is 1 that the limit is the clock process, which is the sum of atomic measures supported on a constant multiple of \mathbb{N} . This result is in the region of a.c. spectrum.

French Mathematicians who contributed significantly to eigenvalue statistics for the Anderson type models are : Jean Michael Combes Francois Germinet Frederic Klopp among others.

References

[1] N Minami: Commun. Math. Phys, 177(3), 709-925, 1996 [2] Dolaí, Dhrítí, Kríshna M: Markov Processes and related fields, 2015 [3] PD Hislop, MKrishna: Commun. Math. Phys, 340, 125-143, 2015 [4] Dhriti D, Krishna, M: Ramanujan Math Soc Journal, 30(3), 2015

[5] Anish M, Dolai, D: Spectral statistics of random operators with unbounded potentials, preprint 2015 [6] Anish M, Dolai, D: Spectral statistics of random operators with unbounded dealing potentials in 1 dimension, preprint 2015 [7] Anish M, Dolai, D: Eigenfunction statistics for Anderson model with síngular randomness, preprint 2014

[8] Combes J M, Germínet, F, Kleín A: J Stat Phys, 135(2), 201-216, 2009 [9] Klopp, F: J Reine Angew Math, 690, 79-113, 2014 [10] Germínet F, Klopp F: J. Eur. Math Soc, 16(9),1967-2031,2014

[11] Killip R, Nakano F: Ann.Inst. H Poincare, 8(1), 27-36,2007

[12] Nakano, F: Reviews in Math Phys, 19(9), 941-965,2007