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Folding and One Straight Cut Suffice* 

Erik D. Demainet Martin L. Demainet Anna Lubiwt 

Take a sheet of paper, fold it into some flat origami, 
and make one complete straight cut. What shapes can 
the unfolded pieces make? For example, Figure 1 shows 
how to cut out a five-pointed star in this way. You 
could imagine cutting out the silhouette of your favorite 
animal, object, or geometric shape. 

Figure 1: Bow to fold and cut a five-pointed star. 

The first published reference to this fold-and:cut 
idea is an 1873 article in Harper’s New Monthly Maga- 
zine [l]. This article tells the story of Betsy Boss show- 
ing George Washington how easily a five-pointed star 
could be made for the American flag, by folding a sheet 
of paper and making one straight cut with scissors. 

Folding and cutting has also been used for a magic 
trick by Houdini, before he became a famous escape 
artist [S]. Another magician, Gerald Loe, studied this 
idea in some detail; his Paper Capers [ll] describes how 
to cut out arrangements of various geometric objects, 
such as a circular chain of stars. Martin Gardner wrote 
about this problem in his famous series in Scientific 
American [7]. He was particularly impressed with Loe’s 
ability to cut out any desired letter of the alphabet. 

Gardner [7] was the first to state cutting out com- 
plex polygons as an open problem. What are the limits 
of this fold-and-cut process? What polygonal shapes 
can be cut out? 

In the full version of this paper [4], we prove 

THEOREM 1. Given any collection of straight edges, 
there tits a pot folding and a line in that folding such 
that cutting along it results in the desired pattern of cuts. 

This includes multiple disjoint, nested, and/or ad- 
joining polygons, as well as floating line segments and 
points: a general plane graph. Here a plane gmph is a 
graph with a fixed planar straight-line embedding. To 
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solve this problem, we present an algorithm that com- 
putes the creases and the actual flat origami that lines 
up precisely the given plane graph. Cutting along this 
line hence achieves the desired result. 

Some examples of the crease patterns resulting from 
our algorithm are given in Figures 2 and 3. 

Figure 2: Crease pattern for a Tangram set. The left 
shows all the perpendiculars, and the right shows a 
minimal set nquired for an actual folding. 

Inspired by preliminary versions of this work, Bern, 
Demaine, Eppstein, and Hayes [3] have proposed an al- 
ternative solution to the fold-and-cut problem using the 
idea of disk packing. This solution is more “local” than 
the one presented here, which exploits and demonstrates 
the global structure of the problem. The advantage of 
the disk-packing solution is that the number of folds is 
bounded in terms of the number of vertices and min- 
imum feature size. On the other hand, the origamis 
presented here are more natural, often much simpler, 
and easier to fold in practice. Cur techniques have also 
helped extend work in algorithmic origami design [9, lo]. 

A longer version of this paper appears in [5]. Here 
we describe the main creases for our solution, leaving the 
more difhcult part of describing the final folded state for 
the full paper [4]. 

We refer to the plane graph that we want to line 
up as the cut graph, and to its vertices, edges, and 
faces as cut vertices, cut edges, and cut faces. The 

Figure 3: Crease pattern fm a fancy star and turtle. 
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plane graph of creases is called the crease pattern, and 
consists of two main components, the straight skeleton 
and perpendicular folds. In the figures, we draw the cut 
graph with thick lines, the straight skeleton with thin 
lines, and the perpendicular folds with dashed lines. 

A natural way to line up two cut edges is to fold 
along the bisector of their extensions. A generalization 
of this to arbitrary cut graphs is the straight skeleton. 
This structure is defined to be the trajectories of the 
vertices as we shrink the faces of the cut graph. This 
consists of insetting each cut vertex so that every 
shrunken cut edge is parallel to the original, and the 
distance between the shrunken and original cut edges 
is the same over all cut edges (at a particular time). 
Whenever a cut face becomes nonsimple, we recursively 
shrink the subregions. See Figure 4(a). 
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Figure 4: (a) Shrinking a face of the cut graph to form 
the straight skeleton. (bj An example of spiraling. 

The straight skeleton was first defined for general 
plane graphs by Aichholzer and Aurenhammer [2], who 
presented an O(n2 logn)-time algorithm. Recently, 
Eppstein and Erickson [S] developed an O(r~l~/~l+‘)- 
time algorithm. 

The straight skeleton by itself is not foldable. We 
can add a fold that is perpendicular to a cut edge, and 
maintain the property that the cut edges Line up. More 
specifIcally, for each vertex of the straight skeleton, we 
add a collection of folds called a peqendictdar. For a 
general point p, we recursively define the perpendicular 
associated with p as follows. For each (closed) skeleton 
face f that p is in, let I be the line going through p 
and perpendicular to (the line extending) the cut edge 
contained in face f. Let m be the connected piece of 
I n f that touches p; this may be just p itself, a line 
segment of positive length, a ray, or a line. Then the 
perpendicular associated with p contains both m and 
the perpendiculars associated with the endpoints of m. 

One interesting phenomenon that can happen with 
perpendiculars is spidng. A simple example is shown 
in Figure 4(b), where the cut graph is a “pmwheel.” 
The number of edges in each perpendicular depends on 
the size of the paper. 

Unfortunately, this means that the number of 
creases is unbounded in terms of the number n of ver- 
tices, minimum feature size, or similar metric. However, 
all the edges of a perpendicular fold to a common line. 
So in fact the more natural combinatorial object is a set 

of points folding to become collinear. While each per- 
pendicular bends an unbounded number of times, there 
are only O(n) perpendiculars [4]. 

To proceed beyond the folding of perpendiculars, we 
consider the faces in the plane graph of perpendiculars, 
called corridors. Each corridor is bounded by two 
perpendiculars that are a constant width apart, and 
folds up like an accordion. Corridors can have two 
topologies: most are linear, having one “end” on each 
side, and the rest are circular, such as the one in the 
middle of Figure 2 (left). 

While the crease pattern presented here is sim- 
ple and intuitive, the description of the resulting flat 
origami is difhcult. This consists of specifying the per 
sitions and overlap order of crease-pattern faces in the 
final folded state; in particular, we must specify which 
folds are mountains and which are valleys. Construct- 
ing a folded state, and showing certain properties such 
as noncrossing (that the paper does not self-intersect), 
are required for a proof of correctness for the algorithm. 
We refer the reader to [4] for details. 
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