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Systems with competing orders are of great interest in condensed matter physics. When

two phases have comparable energies, novel interplay effects such can be induced by tun-

ing an appropriate parameter. In this thesis, we study two problems of competing orders

- (i) ultracold atom gases with competing superfluidity and Charge Density Wave(CDW)

orders, and (ii) low dimensional antiferromagnets with Neel order competing against

various disordered ground states.

In the first part of the thesis, we study the attractive Hubbard model which could soon

be realized in ultracold atom experiments. Close to half-filling, the superfluid ground

state competes with a low-lying CDW phase. We study the collective excitations of

the superfluid using the Generalized Random Phase Approximation (GRPA) and strong-

coupling spin wave analysis. The competing CDW phase manifests as a roton-like excita-

tion. We characterize the collective mode spectrum, setting benchmarks for experiments.

We drive competition between orders by imposing superfluid flow. Superflow leads to

various instabilities: in particular, we find a dynamical instability associated with CDW

order. We also find a novel dynamical incommensurate instability analogous to exciton

condensation in semiconductors.

In the second part, inspired by experiments on Bi3Mn4O12(NO3)(BMNO), we first

study the interlayer dimer state in spin-S bilayer antiferromagnets. At a critical bilayer

coupling strength, condensation of triplet excitations leads to Neel order. In describing
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this transition, bond operator mean field theory suffers from systematic deviations. We

bridge these deviations by taking into account corrections arising from higher spin excita-

tions. The interlayer dimer state shows a field induced Néel transition, as seen in BMNO.

Our results are relevant to the quantitative modelling of spin-S dimerized systems.

We then study the J1 - J2 model on the honeycomb lattice with frustrating next-

nearest neighbour exchange. For J2 >J1/6, quantum and thermal fluctuations lead to

lattice nematic states. For S=1/2, this lattice nematic takes the form of a valence bond

solid. With J2 <J1/6, quantum fluctuations melt Néel order so as to give rise to a field

induced Néel transition. This scenario can explain the observed properties of BMNO.

We discuss implications for the honeycomb lattice Hubbard model.
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Chapter 1

Introduction

1.1 Competing orders

Condensed matter physics is the study of macroscopic phases of matter. The ambitious

aim of studying every phase of matter that exists in nature leads physicists to seek ever

newer phases in a variety of systems. This search has led to impressive discoveries such as

Bose-Einstein condensation in ultracold atoms and superconductivity in neutron stars. In

recent times, systems with competing orders have emerged as a fertile breeding ground

for novel phases. When two or more phases are in close proximity, a combination of

strong interactions, quantum mechanics and finely balanced energy scales gives rise to

rich behaviour. Various phenomena can be induced by tuning the fine balance between

phases in such regimes. The best known example is perhaps the emergence of d-wave

superconductivity in the high-Tc cuprates at the interface between antiferromagnetic and

Fermi liquid phases.

Systems with competing order are fairly common in condensed matter physics, some

examples are listed in Table 1.1. Typically, a tuning parameter tunes the relative energies

of competing phases in these systems leading to a phase transition. In the vicinity of

this phase transition, the energies of the phases are comparable and perturbations such

1



Chapter 1. Introduction 2

as disorder, magnetic field, pressure, currents, etc. can induce interplay of orders. An

interesting route to generating interplay effects is to locally suppress the dominant phase.

For example, superconductivity is suppressed in a vortex core due to the high energy cost

of supercurrents, allowing competing orders to arise in the vortex core region. As shown

in Fig. 1.1, antiferromagnetism has been observed[1, 2] in the vortex cores of high-Tc

cuprates. Another example is seen in the Bose Hubbard model. Close to the Mott

insulator-superfluid transition, in the limit of small hopping, disorder destabilizes the

Mott insulator leading to a Bose glass phase[3] as shown in Fig. 1.1. Competing orders

can also lead to coexistence phases which simultaneously show multiple orders. Fig. 1.1

shows such a coexistence phase in a pnictide material[4].

In this thesis, we study competing orders as reflected in collective excitations which

embody the macroscopic degrees of freedom in a system. Typically, they contain informa-

tion about all the interactions present and possible competing phases. An understanding

of the collective mode spectrum allows us to manipulate excitations using suitable per-

turbations. This in turn, allows us to induce competition between phases and to reveal

competing orders. We study competing phases in two very different contexts - ultracold

atomic gases and low dimensional magnetism. In both cases, we will understand the

effects of competing phases by means of the collective excitations. We present a brief

introduction to these two systems and our motivations for studying them.

1.2 Ultracold atom gases

Ultracold atom gases have emerged as a versatile testing ground for models of condensed

matter physics. Advances in cooling technologies have made it possible to trap dilute

gases of bosonic or fermionic atoms at extremely cold temperatures of a few hundred

nanoKelvins. On account of their low temperatures and high controllability, ultracold

gases are well suited to the study of quantum condensed matter physics. They provide
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Figure 1.1: Exotic phenomena arising from competing orders: (Top Left) Scanning Tun-

neling Microscopy (STM) images[2] of a superconducting vortex in Bi2Sr2CaCu2O8+δ -

from Science 295, 5554 (2002). Reprinted with permission from AAAS.

(Top Right) Sketch of the phase diagram of the Bose Hubbard model in the presence

of a disordered potential. A Bose Glass(BG) phase emerges at the interface between

superfluid(SF) and Mott Insulating(MI) phases - from Ref. [3]).

(Bottom) Coexistence of superconductivity and antiferromagnetism[4] in SmFeAsO1−xFx

induced by doping. Figure reprinted by permission from Macmillan Publishers Ltd:

Nature materials 8, 310 c©2009.

http://www.sciencemag.org
http://www.nature.com/nmat
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Table 1.1: Examples of systems with competing order

System Tuning Parameter Competing Orders

High-Tc Cuprates[5] Doping Antiferromagnetism,

Superconductivity

Pnictide materials[6] Doping Stripe-like magnetic order,

Superconductivity

TiSe2[7] Cu Intercalation/Pressure Charge Density Wave order,

Superconductivity

Bose Hubbard model[8] Lattice potential Mott Insulator, Superfluidity

URu2Si2[9] Pressure ‘Hidden order’,

Antiferromagnetism

clean experimental systems which are free of complications arising from extra degrees

of freedom such as coupling to lattice phonons. They offer an unprecedented degree

of tunability as the geometry, density and interaction strength can all be varied inde-

pendently. In addition, ‘optical lattices’[10] allow for the simulation of lattice problems

that are of particular interest in the condensed matter context. Optical lattices are

generated by counterpropagating laser beams which set up standing waves in the ampli-

tude of the electromagnetic field. The coupling between atoms and the resulting electric

field confines the atoms to the minima (or maxima) of the standing wave, creating an

effective lattice potential. Square/cubic lattices have been generated in several exper-

iments, and proposals have been put forward to emulate other lattice geometries[11].

With these advantages, experiments with ultracold atoms will help us understand non-

perturbative features of models with strong correlations. An example of the simulation of

condensed matter models using ultracold gases is the remarkable realization of the Mott

insulator-superfluid transition[12] in the Bose-Hubbard model[8]. Both sides of this phase

transition were accessed experimentally by tuning the optical lattice potential.
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In this thesis, we study models of Fermi gases which present a harder experimen-

tal challenge than Bose systems (see Ref.[13, 14] for reviews). We study fermions with

attractive interactions in the lowest band of an optical lattice. At low enough temper-

atures, the fermions are expected to form a superfluid. Such superfluidity of fermions

in an optical lattice has already been demonstrated[15], however the superfluid phase of

the single-band Hubbard model has not yet been realized as the temperatures required

are beyond the limits of current cooling technologies. Theoretical proposals have sug-

gested novel techniques to further lower temperatures[16, 17, 18] which may soon allow

experimental realizations of the Hubbard model.

Ultracold gases offer a great advantage over solid state materials in that the strength

of interactions can be easily tuned. Being extremely dilute, ultracold atoms only interact

via contact scattering, which can be characterized by the s-wave scattering length. The

phenomenon of Feshbach resonance[13] allows this scattering length to be tuned using an

applied magnetic field. Hyperfine states of fermionic atoms, typically Lithium (6Li) or

Potassium (40K), mimic the spin states of an electron. During a scattering process, two

fermions can couple to a bound state in the closed channel (corresponding to a hyperfine

spin-triplet state of the two scattering fermions). An applied magnetic field tunes the en-

ergy of this bound state, and thereby tunes the scattering length of fermions in the open

channel. Thus, an applied magnetic field can tune the strength of contact interactions

in a fermionic system. Projected to the lowest band of an optical lattice, this naturally

simulates the Hubbard interaction[19]. On the repulsive side of the resonance, the sys-

tem is metastable as three-body processes can lead to formation of bound molecules.

However, the attractive model suffers from no such limitation and can be studied by

experiments[20].

A strong motivation to experimentally study the attractive Hubbard model stems

from the BCS-BEC crossover[21, 14, 22, 23]. In the weakly interacting limit, the Bardeen-

Cooper-Schrieffer(BCS) theory of superconductivity can be used to describe the system.
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Fermions close to the Fermi surface are weakly bound, forming pairs in momentum space.

In the limit of strong interactions however, fermions form Cooper pairs which are spatially

tightly bound. These pairs behave as bosons which undergo Bose-Einstein condensation

at low temperatures. These two phases are connected by a crossover, with all observable

many-body properties changing smoothly. In fact, almost all observed properties vary

monotonically across this transition. One of the few non-monotonic properties which can

be used to identify the crossover point is the critical velocity of superfluid flow. We will

next present a brief review of the problem of critical superfluid flow.

1.2.1 Critical velocity of a superfluid

The critical velocity of a superfluid is a long standing problem which has been investi-

gated in many systems. One of the first significant theoretical advances was made by

Landau who devised the eponymous criterion to determine the critical velocity. Landau

considered a bosonic superfluid with excitations having a well-defined momentum q and

an energy cost ωq. An imposed superflow leads to a Doppler shift of excitations in the

rest frame of the superfluid. At the critical velocity, the energy cost of making excita-

tions vanishes and dissipation sets in due to the proliferation of excitations. The Landau

criterion (see Appendix B.1 for derivation) gives vcrit = minq{ω(q)/q‖} where q‖ is the

component of momentum in the direction of flow.

However, in the canonical Bose superfluid 4He, the observed critical velocity is al-

ways lower than the Landau criterion result. Due to a combination of strong correlations

and the geometry of the experimental apparatus, the loss of superfluidity usually occurs

through the proliferation of topological defects such as vortex rings. As the Landau cri-

terion does not take into account such complex excitations, it significantly overestimates

the critical velocity. It was realized early on that these issues can be circumvented by

forcing superflow across a microscopic structureless obstacle, giving a strict test of the

Landau criterion. With this objective, experiments studied ions moving through a 4He
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bath with a controlled velocity(see [24] for a review). However, the observed critical

velocity still shows deviations from the Landau criterion result.

The advent of ultracold atom gases paved the way for the first successful test of the

Landau criterion[25]. As ultracold gases are dilute and weakly interacting, an impurity

atom moving through a Bose gas can precisely probe the Landau dissipation limit. In

fact, further experiments using ‘rough surfaces’ instead of point-like impurities have also

succeeded in realizing the Landau dissipation limit[26]. In addition, progress in the

field of ultracold atom gases has opened up several new possibilities. A remarkable

experiment using Fermi superfluids[26] measured critical velocity by dragging a shallow

optical lattice (a rough surface) through the superfluid. The critical velocity beyond

which dissipation sets in was measured as a function of interaction strength. In the

limit of strong interactions (the BEC limit), the Landau criterion applies - the critical

velocity is set by the Doppler-shifted sound mode becoming gapless. In this thesis, we

call this a ‘Landau instability’ (a detailed discussion is given in Chapter 3). However,

in the weakly interacting limit (the BCS limit), the critical velocity is instead set by

‘depairing’ - the cost of superfluid flow overwhelms the energy gain from condensation,

and the system reverts to the normal (non-superfluid) state. Overall, the experimentally

observed critical velocity is non-monotonic across the BCS-BEC crossover, due to the

different mechanisms involved on either side.

The use of optical lattices has given rise to a further new class of instabilities. In the

presence of a lattice, imposed flow can renormalize excitation energies beyond a simple

Doppler shift. At the critical flow velocity, the renormalized excitation energies acquire

complex energies resulting in exponentially growing fluctuations. These ‘dynamical’ in-

stabilities have interesting observable consequences. Dynamical instabilities were first

discussed in theoretical calculations[27, 28] in a system of lattice bosons. Subsequent ex-

perimental observations have confirmed theoretical predictions[29]. Even non-interacting

bosons on a lattice undergo a dynamical instability, which is related to the superfluid
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Bosons Fermions

Galilean Invariance Landau[25] Landau,Depairing[26]

Lattice Landau, Dyn. Incomm.[29] Landau, Depairing,

Dyn. Incomm., Dyn. Comm.

Table 1.2: Types of superflow instabilities: Possibilities in cold atom experiments. The

‘Dynamical Incommensurate’ (Dyn. Incomm.) and ‘Dynamical Commensurate’ (Dyn.

Comm.) instabilities are discussed in Chapter 3. The case of fermions on a lattice is the

richest as it allows for the most possibilities. Also, it is the only category that has not

yet been studied in experiments.

stiffness becoming negative. Interestingly, Ref.[28] shows that this instability is smoothly

connected to the superfluid-Mott transition which occurs at zero flow.

In Part I of this thesis, we study the case of a Fermi gas loaded onto an optical lattice.

As indicated in Table 1.2.1, this case captures all the instabilities present in other cases.

In addition, it allows for new possibilities which we will explore in Chapter 3.

1.3 Low dimensional magnetism

Models of local moment magnetism provide well-understood examples of ordered phases

and phase transitions. Historically, a close interplay between theory and experiment

has led to a good understanding of magnetic order, e.g., antiferromagnetism, especially

in three dimensional systems. The thermal transition from such magnetically ordered

phases to paramagnetism has long occupied a central place in the field of condensed

matter physics. In the last twenty years, low dimensional magnetism has emerged as

an active field of research allowing for the study of quantum phase transitions between

disparate phases. Reduced dimensionality disfavours conventional magnetic order and
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makes way for exotic quantum behaviour. Here, we highlight two salient features of low

dimensional magnetism to provide the context for Part II of this thesis.

1.3.1 Frustrated Magnetism

A successful route to generating novel phases in low-dimensional systems is ‘frustration’.

Frustrated magnets are spin systems in which all interactions cannot be maximally sat-

isfied simultaneously. The simplest example is that of a triangular configuration with

antiferromagnetically coupled Ising moments, as shown in Fig. 1.2.

As no single ground state satisfies all interactions in a frustrated system, there are

many ground state configurations with comparable energies. A hallmark of frustrated

systems is macroscopic degeneracy of the ground state in the classical limit. Indeed, the

degree of degeneracy can be treated as a measure of frustration. Small effects such as

quantum/thermal fluctuations, weak additional interactions, anisotropies, etc, become

important in breaking this degeneracy and deciding the true low-energy state. The

resulting state may correspond to novel symmetry-breaking or may even be a spin-liquid

with no broken symmetries.

Frustrated magnets are usually antiferromagnets which obey the Curie-Weiss law

(χ ∼ C/{T − ΘCW}) at high temperatures. In contrast to conventional magnets, they

do not develop long-range order near the Curie-Weiss temperature. Any ordering, if

at all, occurs at much lower energy scales set by weak effects which break the classical

degeneracy. A quantitative measure of frustration can be obtained from the ratio f =

ΘCW/Tordering. Typically, f & 10 indicates magnetic frustration.

An important motivation for the study of frustration in low dimensional systems is the

possibility of generating novel states of matter in simple models which are experimentally

realizable. Simple models of frustration, both classical and quantum, give rise to rich

phase diagrams with various competing orders. This rich behaviour arises from large

classical degeneracy and the interplay of weak degeneracy breaking effects. We give a
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Figure 1.2: Example of frustration with antiferromagnetically coupled Ising moments:

(Left) The Néel state maximally satisfies the exchange coupling on every bond, i.e., every

bond connects anti-aligned spins. (Right) On the triangular lattice, this is impossible

leading to frustration.

Table 1.3: Examples of novel states arising from simple models of frustration

State Broken symmetry Model

Chiral UUD [30] Inversion, Translations S=1/2 J − J ′ − h, triangular lattice

Spin nematic[31] Spin rotations S=1/2 J1(< 0)-J2(> 0), square lattice

Spin octupolar[32] Spin rotations Classical antiferromagnet, Kagomé lattice

Stripe[33] Lattice, Spin rotations Large-S J1 − J2, square lattice

Plaquette RVB[34] Lattice translations S=1/2 J1 − J2, honeycomb lattice

(non-exhaustive) list of novel phases in frustrated systems in Table. 1.3. These phases can

be experimentally probed in materials and/or numerically studied in model Hamiltonians.

1.3.2 Ground states with quantum entanglement

At low temperatures, quantum mechanics can lead to novel phases which have no ana-

logues in classical physics. Such truly quantum phases have the distinguishing feature

of entanglement, wherein interactions force two or more entities (electrons, atoms, spins,

etc.) to become mutually intertwined. The quantum state of a single entity cannot be de-

scribed independently as the wavefunction mixes the states of different constituents. The
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best known example, perhaps, is BCS superconductivity which involves entanglement be-

tween electrons in momentum space. Historically, there have been very few examples of

phases with entanglement, both in theoretical models of condensed matter physics and in

solid state materials. Low dimensional magnets have dramatically changed this situation

within the last twenty years, as a wide array of entangled phases have been proposed and

experimentally realized.

A magnetically ordered state (for example, a Néel antiferromagnet), can be repre-

sented as a direct product of spins on each site. This kind of site-ordering has a simple

classical analogue, in models of classical vector spins. In low dimensional magnetic sys-

tems however, strong quantum effects can prevent site-ordering leading to various degrees

of entanglement. The simplest example is a Valence Bond Solid (VBS) in which spins

on pairs of sites are entangled, forming singlet dimers. The ground state can be written

as a direct product of bond-wavefunctions, and not site-wavefunctions. States with even

higher degrees of entanglement have been proposed such as plaquette-ordered states (Fig.

1.3c), weakly coupled chains[35], etc. As an extreme case, low dimensional magnets also

give rise to spin-liquids which cannot be written as direct products of wavefunctions re-

stricted to any finite collection of sites. Fig. 1.3 shows a series of states with progressively

higher degrees of entanglement.

With this motivation, we study two low-dimensional antiferromagnets in Part II of this

thesis. Chapter 4 discusses a spin-S bilayer J1 − Jc model on the honeycomb and square

lattices. It discusses the interlayer-VBS state, which does not break any symmetries.

Chapter 5 deals with the J1 − J2 model on the honeycomb lattice. In various limits,

this frustrated model exhibits ‘lattice nematic’ states, which break lattice rotational

symmetry. In Chapter 6, we discuss field-induced Néel ordering in both these models.

Our results are relevant to various experiments and numerical studies.



Chapter 1. Introduction 12

(a)

(b)

(c)

| 〉≡ 1
α{| 〉+| 〉}

(d)

≡ {| ↑↓〉 − | ↓↑〉}/
√
2

1≡ P3/2

Figure 1.3: Entangled states on the honeycomb lattice: (a)-(d) show progressively higher

entanglement. (a) is Néel ordered phase that occurs when only nearest neighbour ex-

change is present. (b) represents the interlayer VBS state in a honeycomb bilayer J1−Jc
system (see Chapter 4). Interlayer bonds form singlet dimers. (c) represents the ‘plaque-

tte RVB’ state, proposed in the S=1/2 J1 − J2 model on the honeycomb lattice[36, 34].

The coefficient α =
√

3/2 is a normalization factor. (d) is the S=3/2 Affleck-Kennedy-

Lieb-Tasaki (AKLT) state on the honeycomb lattice, proposed for a model with second

order exchange[37]. The operator P3/2 projects onto spin-3/2.
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Chapter 2

Collective Mode of the Attractive

Hubbard Model

2.1 Introduction

The Hubbard model was first introduced in the context of narrow band transition metals[38].

J. Hubbard phrased the problem of interacting electrons on a lattice in terms of Wannier

states and argued that for a narrow band system, Coulomb interaction can be approx-

imated as local on-site repulsion. The analogous attractive Hubbard model with on-

site attraction has long been theoretically studied as a simple model system for s-wave

superconductivity[39, 40]. It is only with the advent of ultracold atom physics that a

clean, tunable experimental realization has come within reach. The Hamiltonian is given

by

H = −t
∑

〈ij〉,σ∈{↑,↓}

(

c†i,σcj,σ + h.c.
)

− µ
∑

i,σ

ni,σ − U
∑

i

(ni,↑ −
1

2
)(ni,↓ −

1

2
). (2.1)

The index i sums over all sites of the lattice. Quantum Monte Carlo studies[41, 42, 40]

show that the ground state of this model is a superfluid. In this chapter, we use the

Generalized Random Phase Approximation(GRPA) to find the collective mode spectrum

arising from fluctuations around this superfluid state. We focus on the 2-dimensional

14
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square lattice and the 3-dimensional cubic lattice.

The primary motivation for our study stems from experiments with ultracold Fermi

gases which may soon realize this model Hamiltonian. Such experimental studies can

study the regimes of validity of approximation schemes such as GRPA and can set the

direction for improvements to theoretical methods. We quantitatively characterize the

collective mode spectrum with a view to setting benchmarks for future experiments. Our

results suggest simple checks to verify if the Hubbard model has indeed been realized.

Another important motivation is the possibility of studying competing phases in this

system theoretically and experimentally. As we discuss in the next section, this model

shows competition between superfluidity and Charge Density Wave (CDW) phases. The

collective mode spectrum provides a means of understanding and quantifying this com-

petition. Further, in Chapter 3, we study imposed superflow in this system. Superflow

induces competition between orders, and also leads to various instabilities. The collective

mode spectrum serves as an excellent tool to understand the effect of superflow and the

mechanisms of superflow breakdown.

Theoretically, various techniques have been used to evaluate the collective mode dis-

persion of the Hubbard model. Belkhir and Randeria[43] used the equations-of-motion

method of Anderson[44] and Rickayzen[45], focussing only on the long-wavelength sound

mode. They point out that the Random Phase Approximation(RPA) which is a weak-

coupling approach, also correctly captures the strong coupling limit. Our calculations

reaffirm this finding. An alternate derivation of the collective mode spectrum is presented

in Ref.[46], which identifies the collective mode frequency from the poles of density-

density response function. This paper presents an early calculation of a ‘roton’ gap in an

extended Hubbard model (see section.2.5). As nearest neighbour repulsion is tuned, the

superfluid state becomes unstable to various commensurate and incommensurate density

orders. In Chapter 3, we will examine such instabilities induced instead by imposed

superflow.



Chapter 2. Collective Mode of the Attractive Hubbard Model 16

We begin this chapter with a discussion on the symmetries of the Hubbard model.

In particular, we discuss an extra pseudospin symmetry at half-filling. With this back-

ground, we present the mean-field theory of superfluidity. We then use the GRPA for-

malism to calculate the collective mode spectrum. We present results for sound velocity

and roton gap that can be measured in experiments on ultracold fermions. In the limit of

strong coupling, we evaluate the collective mode by a spin-wave analysis of the relevant

strong coupling spin model. We show that GRPA correctly captures the strong-coupling

limit which suggests that GRPA is reliable for all interaction strengths. We summarize

and discuss avenues for experimental investigation.

2.1.1 Symmetries of the Hubbard model

The Hubbard model of Eq. 2.1 possesses the following symmetries:

(i) U(1) global gauge transformations: The Hamiltonian is invariant under ci,σ →

ci,σe
iφ. In solid state materials, this symmetry is associated with the conservation of

electric charge. As our fermions are electrically neutral, this symmetry is associated with

fermion number conservation.

(ii) SU(2) global spin rotations: As there is no special direction picked out, the Hamil-

tonian is invariant under global spin rotations. The fermions mimic spin-1/2 electrons

and transform under the SU(2) algebra.

(iii) When µ = 0, the Hamiltonian is invariant under a sublattice dependent particle-

hole transformation. The transformation ciσ → ηic̃
†
i,σ leaves the Hamiltonian invariant

when µ = 0, where ηi = ±1 on the two sublattices. Clearly, this property is only valid on

a bipartite lattice. In addition, the hopping term should only connect sites of different

sublattices. For instance, on the square lattice, this symmetry is lost if we add next-

nearest neighbour hopping with amplitude t′. We deduce that 〈niσ〉 = 〈ñiσ〉 = 1− 〈niσ〉,

which tells us that µ = 0 corresponds to half-filling.

(iv) The attractive Hubbard model can be mapped onto the repulsive Hubbard model
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using the following transformation. For the moment, let us consider the attractive Hub-

bard model in the presence of a magnetic field. The Hamiltonian can be written as

H=−t
∑

〈ij〉,σ

[

c†iσcj,σ + h.c.
]

−µ
∑

i,σ

ni,σ − U
∑

i

(ni,↑−1/2)(ni,↓−1/2)−B
∑

i

(ni↑ − ni,↓).(2.2)

By transforming the down spins alone using ci,↓ → ηic
†
i,↓, we obtain

H ′=−t
∑

〈ij〉,σ

[

c†iσcj,σ + h.c.
]

−B
∑

i,σ

ni,σ + U
∑

i

(ni,↑−1/2)(ni,↓−1/2)− µ
∑

i

(ni↑ − ni,↓).(2.3)

This transformation gives us a repulsive Hubbard model with the chemical potential µ

and the magnetic field B interchanged. While the repulsive model is of great interest in

the context of the high -Tc cuprates, it is difficult to simulate using ultracold gases. On

the repulsive side of the Feshbach resonance, the Fermi gas is in a metastable state and is

susceptible to formation of two-body bound states. Three body processes can therefore

lead to depletion of the fermion condensate. Instead of simulating the repulsive Hubbard

model by stabilizing the metastable Fermi gas, the associated attractive model can be

studied in experiments instead[20].

(v) We discuss a special case of the previous transformation which occurs at half-

filling in the absence of a magnetic field (µ = B = 0). The attractive Hubbard model

precisely maps onto the repulsive model which is known to possess a Néel ground state.

The orientation of Néel order is arbitrary. In the attractive model, this takes the form

a global pseudo-spin rotational symmetry[47] at half-filling for any bipartite lattice. To

illustrate this symmetry, we define the following pseudospin operators which were first

used in the context of superconductivity by Anderson[44],

T+
i = ηic

†
i↑c

†
i↓,

T−
i = ηici↓ci↑,

T z
i =

1

2
(c†i↑ci↑ + c†i↓ci↓ − 1), (2.4)

where ηi = +1 on one sublattice and ηi = −1 on the other sublattice of the square or

cubic lattice. The physical meaning of these operators is evident: T+
i creates a fermion
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pair at site i, T−
i annihilates a fermion pair at site i, and T z

i measures deviation of density

from half-filling.

It is easily shown that these operators obey usual spin commutation relations. Fur-

thermore, if µ = 0, the global pseudospin operators,

T z =
∑

i

T z
i ,

T± =
∑

i

T±
i , (2.5)

all commute with the Hubbard Hamiltonian in Eq. 2.1 revealing a global pseudospin

SU(2) symmetry at half-filling where µ = 0.

2.1.2 Ground state degeneracy at half-filling

The ground state of Eq. 2.1 on the square/cubic lattice is known to be a uniform superfluid

for any choice of U/t and µ/t[41, 42]. The uniform superfluid has an order parameter

〈c†i↑c
†
i↓〉 ∼ ∆eiϕ where the phase ϕ corresponds to a spontaneously broken symmetry. In

terms of pseudospin operators, this may be written as 〈T+
i 〉 ∼ ηi∆eiϕ. At half-filling, due

to the extra pseudospin symmetry, all states which can be obtained by a global pseudospin

rotation of the uniform superfluid are also ground states. The ground state manifold can

thus be characterized by a vector order parameter N = ηi〈Ti〉 with magnitude ∆ which

can point in any direction in pseudospin space. We represent this order parameter on the

Bloch sphere as shown in Fig. 2.1(a). The uniform superfluid state has N lying on the

equator. The state with N ∼ ±∆ẑ points to the north/south pole of the Bloch sphere.

This signifies 〈T z
i 〉 ∼ ±ηi∆, which corresponds to a checkerboard Charge Density Wave

(CDW) state. Other locations on the Bloch sphere correspond to states with coexisting

CDW and superfluid orders.

Away from half-filling, this degeneracy is broken and the ground state is superfluid.

For small µ 6= 0, the energy splitting between the CDW and superfluid states scales

linearly with µ. Upon tuning away from half-filling, the CDW is a low-lying excited
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ϕ

Superfluid

CDW

CDW

(a) (b)

Figure 2.1: (a) The ground state manifold at half-filling. The order parameter can be

represented as a vector on a Bloch sphere. The poles correspond to CDW orders. The

equator corresponds to superfluid order; each point on the equator represents a choice

of the phase of the superfluid order parameter. (b) The two CDW states: sites marked

with red squares have higher/lower density than unmarked sites.

state. We expect the collective mode spectrum of the superfluid to reflect the presence

of this low-lying competing phase. Indeed, in the following sections, we will identify a

‘roton’-like feature in the collective mode spectrum resulting from this weak degeneracy

breaking.

2.2 Mean-field theory of superfluid state

As the ground state of the Hubbard model is generically a superfluid, we begin with a

mean-field treatment of the superfluid state. We decouple the Hubbard interaction in

Eq. 2.1 using the order parameter U〈ci↓ci↑〉 = ∆0, to get

HMFT = −t
∑

〈ij〉,σ

(c†iσcjσ + c†jσciσ)− µ
∑

iσ

niσ −∆0

∑

i

(

c†i↑c
†
i↓ + ci↓ci↑

)

,
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where we have absorbed the uniform Hartree shift into the chemical potential. In mo-

mentum space, the mean field Hamiltonian takes the form

HMFT =
∑

k,σ

ξkc
†
kσckσ −∆0

∑

k

(

c†k↑c
†
−k↓ + c−k↓ck↑

)

, (2.6)

where ξk ≡ −2tǫk − µ, with ǫk ≡ ∑d
i=1 cos(ki) (d = 2, 3 is the dimensionality of the

lattice).

We can diagonalize HMFT by defining Bogoliubov quasiparticles (QPs), γ, via






ck↑

c†−k↓






=







uk vk

−vk uk













γk↑

γ†−k↓






. (2.7)

Parametrizing uk ≡ cos(θk), vk ≡ sin(θk), and demanding that the transformed

Hamiltonian be diagonal leads to the condition tan(2θk) = ∆0/ξk. We denote the eigen-

value of the Hamiltonian matrix by

Ek =
√

ξ2k +∆2
0. (2.8)

The Bogoliubov transformation coefficients must satisfy the relations

u2k =
1

2

(

1 +
ξk
Ek

)

; v2k =
1

2

(

1− ξk
Ek

)

; ukvk =
∆0

2Ek

. (2.9)

In terms of the Bogoliubov QPs, the mean field Hamiltonian finally takes the form

HMFT = EGS +
∑

k

Ekγ
†
kσγkσ, (2.10)

where EGS =
∑

k (Ek − ξk) denotes the ground state energy of HMFT. Demanding self-

consistency of the mean field theory yields the gap and number equations:

1

U
=

1

N

∑

k

(1− 2nF (Ek))

2Ek

,

f =
2

N

∑

k

[

u2knF (Ek) + v2k(1− nF (Ek))
]

, (2.11)

where f is the filling, i.e. the average number of fermions per site, and N is the total

number of sites. nF (.) denotes the Fermi distribution function. For given U and filling

f , these equations can be solved to obtain the superfluid order parameter ∆0 and the

QP spectrum.
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2.3 Collective modes at weak-coupling

Going beyond mean field theory, we include fluctuations of the density and the superfluid

order parameter within GRPA. We begin by considering fictitious external fields that

couple to modulations in density and in the superfluid order parameter:

H ′
MFT = HMFT −

∑

i

[hρ(i, t)ρ̂i + h∆(i, t)∆̂i + h∗∆(i, t)∆̂
†
i ], (2.12)

where ρ̂i =
1
2
c†iσciσ and ∆̂i = ci↓ci↑. Going to momentum space, 1

H ′ = HMFT − 1

N

∑

K,β∈{1,2,3}

hβ(K, t)Ô
†
β(K), (2.13)

where Ô†(K) ≡ {ρ̂−K, ∆̂−K, ∆̂
†
K} is the vector of fermion bilinear operators corresponding

to modulations in density and superfluid order at nonzero momenta. The modulation

operators are given by:

ρ̂K ≡ 1
2

∑

k c
†
kσck+Kσ, h1(K, t) = hρ(K, t),

∆̂K ≡
∑

k c−k+K↓ck↑, h2(K, t) = h∆(K, t),

∆̂†
K ≡

∑

k c
†
k↑c

†
−k+K↓, h3(K, t) = h∗∆(−K, t).

2.3.1 Bare Susceptibility

We treat these perturbing fields within first order in perturbation theory. The expectation

value of a modulation field is given by

〈Ôα〉(K, t) =
∫ +∞

−∞

dt′ χ0
αβ(K, t− t′)hβ(K, t

′), (2.14)

where

χ0
αβ(K, t−t′)=

iΘ(t−t′)
N

〈
[

Ôα(K, t), Ô
†
β(K, t

′)
]

〉
0
. (2.15)

Here [., .] denotes the commutator and 〈.〉0 implies that the expectation value is taken in

the ground state of H0.

1We use the Fourier transform conventions: ciσ = 1
√

N

∑

k ckσe
ik.ri .; which defines (ρ̂/∆̂)i =

1
N

∑

K(ρ̂/∆̂)KeiK.ri . For the perturbing fields, we use hρ/∆(i, t) =
1
N

∫

dω
2π

∑

q hρ/∆(q, ω)e
i(q·ri−ωt).
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In frequency domain, the susceptibility matrix is given by

〈Ôα(K, ω)〉 = χ0
αβ(K, ω)hβ(K, ω), (2.16)

where

χ0
αβ(K, ω) =

1

N

∑

n

(

(Ô†
β)0n(Ôα)n0

ω + En0 + i0+
−

(Ôα)0n(Ô
†
β)n0

ω −En0 + i0+

)

. (2.17)

The index n sums over all excited states of the mean-field Hamiltonian. We have denoted

(Ô)mn ≡ 〈m|Ô|n〉, wherein |n〉, |m〉 are eigenstates of HMFT (with n=0 corresponding

to the ground state). In the denominator, En0 ≡ En−E0 where En is the energy of state

|n〉.

The excited states of the mean-field Hamiltonian are given by the Fock space of

Bogoliubov quasiparticles. The operators Ôα and Ô†
β are composed of quasiparticle bi-

linears. At zero temperature, the only intermediate states which contribute to χ0
αβ(K, ω)

are those with two quasiparticle excitations. We give explicit expressions for the entries

in χ0
αβ(K, ω), which we call the ‘bare susceptibility’ matrix, in Appendix A.1.

2.3.2 Generalized Random Phase Approximation (GRPA)

The bare susceptibility evaluated in the previous section will be renormalized by the

interaction term. The interaction term in the Hamiltonian may be decomposed as follows:

−Uc†i↑c
†
i↓ci↓ci↑ →−U

[

〈c†i↑ci↑〉c
†
i↓ci↓ + 〈c†i↓ci↓〉c

†
i↑ci↑

]

−U!
[

〈c†i↑c
†
i↓〉ci↓ci↑ + 〈ci↓ci↑〉c†i↑c

†
i↓

]

.(2.18)

These expectation values act as “internal fields” which renormalize the applied field. We

take these internal fields into account by setting

h1(K, ω) → h1(K, ω) + 2U〈Ô1(K, ω)〉,

h2(K, ω) → h2(K, ω) + U〈Ô2(K, ω)〉,

h3(K, ω) → h3(K, ω) + U〈Ô3(K, ω)〉. (2.19)

With these renormalized fields, the expectation value of the modulation fields becomes:

〈Ôα〉 = χ0
αβ(hβ + UDβτ 〈Ôτ〉), (2.20)
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where D ≡ Diag{2, 1, 1} is a diagonal matrix, and we have suppressed (K, ω) labels for

notational simplicity. Rearranging the above equation gives:

〈Ôα〉 = [(1− Uχ0D)−1χ0]αβ hβ ≡ χGRPA
αβ hβ. (2.21)

This gives us the GRPA susceptibility. We call this the Generalized Random Phase

Approximation after Anderson[44].

This GRPA susceptibility will diverge when the determinant Det(1−Uχ0D) becomes

zero (or equivalently, one of the eigenvalues of this matrix vanishes). This indicates that

a modulation mode will acquire a non-zero expectation value, even in the presence of

an infinitesimal external field. We identify the locus of real frequencies (ω ≡ ω(K)) at

which such spontaneous modulation fields arise, as the dispersion of a sharp (undamped)

collective mode.

The above GRPA prescription is perturbative in interaction corrections, and is justi-

fied in the weak coupling limit. To test its regime of validity, we juxtapose this prescrip-

tion with a strong coupling analysis in the following section.

2.4 Strong Coupling Limit: Spin Wave Analysis of

Pseudospin Model

In the strong coupling limit, the attractive Hubbard model of Eq. 2.1 reduces to the

S=1/2 Heisenberg model in the pseudospin operators (see Appendix A.2 for derivation),

Hpseudospin = J
∑

〈ij〉

Ti ·Tj − µ
∑

i

T z
i , (2.22)

with J = 4t2/U . The uniform stationary superfluid is described by antiferromagnetic

ordering in the XY plane. Deviation from half-filling manifests as uniform canting away

from the XY plane. (The CDW state corresponds to antiferromagnetic ordering along

the z axis.) The collective modes of a magnetically ordered state are naturally described
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Figure 2.2: Holstein Primakoff spin wave calculation: The spiral state is first transformed

into a ferromagnet by a local spin rotation. In the ferromagnet, the Hilbert space of each

spin into mapped to a bosonic state which can be occupied by 0-2S bosons. These bosons

acquire a dispersion on the lattice - giving the quantized spin wave mode energies.

by the Holstein-Primakoff approach[48] (see Fig. 2.2). Although this approach is strictly

valid in the large S limit, it is known to work well even for S = 1/2 systems[49, 50]. We

begin by treating the pseudospins as classical vectors, and subsequently add quantum

corrections. The ground state in the classical limit |0〉c may be parametrizing as

T c
i ≡ S(ηi sin θ, 0, cos θ), (2.23)

where S = 1/2 is the pseudospin magnitude. The pseudospins T c
i form a canted antifer-

romagnet. The canting angle θ is related to the filling by

f − 1 = cos θ. (2.24)

where f is the average number of fermions per site. To use the Holstein-Primakoff pre-

scription, we first perform a site-dependent spin rotation into a ferromagnetic state. We
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define new pseudospin operators T̃ given by

T̃ z
i = T z

i cos(θ) + ηiT
x
i sin(θ),

T̃ x
i = −T z

i sin(θ) + ηiT
x
i cos(θ),

T̃ y
i = ηiT

y
i , (2.25)

In terms of these operators, the classical ground state is a ferromagnet with pseudospins

pointing towards the Z axis. We replace the T̃ operators with Holstein-Primakoff bosons.

By setting terms that are linear in the boson operators to zero, we obtain µ as a function

of θ.

µ = 4JS cos(θ)ǫ0, (2.26)

where ǫk ≡
∑d

i=1 cos(ki) as defined in Sec. 2.2.

The Hamiltonian to O(S) in terms of Holstein-Primakoff bosons, is given by

H = Ec + δE +
∑

K

ωKb
†
KbK, (2.27)

where (Ec = −NJS2ǫ0[1 + 2 cos2 θ]) is the classical ground state energy and (δE =

JS cos2 θ
∑

K ǫK) is the leading quantum correction. The spin-wave dispersion ωK is

given by

ωK = 2JS +
√

α2
K − γ2K, (2.28)

with αK = ǫ0 − cos2 θǫK and γK = sin2 θǫK.

An illustration of the collective mode dispersions obtained using this approach is

shown in Fig. 2.3 at strong coupling (U/t = 15) for two different fillings, f = 0.8, 1.0

fermions per site. These spin wave dispersions are in very good agreement with the

collective mode frequency obtained using GRPA. We find better and better agreement as

U/t is increased. Thus, the GRPA formalism also correctly captures the strong coupling

limit. Given that GRPA works well both in the weak-coupling limit and in the strong-

coupling limit, it is likely that GRPA gives reliable results for all interaction strengths.
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Figure 2.3: Collective mode energy at zero superflow in 2D at strong coupling, U/t = 15.

The dispersion is shown along the indicated contour in the Brillouin zone for a filling of

(a) f = 0.8 fermions per site and (b) f = 1.0 per site. The GRPA result (solid line) is in

good agreement (within 10%) with the Holstein-Primakoff spin wave result (dashed line,

HP) for the strong coupling pseudospin model. The roton minimum (see Section 2.5)has

a small gap at f = 0.8 but becomes a gapless mode at f = 1.0 due to the pseudospin

SU(2) symmetry discussed in the text.

2.5 Features of the collective mode

Fig. 2.4 provides an illustrative example of the collective mode spectrum obtained using

GRPA. We highlight two features:

(i) A linearly dispersing “phonon” mode occurs at small momenta and low energy.

The slope of this linear dispersion is the sound velocity.

(ii) An extremum occurs at the corner of the Brillouin zone, due to symmetry reasons.
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Figure 2.4: Illustrative example of the collective mode dispersion and quasiparticle-pair

continuum in 2D, for zero superflow (Q = 0) with U/t = 3 and f = 0.2 fermions per site,

along the contour displayed in the inset.

In Fig. 2.4, the collective mode has a maximum at K = (π, π). At fillings closer to

f = 1, the spectrum exhibits a minimum at K = (π, π). This minimum indicates

a tendency towards checkerboard density order, reflecting the presence of a low-lying

CDW mode. Indeed, the minimum touches zero at half-filling (see Fig. 2.3), on account

of the degeneracy between superfluid and CDW phases. We call this mode a ‘roton’ in

analogy with liquid 4He. Unlike 4He however, this feature occurs at the Brillouin zone

corner only and does not form a ring of wavevectors.

We plot our results for the sound velocity and the roton gap in Fig. 2.5. We hope

that cold-atom experiments will be able to verify these predictions.

At high energies, there is an onset of a two-quasiparticle continuum where the col-

lective mode can decay by creating two Bogoliubov quasiparticles with opposite spins

in a manner which conserves energy and momentum. Once the collective mode energy

goes above the lower edge of the two-particle continuum of Bogoliubov QP excitations,

it ceases to be a sharp excitation and acquires a finite lifetime.
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2.6 Summary and Discussion

We have studied the collective mode spectrum of the attractive Hubbard model using

the GRPA formalism. In the limit of strong coupling, we have developed an effective

pseudospin model; collective mode excitations at strong coupling correspond to spin

waves in this pseudospin model. The GRPA result at strong coupling is in very good

quantitative agreement with the spin wave analysis, indicating that GRPA correctly

captures the strong coupling physics as well. Having thus gained confidence in the GRPA

formalism, we have characterized the collective mode spectrum as a function of interaction

strength, density and dimensionality. We have presented results for sound velocity and

roton gap, which we hope can be experimentally measured in the near future.

Our results are in good agreement with several recent calculations using various

methods. A strong-coupling treatment in the presence of superflow has been presented

in Ref.[51]. Two recent articles, Ref.[52](using diagrammatics) and Ref.[53](using the

Bethe-Salpeter equation), have studied the collective mode in a flowing superfluid. Our

results are in good agreement with all of these reports.

Close to half-filling, there is a low-lying CDW phase which competes with the su-

perfluid ground state. This low-lying state manifests as a minimum of the collective

mode at the Brillouin zone corner - (π, π) in two dimensions and (π, π, π) in three di-

mensions. This roton mode is a unique feature of the attractive Hubbard model and is

an interesting manifestation of competing orders. At half-filling, the superfluid ground

state is degenerate with the CDW phase making the roton mode gapless. A promising

avenue to verify our findings experimentally is Bragg spectroscopy which measures the

density-density response function. This measurement has been successfully performed in

the case of a two-component Fermi gas with Galilean invariance[54]. In fact, this has

been shown to be in excellent agreement with RPA results[55]. In this measurement,

two counter-propagating laser beams set up a shallow optical lattice on top of a trapped

Fermi gas. One of the lasers is slightly detuned to produce a running lattice. Fermions
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can absorb a photon from one lattice beam and emit into another - the energy imparted

to the Fermi gas is fixed by the detuning of lattice lasers while the momentum imparted

is given by the period of the shallow optical lattice. By measuring the centre-of-mass

momentum imparted to the cloud of fermions, the density-density response can be eval-

uated. For the case of the attractive Hubbard model, we expect that a shallow running

lattice can be superimposed on the optical lattice potential without mixing higher bands.

The collective mode spectrum can thus be mapped as a function of momentum.

In Chapter3, we discuss the collective mode spectrum in the presence of an imposed

superfluid flow and explore flow-induced breakdown of superfluidity. Superflow instabil-

ities also serve as a probe of collective excitations.
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Figure 2.5: Left: Sound mode velocity, vs, as a function of the fermion filling f in (a)

2D and (b) 3D for U/t = 3, 15. Solid line is a guide to the eye. The dashed lines are the

weak coupling result, vs = (vF/
√
d)[1− UN(0)]1/2, from Ref.[43] for U/t = 3, with N(0)

being the non-interacting density of states (per spin) at the Fermi level. The dotted line

indicates the Holstein Primakoff spin-wave result for U/t = 15. The inset to (b) shows the

expected t/U scaling of vs/t for U/t ≫ 1. Right: The roton gap at (c) (π, π) in 2D and

(d) (π, π, π) in 3D for different interaction strengths. The dashed (solid) lines indicate

that the mode energy corresponds to a local maximum (minimum) of the dispersion. The

inset shows the roton gap in 3D at a filling of f = 0.8 fermions per site, as a function

of t/U . Inset shows a comparison of the GRPA result (points) with the strong coupling

spin-wave theory result (dashed line).



Chapter 3

Superflow instabilities in the

attractive Hubbard model

3.1 Introduction

Chapter 2 evaluates the collective mode spectrum in the superfluid phase of the attractive

Hubbard model. Close to half-filling, there is a low-lying CDW mode which manifests

as a roton-like excitation. In this chapter, we use imposed superflow as a tool to induce

competition between superfluid and CDW phases. As caricatured in Fig. 3.1, imposed

flow raises the energy of the superfluid state. When the energy cost of flow overwhelms

the energy difference between the superfluid and CDW phases, the system may prefer to

switch to the insulating CDW phase. Alternatively, a novel coexistence phase could result

when superflow makes the energies of the two states comparable. Such a ‘supersolid’

phase has long been sought in various systems[56, 57].

The critical velocity of a superfluid is a classic problem which has been studied in

many contexts. Chapter 1 gives a brief overview. Superflow in the attractive Hubbard

model is a natural extension of the accumulated body of work on this question. Earlier

work has identified various mechanisms of superfluid breakdown in Bose gases, lattice

31
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bosons and Fermi gases. The attractive Hubbard model exhibits all of these breakdown

mechanisms; furthermore, it gives rise to new instabilities that are not present in earlier

systems. In this chapter, we will classify various superflow instabilities in the attractive

Hubbard model. At the end of this chapter, we will plot ‘stability phase diagrams’ which

indicate the leading instability as a function of dimensionality, interaction strength and

density.

We begin this chapter with the mean-field theory of the flowing superfluid. We then

calculate the collective mode spectrum using GRPA and the strong coupling pseudospin

model. Imposed superflow renormalizes the mean-field parameters as well as the collective

mode spectrum. At the critical flow velocity, the superfluid becomes unstable which can

be seen from the mean-field theory and/or the collective mode spectrum. We identify

three categories of instabilities, which we call “depairing”, “Landau” and “dynamical”.

In the following sections, we describe each of these and map out stability phase diagrams.

From the point of view of cold-atom experiments, the case of dynamical instabilities is

the most interesting. We find two qualitatively different kinds of dynamical instabilities:

commensurate and incommensurate. The commensurate instability is a manifestation of

flow-induced competition between superfluidity and CDW order. It is associated with

the exponential growth of checkerboard CDW fluctuations. We investigate the fate of the

system beyond this instability by performing an extended mean-field analysis allowing

for both orders. The mean-field theory shows a coexistence phase which however, ap-

pears to be unstable to long wavelength fluctuations. The incommensurate instability is

an intermediate-density, intermediate-interaction-strength phenomenon which is a novel

finding of our study. We understand this instability in analogy with exciton condensation

in semiconductors. We end this chapter with implications for cold atoms experiments.
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Figure 3.1: Dynamical commensurate instability: Competition between superfluid(SF)

and CDW states. Left: At half-filling, the two states are degenerate. Right: Away from

half-filling, the SF is lower in energy. As indicated by the arrow, imposed superflow raises

the energy of the superfluid state and forces competition with CDW order.

3.2 Mean-field theory of the flowing superfluid

The flowing superfluid state is composed of Cooper pairs with non-zero momentum. The

Hubbard interaction is decoupled using the order parameter U〈ci↓ci↑〉 = ∆0e
iQ·ri . In this

state, the superfluid order parameter has a uniform amplitude and a winding phase. As

superflow is imposed, we expect the stationary superfluid to adiabatically evolve into this

state. For simplicity, we restrict our attention to superflow momenta Q = Qxx̂. The

mean-field Hamiltonian in momentum space takes the form

HMFT =
∑

k,σ

ξkc
†
kσckσ −∆0

∑

k

(

c†k↑c
†
−k+Q↓ + c−k+Q↓ck↑

)

, (3.1)

where ξk ≡ −2tǫk − µ, with ǫk ≡
∑d

i=1 cos(ki) (d = 2, 3 is the dimensionality of the

lattice).

We can diagonalize HMFT by defining Bogoliubov quasiparticles (QPs), γ, via







ck↑

c†−k+Q↓






=







uk(Q) vk(Q)

−vk(Q) uk(Q)













γk↑

γ†−k+Q↓






. (3.2)
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Demanding that the Hamiltonian be diagonal in terms of the new QP operators leads to

u2k(Q)=
1

2

(

1 +
ξk + ξ−k+Q

2Γk,Q

)

; v2k(Q)=
1

2

(

1− ξk + ξ−k+Q

2Γk,Q

)

; uk(Q)vk(Q)=
∆0

2Γk,Q
,(3.3)

where we have defined

Γk,Q =

√

1

4
(ξk + ξ−k+Q)2 +∆2

0. (3.4)

The transformed mean field Hamiltonian is given by

HMFT = EGS +
∑

k

Ekγ
†
kσγkσ, (3.5)

where EGS denotes the ground state energy of HMFT and Ek denotes the Bogoliubov QP

dispersion given by:

Ek = Γk,Q +
1

2
(ξk − ξ−k+Q) ,

EGS =
∑

k

(Ek − ξk) . (3.6)

The self-consistency of the mean field theory yields the gap and number equations:

1

U
=

1

N

∑

k

1

2Γk,Q

(1− nF (Ek)− nF (E−k+Q)),

f =
2

N

∑

k

[

u2k(Q)nF (Ek) + v2k(Q)(1− nF (E−k+Q))
]

, (3.7)

where f is the filling, i.e. the average number of fermions per site, and N is the total

number of sites. Given the interaction strength, chemical potential and the flow momen-

tum, these equations can be self-consistently solved to obtain the pairing amplitude ∆

and the filling.

nF (.) denotes the Fermi distribution function. At the level of mean-field theory, the

effect of flow is twofold - to renormalize the order parameter ∆0 and to modify the QP

dispersion.

3.3 Collective modes of the flowing superfluid

The effect of imposed flow on the collective mode spectrum is best understood in the

strong coupling limit. We first discuss the strong-coupling spin wave description of the
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collective mode. We then extend our GRPA prescription to the case of the flowing

superfluid.

3.3.1 Strong coupling limit

In the strong coupling limit, the attractive Hubbard model reduces to the spin-1/2 Heisen-

berg model in pseudospin operators (see Appendix A.2 for derivation),

Hpseudospin = J
∑

〈ij〉

Ti ·Tj − µ
∑

i

T z
i , (3.8)

with J = 4t2/U . The pseudospin operators are defined as (see Chapter 2)

T+
i = ηic

†
i↑c

†
i↓,

T−
i = ηici↓ci↑,

T z
i =

1

2
(c†i↑ci↑ + c†i↓ci↓ − 1), (3.9)

where ηi = ±1 on the two sublattices of the square or cubic lattice. The ground state of

this Heisenberg model has Néel order and can be represented as

〈ηiTi〉 = O. (3.10)

The vector O is the Néel vector which gives the amplitude and orientation of Néel or-

dering. From the definition of the pseudospin operators, we see that Néel ordering in

the XY plane corresponds to a uniform stationary superfluid state. The phase of this

superfluid phase is given by the orientation of the Néel vector within the plane.

An imposed superflow forces the phase of the order parameter to wind with a wavevec-

tor Q. In the strong coupling picture, the Néel vector winds within the XY plane forming

a spiral with wavevector Q. The resulting state can be obtained by a phase twist on the

stationary superfluid, denoted as |0〉, as follows

|Q〉 = exp

[

−i
∑

i

T z
i Q · ri

]

|0〉. (3.11)
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By this operation, the pseudospin vector at each site is rotated in the XY plane by an

angle given by Q · ri. This forces the Néel vector at each site to spiral with a pitch

given by Q. Instead of dealing with this spiral state directly, we absorb the phase twist

operator into the Hamiltonian to get

Heff(Q)=J
∑

〈ij〉

[T z
i T

z
j +(T x

i T
x
j + T y

i T
y
j ) cos(Q · rij)−(T x

i T
y
j −T y

i T
x
j ) sin(Q · rij)]−µ

∑

i

T z
i ,

where rij ≡ ri − rj. By this transformation, we have reverted to the rest frame of

the superfluid. While we can use the eigenstates of the stationary superfluid, energy

expectation values should be evaluated using this ‘flowing’ Hamiltonian. In the rest

frame, the pseudospins possess canted antiferromagnetic order. The out-of-plane canting

corresponds to deviation from half-filling. The pseudospin vector at a lattice site i may

be characterized as

T c
i ≡ S(ηi sin θ, 0, cos θ), (3.12)

As described in Eq.2.25 of Chapter 2, we perform a site-dependent pseudospin rotation

into a ferromagnetic state with spins pointing along the Z axis. To study the collective

excitations, we introduce Holstein-Primakoff bosons. Demanding that the terms linear

in boson operators should vanish, we obtain

cos(θ) =
µ

2JS(ǫ0 + ǫQ)
, (3.13)

where ǫQ ≡∑d
i=1 cos(Qi) and S = 1/2.

The Hamiltonian to O(S) in terms of Holstein-Primakoff bosons, is given by

H = Ec + δEq +
∑

K

ωK(Q)b†KbK, (3.14)

where

Ec = −NJS2[cos2 θǫ0 + (1 + cos2 θ)ǫQ],

δEq = −JS
2

∑

K

[ǫK sin2θ − (1 + cos2 θ)

2
(ǫK+Q + ǫK−Q)], (3.15)
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represent, respectively, the classical ground state energy and the leading quantum cor-

rection. The spin-wave dispersion ωK(Q) is given by

ωK(Q) = 2JS

{

βK(Q) +
√

α2
K(Q)− γ2K(Q)

}

, (3.16)

with

αK(Q) = ǫQ+
sin2 θ

2
ǫK− (1+cos2 θ)

2

(

ǫK+Q+ǫK−Q

2

)

,

βK(Q) =
1

2
cos θ (ǫK−Q − ǫK+Q) ,

γK(Q) =
1

4
sin2 θ (2ǫK + ǫK+Q + ǫK−Q) . (3.17)

Comparing the spin wave dispersion for the flowing superfluid with the stationary

case (obtained by setting Q = 0), we see that imposed flow alters the dispersion in two

ways:

(i) The term βk constitutes a ‘Doppler-shift’. This term clearly vanishes in the absence

of flow. In addition, this term vanishes at special points on the Brillouin zone which

satisfy 2K ≡ 0. In particular, it vanishes at the wavevector corresponding to checkerboard

CDW order (the Brillouin zone corner).

(ii) The term
√

α2
K(Q)− γ2K(Q) represents an additional renormalization of the col-

lective mode energy. This effect results from the underlying lattice structure and does

not occur in systems with Galilean invariance (see Appendix B.1 and Ref.[27]).

For small flow momentum, the former gives a correction that is linear in Q while

the latter gives a correction that is quadratic. Thus, at small Q, the Doppler shift is

the dominant correction to the collective mode energy. For all interaction strengths, the

impact of flow on the collective mode can be understood in terms of these two effects.

3.3.2 Collective modes from GRPA

The GRPA calculation of collective modes in the flowing superfluid closely mirrors the

calculation in the stationary case in Chapter 2. We consider fictitious external fields that
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couple to modulations in density and in the superfluid order parameter:

H ′
MFT = HMFT −

∑

i

[hρ(i, t)ρ̂i + h∆(i, t)∆̂ie
iQ·ri + h∗∆(i, t)∆̂

†
ie

−iQ·ri], (3.18)

where ρ̂i =
1
2
c†iσciσ and ∆̂i = ci↓ci↑. Going to momentum space,

H ′ = HMFT − 1

N

∑

K

hβ(K, t)Ô
†
β(K), (3.19)

where β = 1, 2, 3, and Ô†(K) ≡ {ρ̂−K, ∆̂−K+Q, ∆̂
†
K+Q} is the vector of fermion bilinear

operators representing modulations in density and in the superfluid order parameter at

nonzero momenta. The operators ρ̂K and ∆̂K are as defined in Sec. 2.3 of Chapter 2.

The expectation value of a modulation field, within first order in perturbation theory, is

given by

〈Ôα〉(K, t) =
∫ +∞

−∞

dt′ χ0
αβ(K, t− t′)hβ(K, t

′). (3.20)

In frequency domain, we obtain

〈Ôα(K, ω)〉 = χ0
αβ(K, ω)hβ(K, ω), (3.21)

where

χ0
αβ(K, ω) =

1

N

∑

n

(

(Ô†
β)0n(Ôα)n0

ω + En0 + i0+
−

(Ôα)0n(Ô
†
β)n0

ω −En0 + i0+

)

. (3.22)

The index n sums over all excited states of the mean-field Hamiltonian. We denote

(Ô)mn ≡ 〈m|Ô|n〉, wherein |n〉, |m〉 are eigenstates of HMFT (with n=0 corresponding

to the ground state). In the denominator, En0 ≡ En−E0 where En is the energy of state

|n〉. We evaluate these matrix elements by summing over all states in the Fock-space of

Bogoliubov QPs. We give explicit expressions for the entries in the bare susceptibility

matrix χ0
αβ(K, ω) in Appendix B.2.

In order to include interaction effects, we decouple the Hubbard interaction in fluctu-

ation channels as in Sec. 2.3.2 of Chapter 2. This gives rise to ‘internal’ perturbing fields

which add to hβ(K, ω). Taking into account these renormalized fields, the expectation

value of modulations becomes:

〈Ôα〉 = χ0
αβ(hβ + UDβτ 〈Ôτ〉), (3.23)
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where D ≡ Diag{2, 1, 1} is a diagonal matrix. We have suppressed (K, ω) labels for

notational simplicity. Rearranging the above equation gives:

〈Ôα〉 = [(1− Uχ0D)−1χ0]αβ hβ ≡ χGRPA
αβ hβ, (3.24)

which defines the GRPA susceptibility. We identify the collective mode energy ω(K)

from the poles of the GRPA susceptibility matrix. When the determinant Det(1−Uχ0D)

vanishes, the GRPA susceptibility diverges and a modulation field acquires a non-zero

expectation value even in an infinitesimal external field.

Thus for any given interaction strength, filling and flow momentum, we can identify

the dispersion of the collective mode from GRPA. In the following sections, we use the

GRPA result for the collective mode spectrum and analyse the mechanisms of flow-

induced instabilities.

3.4 Depairing Instability

The system undergoes a depairing instability when the self-consistently calculated su-

perfluid order parameter, ∆0, vanishes in the mean field theory. At the critical flow

momentum, the energy cost of flow outweighs the energy-lowering from condensation

and the system goes into an unpaired normal state.

This instability is close to, but not identical with, the quasiparticles becoming gap-

less due to the flow-induced Doppler shift. In two dimensions, we find that these two

phenomena occur at the same flow momentum. In three dimensions however, superflu-

idity persists beyond the point where quasiparticles become gapless. The system cannot

arbitrarily lower its energy as the negative energy states are fermionic in nature. Thus

in three dimensions, there is a stable (albeit small) window of gapless superfluidity, as

is known to occur in superfluid 3He in the presence of flow[58]. Thus, this instability

may be thought of as being closely related to the Landau criterion applied to Bogoliubov
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QPs. This analogy should be treated with caution as the Bogoliubov QPs are fermionic

excitations, unlike the bosonic excitations found in superfluids such as 4He.

3.5 Landau Instability

The Landau instability is well understood in Bosonic systems[25, 27] and in Fermi gases

with Galilean invariance[26]. This instability occurs when the collective mode energy

hits zero and becomes negative, as shown in Fig. 3.2. In the strong coupling limit, with

the collective mode dispersion given in Eq. 3.16, this happens when αK(Q) ≥ γK(Q)

and βK(Q) < −
√

α2
K(Q) + γ2K(Q). This instability is driven by the Doppler shift term

βK(Q), which drives the collective mode energy below zero.

This instability may only lead to gradual loss of superfluidity as external couplings or

non-linearities are necessary to transfer the energy of the superflow into these negative-

energy modes in a way that conserves momentum. For this reason, this Landau instability

may be difficult to detect in a cold-atoms experiment. Here we restrict ourselves to only

finding the critical flow momentum for this instability.

We find that the Landau instability occurs either at small momenta corresponding

to the sound mode going below zero, or at some finite incommensurate momentum. In

the case of low filling, unless preempted by depairing, we see a Landau instability of the

sound mode. For moderate values of U and filling, we see Landau instabilities at large

incommensurate momenta (as in Fig. 3.2). As the filling is reduced, this incommensurate

wavevector moves towards the Brillouin zone centre, so that in the low density limit, it

is the long wavelength sound mode that becomes unstable.

3.6 Dynamical Instability

The underlying lattice potential allows for a new kind of superflow instability that does

not occur in systems with Galilean invariance, namely ‘dynamical instabilities’[27]. This
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Figure 3.2: Landau instability - Collective mode spectrum (from GRPA) in 2D with

U/t = 7 at a filling of f = 0.4 fermions per site. Collective mode dispersion is shown

at (a) zero flow, (b) just below, and (c) just above, the critical flow momentum for

the Landau instability. The +(−) sign indicates the mode is at wavevector +K(−K)

which has an x-component along (opposite to) the flow direction so that it is Doppler

shifted down (up) in energy. The collective mode frequency becomes negative at an

incommensurate wavevector.
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corresponds to the frequency of the collective mode passing through zero, and subse-

quently becoming complex. In the strong coupling limit, this happens when |αK(Q)|

becomes smaller than |γK(Q)|. The appearance of complex collective mode frequencies

leads to exponential growth of fluctuations around the uniformly flowing state. This in-

stability is particularly simple to understand for weakly interacting bosons. In this case,

the instability coincides with the point where the effective mass of the bosons changes

sign as a function of the superflow momentum[27], leading to runaway growth of long-

wavelength phase and density fluctuations, eventually destroying superfluidity.

For strongly interacting bosons the situation is more interesting. It has been shown[28]

that with increasing interaction strength at a commensurate filling (integer number of

bosons per site), the dynamical instability occurs at a smaller and smaller superflow

momentum. The critical flow momentum eventually vanishes at the superfluid-Mott

insulator transition, scaling as the inverse of the divergent correlation length associated

with this Mott transition.

In our case of a lattice fermionic superfluid with strong interactions, we find a new

kind of a dynamical instability, associated with the onset of density-wave order when

the mode energies become complex at nonzero wavevectors. We find two kinds of such

dynamical instabilities - commensurate and incommensurate.

3.6.1 Dynamical commensurate instability

The dynamical commensurate instability occurs for a range of densities close to half-

filling, for all interaction strengths. The associated wavevector is the Brillouin zone

corner - (π, π) in 2D (as shown in Fig. 3.3)and (π, π, π) in 3D. This corresponds to an

instability towards the checkerboard CDW state, with a density modulation of opposite

signs on the two sublattices of the square (or cubic) lattice.

Fig. 3.1 provides a physical picture of this instability as a manifestation of competi-

tion between superfluid and CDW orders. As described in Chapter 2, the superfluid and
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CDW phases are degenerate at half-filling. Tuned away from half-filling, the CDW phase

is a low-lying excitation above the superfluid ground state. At the critical flow momen-

tum, the energy cost of superflow makes the superfluid and CDW phases comparable in

energy. The system prefers to develop CDW correlations, and superfluidity is lost. This

suggests the exciting possibility that superfluidity and CDW order may co-exist beyond

this instability. To determine the fate of the system beyond this instability, we perform

an extended mean-field theory allowing for both superfluidity and CDW order. The cal-

culation is presented in Appendix B.3. While a ‘supersolid’ phase with coexisting orders

is found within mean-field theory, this state appears to be unstable to long wavelength

fluctuations. More work is needed to clarify the nature of this state.

From our strong coupling analysis in Chapter 2, the Doppler shift in the collective

mode vanishes at Brillouin zone corner. At this wavevector, superflow renormalizes the

dispersion via its effect on αK(Q), γK(Q). It is this renormalization that drives the

dynamical commensurate instability.

3.6.2 Dynamical incommensurate instability

This instability is accompanied by the onset of incommensurate ordering patterns, as

the collective mode frequency becomes complex at an incommensurate wavevector(Fig.

3.4). It occurs when there is a maximum in the bare susceptibility χ0 at a wavevector

connecting two minima in the quasiparticle dispersion. The interaction renormalizes such

a maximum into a divergence, leading to an instability.

It can be understood in analogy with exciton condensation in indirect band-gap

semiconductors[59]. The analogue of the conduction-band electrons and valence-band

holes are Bogoliubov quasiparticles of opposite spins. In the case of exciton condensa-

tion, the band gap sets an energy gap to creating particle-hole pairs. Yet, the Coulomb

interaction drives bound state formation and further, a Bose-condensation transition of

these pairs. In our case, there is a gap to creating quasiparticle pairs. Yet, interactions
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Figure 3.3: Dynamical Instability (Commensurate)- Collective mode spectrum (from

GRPA) for U/t = 5, filling f = 0.8 fermions per site on a 2D square lattice. The +(−)

sign indicates the mode is at wavevector +K(−K) which has an x-component along

(opposite to) the flow direction. As the flow momentum Q is increased, the collective

mode frequency at K = (π, π) decreases until it hits zero and becomes complex. This

gives rise to a dynamical instability associated with the “checkerboard” CDW order. The

part of the dispersion, around (π, π), which corresponds to unstable modes is not shown.
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of intermediate-strength cause the condensation of quasiparticle-pairs, as shown in Fig.

3.5.

This is the leading instability at intermediate densities and at intermediate values of

the interaction strength. This instability does not happen in either the strong-coupling

limit, where the Anderson pseudospin description is appropriate[51], nor in the weak-

coupling BCS superfluid limit, where the instability at intermediate densities is due to

depairing. This dynamical instability is a nontrivial intermediate-coupling phenomenon

and is one of the most interesting findings of our study.

3.7 Stability phase diagrams

Taking the aforementioned instabilities into account, we map out superflow stability

phase diagrams in 2D (Fig. 3.6) and 3D (Fig. 3.7). These plots show the first instability

that is encountered with increasing flow, for different values of filling. We only consider

densities less than half-filling, as the system is particle-hole symmetric. Values of U for

the plots have been chosen so as to illustrate all possibilities.

As can be seen from the plots, the depairing instability is weak-coupling low-density

phenomenon. As U is increased, the mean-field ∆0 grows and a larger flow velocity is

required for depairing to take place. At the same time, sound velocity decreases (see

Fig. 2.5(b) in Chapter 2). As a result, for intermediate and large U values, the Landau

instability of the sound mode precedes the depairing instability. The incommensurate

dynamical instability occurs only at intermediate densities and interaction strengths, as

large interactions seem to prefer commensurate order. The commensurate dynamical

“checkerboard” CDW instability comes into play around quarter-filling for all values of

the interaction strength and remains the dominant instability all the way to half-filling.

At half-filling, the critical flow momentum vanishes reflecting the degeneracy between

the SF and CDW states.
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Figure 3.4: Dynamical Instability (Incommensurate) - Collective mode spectrum (from

GRPA) for U/t = 3, filling f = 0.6 fermions per site on a 2D square lattice. The +(−)

sign indicates the mode is at wavevector +K(−K) which has an x-component along

(opposite to) the flow direction. As the flow momentum Qx is increased, the collective

mode frequency becomes complex at an incommensurate wavevector.
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Figure 3.5: Dynamical incommensurate instability - analogy with exciton condensation:

2D, U/t=3. f=0.3. Left: At zero flow, the collective mode dispersion (top) and the

Bogoliubov quasiparticle spectrum (bottom) along a cut in the Brillouin zone(shown in

inset at bottom right). We have performed a particle hole transformation on one spin

species, shown in red (see energy denominators in Eq. B.7). Right: On the verge of a

dynamical incommensurate instability, the collective mode (top) and the quasiparticle

spectrum(bottom). Quasiparticle spectrum resembles an indirect band-gap semiconduc-

tor. Dynamical instability is set to occur at the wavevector which connects the top of

the ‘valence band’ with the bottom of the ‘conduction band’.

In the low density limit, the system is similar to a continuum Fermi gas. In 3D,

the density of states at the Fermi level vanishes. At low interaction strength, this leads

to the pairing gap ∆ being exponentially suppressed. The sound velocity, on the other

hand, is proportional to the Fermi velocity, so that vs ∼ f 1/3 (f is the filling, i.e., average

number of fermions per site). This leads to a rather sharp drop of the sound velocity

at low densities but the gap drops to zero much faster. Therefore, in the 3D case, at

weak interaction and low filling, a small imposed flow will drive ∆ to zero before the flow

velocity exceeds the sound velocity, leading to a depairing instability as can be be seen
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Figure 3.6: Stability phase diagram for a 2D square lattice case with (a) U/t = 3 and (b)

U/t = 5. For every filling, the plot shows the first instability that is encountered as flow

is increased. The solid blue line in the low density limit in (a) indicates the region where

we expect to see a Landau instability, but finite size effects prevent us from accessing

the area. At very large interaction strengths, the phase diagram is similar to U/t = 5,

except that the incommensurate dynamical instabilities disappear.

in Fig. 3.7.

In contrast, in the low density continuum limit in 2D, the density of states goes to a

constant, which means the pairing gap stays finite as f → 0. With imposed flow, the first

instability that one encounters is then the Landau instability, which will happen when

the flow velocity exceeds the sound velocity which scales as vs ∼ f 1/2. We have not been

able to numerically uncover the Landau instability in this regime due to severe finite size

effects.
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Figure 3.7: Stability phase diagram for a 3D cubic lattice with (a) U/t = 5 and (b)U/t =

15. For each filling, the instability first encountered as the flow is increased is shown.

3.8 Implications for experiments

There is great interest in the simulation of the Hubbard model in cold Fermi gases as a

way to answering long-standing standing questions about the origin of superconductivity

in the high-Tc cuprates. In the context of cold atoms, the repulsive Hubbard model

could be difficult to simulate due to the presence of negative energy bound states which

makes the Fermi gas prone to three-body losses. As a result, the attractive Hubbard

model is currently the holy grail of cold atom experiments. However, this is not a

straightforward task. It has not been well-established that the Hubbard model can be

realized by loading fermions with an attractive contact interaction onto an optical lattice.

As this is unexplored territory for experiments, there could be unforeseen problems.

Secondly, experimentally ascertaining that the Hubbard model has indeed been realized
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is a challenge. Superfluid order can be easily measured, but it is not easy to see if the

fermions are confined to the lowest band alone. Our results can be extremely useful

in this respect. Flow-induced checkerboard CDW order is easy to detect and provides

conclusive evidence that the fermions form a one-band attractive Hubbard model.

The superflow instabilities of a Fermi gas with Galilean invariance have been inves-

tigated in Ref. [26]. For studying the attractive Hubbard model, an optical lattice can

be achieved by using a pair of counterpropogating laser beams. The lattice potential

should be deep enough so that higher bands are not accessed. Superfluid flow can then

be simulated by frequency-detuning one pair of lattice beams, which creates a “running”

optical lattice in the corresponding direction. Issues arising from the inhomogeneous

harmonic trapping potential can be circumvented by studying the central region of the

trap in which the potential is relatively flat. Once the atoms have been loaded onto a

deep optical lattice, the trap can even be made very shallow so as to obtain a larger

‘central’ region. If the fermions are in a superfluid state, the atoms will not move with

the running lattice. However, if a CDW phase emerges, atoms will be transported along

with the lattice. Experimentally, the lattice should be moved sufficiently slowly so that

the superfluid will adiabatically acquire a phase gradient.

Our findings may be experimentally verified in different ways:

(i) The effect of flow on collective modes (or the density-density response or the

structure factor) can be measured using Bragg scattering measurements. This mea-

surement has been successful for the case of a two-component Fermi gas with Galilean

invariance[54]. In fact, this has been shown to be in excellent agreement with RPA

results[55].

(ii) The density correlations that arise at a dynamical instability can be directly

measured/imaged. This can be done by suddenly ramping up the lattice potential to

freeze atoms on each site and to image the resulting distribution of atoms. Even before

the onset of an instability, such a snapshot could reveal density fluctuations with some
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Figure 3.8: Simulation of CDW order in the vortex core in the honeycomb lattice Hubbard

model: Plot of ∆i, the superfluid order parameter, and density ρi as a function of position

for U/t=5, t’/t=0.15 (next-nearest neighbour hopping) and filling of 1.1 fermions per

site. Colour at each site represents the amplitude of ∆i, and the size of the markers

is proportional to ρi. As a guide to the eye, the honeycomb unit cell is shown at top

left. Two vortices can be seen where the magnitude of ∆i is minimum. There is uniform

superfluid order away from the vortices and increased CDW correlations in the vortex

core.

typical correlation length. On approaching the transition, this correlation length should

diverge. Right at the onset of the dynamical commensurate instability, such a snapshot

measurement will reveal clear checkerboard density correlations.

(iii) A third approach is to simply measure the critical velocity for dissipationless flow,

as a function of various parameters, as has been done for Galilean invariant fermions in

Ref. [26]. The resulting stability phase diagram can be compared with our result.

(iv) An analogy with vortex-core magnetism seen in the cuprates[1, 2] can be used to

reveal competing orders in the Hubbard model. Superconductors proximate to competing

phases such as the high-Tc cuprates, TiSe2[7] and FeSe[60] can reveal competing orders

in the vortex core. This can be understood by thinking of the vortex core as the region

in which the critical superflow velocity has been locally exceeded. In the cold atoms
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context, in the Hubbard model, vortices induced by ‘stirring’ the superfluid will show

CDW correlations in the core region (see Fig. 3.8).

(v) In a solid state superconductor, when the magnetic field is increased beyond Hc1,

vortices begin to appear. The density of vortices increases up until Hc2 when the vortex

lattice melts leading to the complete loss of superconductivity. Cold atom experiments

can exhibit new features that are not seen in such solid state systems. A rotating gas with

weak attractive interactions can be loaded onto an optical lattice. Slightly tightening the

harmonic trapping potential can induce a density profile in this system with the central

region having a higher density of fermions. Now, increasing the interaction strength using

the Feshbach resonance can lead to rings which show different behaviour. The central

region can develop CDW order and not carry any angular momentum. The surrounding

region can be superfluid, and carry superfluid currents. The size of such a central CDW

region will depend on the radius of the trapping potential and can possibly be much

larger than the size of a vortex in a uniform system. Alternatively, such a CDW region

can be thought of as arising from the melting of a vortex lattice in the centre of the trap,

due to the large local density of vortices.

We hope experiments with ultracold gases can study many systems with competing

orders. They can reveal novel phases such as supersolids with microscopic coexistence

of phases, and precisely study the nature of phase transitions. With input from experi-

ments, theoretical techniques such as the GRPA method can be refined and new insights

obtained.
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Chapter 4

Dimer-Néel transition in bilayer

antiferromagnets

4.1 Absence of long-range order and field-induced

Néel order in BMNO

The recent synthesis of Bi3Mn4O12(NO3)(BMNO)[61] has aroused interest in honeycomb

lattice antiferromagnets. We first present a brief overview of the properties of this ma-

terial; this motivates and sets the stage for discussing paramagnetic ground states in

this part of the thesis. BMNO is a S = 3/2 honeycomb bilayer system, with a Curie-

Weiss temperature of -257K. In spite of the large value of S and the large Curie-Weiss

temperature, this material remarkably shows no long range order down to 0.4K.

Fig. 4.1(a) shows a plot of the magnetic susceptibility versus temperature. At large

temperatures, the susceptibility shows Curie-Weiss behaviour with a large negative Curie-

Weiss temperature. This indicates the presence of antiferromagnetic exchange interac-

tions at an energy scale of about 70 K. Yet, no sharp features corresponding to a phase

transition are seen down to temperatures much lower than this interaction scale. As seen

from Fig. 4.1(b), nor does the specific heat show any singularities down to the lowest
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temperatures. (There is a small feature at 95 K, but it arises from a defect MnO2 phase,

which undergoes a Néel transition at that temperature). This suggests that the ground

state in BMNO is a ‘spin liquid’ which does not break any symmetries.

The structure of BMNO is shown in Fig. 4.1(c,d). Each layer in this material is com-

posed of MnO6 octahedra arranged in a honeycomb lattice, with these honeycomb planes

forming AA-stacked bilayers. Each octahedron has an Mn4+ (3d3 4s0) ion surrounded

by Oxygen atoms in octahedral coordination. The octahedral crystal field splits the 3d

levels in the Mn atom into three t2g and two eg levels. The three valence electrons occupy

the t2g levels, with strong Hund’s coupling forcing the spins to be parallel. Effectively,

BMNO forms a S = 3/2 honeycomb lattice bilayer with antiferromagnetic exchange in-

teractions. The S = 3/2 nature of the spins has been confirmed by the Curie-Weiss fit

to the high temperature susceptibility data.

The absence of long-range order has been confirmed by Electron Spin Resonance

(ESR) measurements[62] which ESR shows a sharp absorption line that persists down to

lowest temperatures. This indicates that spin is not pinned to any lattice direction - such

pinning would lead to a diffuse peak when averaged over the different crystal orientations

of the powder sample. We conclude that BMNO should be described by an effective model

of Heisenberg S = 3/2 spins with antiferromagnetic interactions. In addition to nearest

neighbour (J1) exchange which favours antiferromagnetism, there should be other strong

interactions that frustrate Néel order. The relative strengths of the interactions present

in this material are not known. Next-nearest neighbour (J2) interactions as shown in

Fig. 4.1(d) have been suggested as the most natural source of frustration[61]. There

have been two attempts to determine the microscopic interactions from first principcles.

Density functional theory calculations[63] indicate that the most important interaction is

bilayer coupling (Jc). Another approach using unrestricted Hartree-Fock calculations[64]

suggests that in-plane J4 interactions are the most important, however this calculation

ignores interlayer couplings. More work is needed to clarify this issue.
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(c)

(d)

MnO6 Bi NO3

Figure 4.1: (a) Magnetic suscpetibility (and inverse susceptibilty) vs. temperature, (b)

Specific heat vs. temperature. The sharp feature in specific heat at ∼90 K arises from a

defect MnO2 phase. (c) Structure of Bi3Mn4O12(NO3), showing bilayer nature. (d) Each

honeycomb layer built of MnO6 octahedra. Reprinted with permission from JACS 131,

8313 c©2009 American Chemical Society.
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Remarkably, neutron powder diffraction measurements[65] reveal that BMNO de-

velops Néel order in an applied magnetic field of about 6T. This raises several crucial

questions such as the mechanism of field-induced Néel ordering, whether or not there is

a preferred plane of ordering, the role of disorder etc.

Some theoretical calculations, including the work described in this thesis, have at-

tempted to explain the physics seen in BMNO[66, 67, 37]. However, a satisfactory de-

scription of the material has not yet emerged. Any such description should identify the

source of frustration, explain the nature of the ground state and the mechanism by which

a magnetic field induces Néel order.

In this chapter, inspired by the physics of BMNO, we examine a bilayer J1 − Jc

model with an interlayer dimer ground state which does not break any symmetries. We

study the antiferromagnetic bilayer with spin-S on both square and honeycomb lattices.

In Chapter 5, we examine the proposition that next-nearest neighbour exchange may

frustrate Néel order. In Chapter 6, we shows that these two scenarios are consistent with

field-induced Néel order. Finally, we point out the future directions for experimental and

theoretical investigations of Bi3Mn4O12(NO3) in Chapter 6.

4.2 Dimer states in bilayer antiferromagnets

Dimerized magnetic materials provide the simplest example of a magnetically disordered

state, in which pairs of spins are entangled forming a singlet. The resulting state, de-

scribed as a collection of singlets on selected bonds, is called a dimer phase or a ‘Va-

lence Bond Solid’ (VBS). Some prominent materials which show such valence bond or-

der are TlCuCl3 which shows a field-induced Néel transition analogous to Bose-Einstein

condensation[68, 69], and SrCu2(BO3)2 which realizes the Shastry Sutherland model[70,

71, 72]. Many other materials are also known to support dimer phases[68, 73, 74]. Theo-

retically, various model Hamiltonians[75, 76, 77, 78] which give rise to dimer phases have
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been studied. Novel dimer phases which break various symmetries of the underlying

lattice have also been explored.

Dimerized magnets also provide a new means of studying the physics of Bose-Einstein

condensation. In the dimer phase, the elementary excitations involve breaking a singlet

bond to make a triplet. Typically, these triplet excitations acquire a dispersion and

behave as bosons. In an applied magnetic field, these bosons undergo Bose-Einstein con-

densation leading to magnetically ordered phases[69, 79, 80]. In this chapter, we will

study such a Bose condensation transition between a dimer phase and a Néel antiferro-

magnet.

We study a simple model which exhibits a dimer ground state - the bilayer Heisenberg

antiferromagnet with a Hamiltonian given by

H = J⊥
∑

i

Si,1 · Si,2 + J1
∑

〈ij〉

∑

ℓ=1,2

Si,ℓ · Sj,ℓ. (4.1)

Here, i labels sites in one layer, ℓ = 1, 2 is the layer index, and 〈ij〉 represents nearest

neighbor pairs of spins within each layer. For J⊥ ≫ J1, the first term in H dominates

and the ground state is composed of isolated interlayer singlets with Si,1 + Si,2 = 0 for

every i. If J⊥ ≪ J1, the system will order magnetically provided the second (intralayer)

term in the Hamiltonian is not too frustrated by the lattice geometry. Here, we restrict

our attention to cases where each layer is itself a bipartite lattice so that the ground

state for J⊥ ≪ J1 has long-range Néel order. At some critical value of (J⊥/J1), there is a

phase transition between dimer and Néel phases. We will approach this phase transition

from the dimer side and study how condensation of triplet excitations gives rise to Néel

order.

As an example of a zero-temperature phase transition, the dimer-Néel transition has

been carefully studied for the case of the S = 1/2 square lattice bilayer. Numerically

exact Quantum Monte Carlo (QMC) simulations[76] have been used to obtain critical ex-

ponents. With a clear understanding of the quantum phase transition being established,
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the effect of disorder on the critical properties has been extensively studied[81, 82, 83].

Also, various analytical approaches have been used to study this S = 1/2 square bilayer

problem[84, 85, 86, 87], giving reasonable agreement with QMC results.

However, there has been relatively little work on understanding the higher spin gener-

alizations of the Hamiltonian in Eq. 4.1, and generalizations to other lattice geometries.

There is a need to systematically pursue this direction, especially in the context of mate-

rials such as the S=1 triangular lattice dimer compound Ba3Mn2O8[88]. In this chapter,

we study this Hamiltonian for S = 1/2, 1, 3/2 spins on square and honeycomb bilayers

using the bond operator method generalized to arbitrary spin[89]. We use a variational

method to include corrections beyond the standard bond operator mean field theory.

This analysis was performed in conjunction with QMC simulations[90], performed by

Sergei V. Isakov. Indeed, we study the square and honeycomb lattice geometries pre-

cisely because they are unfrustrated and therefore, amenable to QMC simulations. Our

variational method gives reasonable agreement when compared to QMC benchmarks,

giving us confidence in our method and allowing to identify the essential physics of the

spin-S problem.

This chapter is organized as follows. We first present an outline of the bond operator

representation generalized to arbitrary spin-S. We then discuss bond operator mean field

theory results for the square and honeycomb lattice models. The mean field analysis

yields scaling relations for the dimer-Néel transition which surprisingly also hold for the

QMC results. The next section describes our variational approach to deal with corrections

beyond mean field theory. We identify two regimes, S = 1/2 and S > 1/2, where different

correction terms dominate. We present our analysis for each regime. Finally, we discuss

implications for experiments and future directions.



Chapter 4. Dimer-Néel transition in bilayer antiferromagnets 60

Figure 4.2: The interlayer dimer state on square and honeycomb bilayers with singlet

correlations between layers. The in-plane exchange J1 and the interplane exchange J⊥

act as shown.

4.3 Bond operator representation

The dimer ground state and its magnetic ordering instabilities are naturally described by

the bond operator formalism which was first proposed for S = 1/2 antiferromagnets[91].

In this scheme, the spin operators are represented in a new basis consisting of singlet

and triplet states on the interlayer bonds (i, 1)-(i, 2). In the limit where the intralayer

coupling J1 = 0, the state with lowest energy consists of localized singlets on these bonds,

with a gap J⊥ to the triplet excitations. A nonzero J1 allows a pair of neighbouring

bonds (i, 1)-(i, 2) and (j, 1)-(j, 2) to exchange their singlet/triplet character. Such a

‘triplet hopping’ process converts the localized triplet modes into dispersing ‘triplons’,

with three-fold degenerate bands due to the underlying SU(2) rotational symmetry of the

Hamiltonian. As J1 is increased (or alternatively, J⊥ is decreased), the gap to creating

triplon excitations decreases. At a critical value of (J⊥/J1)c, the minimum of the triplon

dispersion hits zero leading to Bose condensation of triplons which gives rise to Néel order.

Generalizations of this approach to spin-1 magnets have been proposed earlier[92, 93].

Here, we adopt the recent generalization of this approach to higher spin[89] to study
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bilayer Heisenberg antiferromagnets.

In a spin-S bilayer systems, in the limit J⊥ ≫ 1, we have isolated interlayer bonds.

The bond can be in one of the following states: a singlet, a 3-fold degenerate triplet, a

5-fold quintet, etc. We introduce one boson for each of these states:

|si〉 ≡ s†i |0〉,

|ti,m∈{−1,0,1}〉 ≡ t†i,m|0〉,

|qi,m∈{−2,··· ,2}〉 ≡ q†i,m|0〉,
...

The index i here runs over all interlayer bonds, andm labels the Sz-component of the total

spin on the interlayer bond. These boson operators form the basis for a bond operator

representation. To restrict to the physical Hilbert space of spins, every interlayer bond

should have exactly one boson,

s†isi +
∑

m=−1,0,1

t†i,mti,m +
∑

n=−2,··· ,2

q†i,nqi,n + · · · = 1. (4.2)

In terms of bond operators, the exchange interaction on an interlayer bond is given by

J⊥ Si,1 · Si,2 = εss
†
isi + εt

∑

m=−1,0,1

t†i,mti,m + εq
∑

m=−2,··· ,2

q†i,mqi,m + · · · (4.3)

where εs = −J⊥S(S + 1), εt = J⊥{1− S(S + 1)}, and εq = J⊥{3− S(S + 1)}.

The bond operator theory re-expresses the spin operators and their interactions in

terms of these bond bosons. In the limit J⊥ ≫ 1, the singlets, triplets, quintets, etc.

form a hierarchy with the energy spacing between each tier of order J⊥. In this chapter,

we restrict our analysis to the low energy subspace of singlets, triplets and quintets on

each bond, and neglect higher spin states as the are much higher in energy.

We first perform conventional bond operator mean field theory retaining only singlet

and triplet modes, ignoring triplet interactions and higher excited states and imposing

the constraint in Eq. 4.2 on average. We then consider, in turn, the effect of triplet-triplet

interactions for S = 1/2 and the effect of quintet states for S > 1/2.
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4.4 Singlet-Triplet mean field theory

At mean field level, the interlayer dimer state is described by a uniform condensate of

the singlet bosons, with 〈si〉 = 〈s†i〉 = s̄. Retaining only triplet excitations, the spin

operators at each site are derived in Ref. [89]. The explicit expressions are

S+
i,ℓ = (−1)ℓ

√

2S(S + 1)

3
s̄{ti,−1 − t†i,1}+

1√
2
{t†i,1ti,0 + t†i,0ti,−1},

Sz
i,ℓ = (−1)ℓ

√

S(S + 1)

3
s̄{ti,0 + t†i,0}+

1

2
{t†i,1ti,1 − t†i,−1ti,−1}.

Using these expressions, the Hamiltonian takes the form

Hmf = εsN⊥s̄
2+εt

∑

i,m

t†i,mti,m−µ
∑

i

(

∑

m

t†i,mti,m+s̄2−1

)

+
2S(S + 1)

3
s̄2
∑

〈i,j〉

[

{ti,0 + t†i,0}{tj,0 + t†j,0}+
(

{ti,−1−t†i,1}{t†j,−1−tj,1}+ h.c.
)]

,

where µ is a Lagrange multiplier which enforces the constraint in Eq. 4.2 on average.

N⊥ is the number of interlayer bonds. We have dropped quartic terms in the triplet

operators (which corresponds to ignoring triplet-triplet interactions).

In the rest of this chapter, we use the following two basis sets to represent triplet states:

{|t−1〉i, |t0〉i, |t1〉i} or {|tx〉i, |ty〉i, |tz〉i}. The former basis labels states by the z-projection

of spin, while the latter labels states by the direction in which its spin projection is zero.

We can go from one basis to another using |t0〉i = |tz〉i and |t±1〉i = (∓|tx〉i − i|ty〉i)/
√
2.

Below, we will use the index m to represent an element of the first basis and u to represent

an element of the second.
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Figure 4.3: Top view of bilayers. (Top) Square lattice with primitive lattice vectors x̂

and ŷ shown. (Bottom) Honeycomb lattice. The shaded region is the unit cell composed

of two sites. Sites marked with a red circle belong to the A sublattice. Unmarked sites

belong to the B sublattice. The primitive lattice vectors â and b̂ are shown.

4.4.1 Square lattice bilayer

The square lattice bilayer with its relevant couplings and primitive lattice vectors is

shown in Fig. 4.3. At mean field level, the Hamiltonian of Eq. 4.1 may be written as

H(0)
2

= −J⊥N⊥S(S + 1)s̄2 − µs̄2N⊥ + µN⊥ − 3N⊥A

2

+
∑

k,u∈{x,y,z}

′

ψ†
k,u







A+ 2ǫk 2ǫk

2ǫk A+ 2ǫk






ψk,u, (4.4)



Chapter 4. Dimer-Néel transition in bilayer antiferromagnets 64

where ψk,u = [tk,u t†−k,u]
T . The primed summation indicates that if k is included in the

sum, then −k is excluded. The coefficients in the Hamiltonian matrix are

A = J⊥{1− S(S + 1)} − µ, (4.5)

ǫk =
2S(S + 1)

3
s̄2(cos(kx) + cos(ky)) (4.6)

Diagonalizing this Hamiltonian matrix by a bosonic Bogoliubov transformation (see Ap-

pendix C.1), we obtain eigenvalues λk =
√

A(A+ 4ǫk) for the energies of the independent

‘triplon’ modes. Each of these modes adds a zero point contribution to the ground state

energy, yielding

E(0)
2

= −J⊥N⊥S(S + 1)s̄2 − µs̄2N⊥ + µN⊥ − 3N⊥A

2
+ 3

∑

k

′

λk. (4.7)

We minimize this ground state energy with respect to µ and s̄, via ∂E(0)
2
/∂µ = 0 and

∂E(0)
2
/∂s̄2 = 0. This yields the two equations

s̄2 =
5

2
− 3

N⊥

∑

k

′A+ 2ǫk
λk

, (4.8)

µ = −J⊥S(S + 1) +
6

N⊥

∑

k

′ Aǫk
s̄2λk

. (4.9)

Using the values of s̄ and µ thus obtained, we may calculate the gap to triplet excitations.

The dimer-Néel transition occurs when the triplon gap vanishes at J⊥ = J⊥c. Using

Eqns. 4.8,4.9 above, we arrive at the following two results at the critical point.

(i) The value s̄ at the dimer-Néel critical point is independent of spin and given by

s̄2c =
5

2
− 3

2N⊥

∑

k

′ 4 + (cos kx + cos ky)
√

4 + 2(cos kx + cos ky)
. (4.10)

A numerical evaluation shows s̄c ≈ 0.904.

(ii) We find the location of the dimer-Néel critical point

J⊥c = S(S + 1)

[

40

3
− 32

N⊥

∑

k

′ 1
√

4 + 2(cos kx + cos ky)

]

. (4.11)

A numerical evaluation yields J⊥c ≈ 3.047S(S + 1). For S = 1/2, this mean field result,

J⊥c[S = 1/2] ≈ 2.286, is slightly smaller than the QMC value[84, 76]. For higher spin,
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Figure 4.4: J⊥c/J1[S] as a function of S(S + 1) for the bilayer square and honeycomb

lattices. QMC data is from the simulations of S. V. Isakov[90]. MFT stands for Mean

Field Theory. Lines are linear fits. Note that the curves cross approximately at S(S+1) =

0.

the mean field estimates, J⊥c[S = 1] ≈ 6.095 and J⊥c[S = 3/2] ≈ 11.428, are significantly

smaller than the corresponding QMC results. This comparison is summarized in Table

4.1. Remarkably, as seen from Fig. 4.4, the scaling result J⊥c ∼ S(S + 1) derived

from mean field theory seems to be reasonably accurate even for the exact QMC results.

However, the associated prefactor differs from the QMC value. As S increases, mean

field theory suffers from a systematic discrepancy. We note that this scaling of J⊥c with

S(S + 1) has been pointed out in Ref.[94] on the basis of a series expansion calculation.

Subsequent sections of this chapter deal with incorporating corrections beyond mean field

theory with a view to bridging this systematic deviation.

4.4.2 Honeycomb lattice bilayer

The honeycomb lattice is composed of two interpenetrating triangular lattices, as shown

in Fig. 4.3. Operators therefore come with an additional sublattice index which distin-
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guishes A and B sublattices. The mean field Hamiltonian is given by

H
(0)
7

= −N⊥J⊥S(S + 1)s̄2 −N⊥µs̄
2 +N⊥µ− 3N⊥C

2
+
∑

k,u

′

ψ†
k,uMkψk,u,

where C = (J⊥{1 − S(S + 1)} − µ). N⊥ denotes the number of interlayer bonds in the

honeycomb bilayer. The operator ψk,u and the Hamiltonian matrix Mk are given by

ψk,u =



















tk,A,u

tk,B,u

t†−k,A,u

t†−k,B,u



















, Mk =



















C βk 0 βk

β∗
k C β∗

k 0

0 βk C βk

β∗
k 0 β∗

k C



















, (4.12)

where βk = 2S(S+1)
3

s̄2γk, with γk = 1+e−ikb+e−ika−ikb, and we have defined ka ≡ k·â and

kb ≡ k · b̂. Diagonalizing this Hamiltonian (see Appendix C.3), we obtain two eigenvalues

for every k. The eigenvalues are given by

λk,1/2 =
√

C2 ∓ 2C|βk|. (4.13)

The mean field ground state energy is given by

E
(0)
7

= −N⊥J⊥S(S + 1)s̄2 −N⊥µs̄
2 +N⊥µ− 3N⊥C

2
+ 3

∑

k

′

(λk,1 + λk,2).

As before, we demand ∂E
(0)
7
/∂µ = 0 and ∂E

(0)
7
/∂s̄2 = 0. This leads to the two mean

field equations

s̄2 =
5

2
− 3

N⊥

∑

k

′

[

C − |βk|
λk,1

+
C + |βk|
λk,2

]

, (4.14)

µ = −2CS(S + 1)

N⊥

∑

k

′ |γk|
[

1

λk,1
− 1

λk,2

]

− J⊥S(S + 1).

Using the values of s̄ and µ thus obtained, we may calculate the gap to triplet excitations.

The dimer-Néel transition occurs when the triplon gap vanishes at J⊥ = J⊥c. Using the

above equations, we arrive at the following two results at the critical point.

(i) The value s̄ at the dimer-Néel critical point is independent of spin and given by

s̄2c =
5

2
+

3

2N⊥

∑

k

′

[

|γk| − 6
√

9− 3|γk|
− |γk|+ 6
√

9 + 3|γk|

]

. (4.15)
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A numerical evaluation shows s̄c ≈ 0.872.

(ii) We find the location of the dimer-Néel critical point

J⊥c

S(S + 1)
=10− 36

N⊥

∑

k

′

[

1
√

9−3|γk|
+

1
√

9+3|γk|

]

. (4.16)

A numerical evaluation yields J⊥c ≈ 1.748S(S + 1). For S = 1/2, the mean field result,

J⊥c[S = 1/2] ≈ 1.311, is somewhat smaller than the QMC value. For higher spin,

the mean field critical points, J⊥c[S = 1] ≈ 3.496 and J⊥c[S = 3/2] ≈ 6.555, are

significantly smaller than the corresponding QMC results. This is summarized in Table

4.2. Remarkably, as shown in Fig. 4.4, the scaling result J⊥c ∼ S(S+1) from mean field

theory appears to be valid even for the exact QMC results on the honeycomb lattice.

However, the associated prefactor is different, which leads to a systematic discrepancy

increasing with S.

4.5 Beyond mean field theory: Variational analysis

Corrections to the mean field Hamiltonian arise from triplet-triplet interactions, coupling

to higher spin objects such as quintets, heptets, etc. As a function of S, we find two

regimes where different correction terms dominate. For S=1/2, the only correction stems

from triplet-triplet interactions, while for higher spin, the dominant correction comes

from coupling to quintet states. These two cases are separately discussed in the following

two sections.

As a function of S, we identify the leading correction and take it into account using a

variational approach. Our variational ansatz assumes that the correction terms preserve

the structure of the mean field Hamiltonian - their only effect is to renormalize the param-

eters s̄ and µ. With the leading correction, the Hamiltonian for the square/honeycomb

lattice takes the form

H2/7 = H
(0)
2/7(s̄, µ) + ∆H2/7(S). (4.17)
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We treat ∆H(S) as a perturbation acting upon H(0). The unperturbed Hamiltonian

depends on the parameters s̄ and µ. As a function of these two parameters, we evaluate

the ground state energy Evar to leading order in perturbation theory.

We choose µ to enforce single boson occupancy per site on overage. The perturbations

∆H , for both regimes, preserve total boson number. Thus, it suffices to evaluate total

boson number using H(0). This gives us the constraint

s̄2 +
∑

i,m

〈t†i,mti,m〉 = N⊥, (4.18)

where the expectation value is evaluated with respect to H(0). (For the honeycomb

lattice case, there is an additional sum over the sublattice degree of freedom in the above

equation). This leads precisely to the mean field number constraint in Eq. 4.8 or Eq. 4.14,

which can now be used to determine µ. The parameter s̄ is chosen to minimize the ground

state energy, evaluated to leading order in perturbation theory. For S = 1/2, we find

that the leading correction is obtained within first order perturbation theory in ∆H . For

S > 1/2, the dominant perturbing terms require us to go to second order in perturbation

theory. In the next two sections, we discuss these correction terms in detail.

4.6 S = 1/2 case

4.6.1 Triplet interactions on square lattice

For S = 1/2, there are no higher spin bosons beyond the singlet-triplet sector. The

only correction to mean field theory stems from triplet-triplet interactions. The triplet

interaction terms are given by

∆H
S=1/2
2 =−1

2

∑

〈ij〉

∑

u, v, w, v′, w′

∈ {x, y, z}

ǫuvwt
†
i,vti,wǫuv′w′t†j,v′tj,w′. (4.19)
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We note that there are no cubic terms in triplet operators. As described in Ref. [95],

this makes our bilayer problem qualitatively different from other dimerized states such

as the spin-1/2 staggered dimer on the square lattice. Treating this quartic interaction

as a perturbation acting on H
(0)
2 , we evaluate the first order correction to ground state

energy. To this end, we decouple ∆H trip.int.
2 using bilinears that possess finite expectation

values at the level of mean field theory:

〈t†i,vti+δ,w〉 ≡ δv,wρ,

〈t†i,vt†i+δ,w〉 ≡ δv,w∆. (4.20)

Here, i and i+ δ are nearest neighbours on the square lattice. Explicit expressions for ρ

and ∆ are given in Appendix C.2. We note that ρ and ∆ are functions of the variational

parameters s̄ and µ. The first order energy correction due to triplet interactions is given

by

∆E
S=1/2
2 = 〈∆HS=1/2

2 〉 = 6N⊥

[

ρ2 −∆2
]

. (4.21)

Thus, for S = 1/2, the energy of the ground state to leading order in perturbation theory

is given by

E
(S=1/2)
2,var (s̄, µ) = E

(0)
2 +∆E

S=1/2
2 , (4.22)

where E
(0)
2 is as defined in Eq. 4.7. The parameter s̄ is chosen to minimize this energy.

4.6.2 Triplet interactions on the honeycomb lattice

The interaction between triplets on the honeycomb lattice is given by

∆H
S=1/2
7

=−1

2

∑

i,δ

∑

u, v, w, v′, w′

∈ {x, y, z}

ǫuvwt
†
i,A,vti,A,wǫuv′w′t†i+δ,B,v′ti+δ,B,w′.
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The operators δ are such that the sites (i, A) and (i+ δ, B) are nearest neighbours. This

interaction term contributes to the ground state energy at first order in perturbation

theory. To evaluate this correction, we quadratically decompose the interaction using

the following two bilinears:

〈t†i,A,vti+δ,B,w〉 ≡ δv,wρ,

〈t†i,A,vt
†
i+δ,B,w〉 ≡ δv,w∆, (4.23)

with the expectation values to be evaluated in the unperturbed Hamiltonian H
(0)
7

. The

first order correction to ground state energy is given by

∆ES=1/2 =
9

2
N⊥[ρ

2 −∆2]. (4.24)

The parameter s̄ is chosen to minimize the energy

E
S=1/2
7,var (s̄, µ) = E

(0)
7

+∆E
S=1/2
7

. (4.25)

4.7 S > 1/2 case

For S > 1/2, the bond operator representation involves higher spin objects. We expect

the leading corrections to mean field theory to arise from coupling to quintet states, as

we argue below. Upon including quintet terms, the spin operators at a site i are given

by (see Eq. 21 of Ref. [89])

S+
i,ℓ=1,2 = (−1)ℓ

√

2S(S + 1)

3
s̄{ti,−1 − t†i,1}

+ (−1)ℓ
√

(2S − 1)(2S + 3)

5

[

{t†i,−1qi,−2 − q†i,2ti,1}

+
1√
2
{t†i,0qi,−1 − q†i,1ti,0}+

1√
6
{t†i,1qi,0 − q†i,0ti,−1}

]

+
1√
2
{t†i,1ti,0 + t†i,0ti,−1}+

√

3

2
{q†i,1qi,0 + q†i,0qi,−1}+ q†i,2qi,1 + q†i,−1qi,−2,
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Sz
i,ℓ=1,2 = (−1)ℓ

√

S(S + 1)

3
{ti,0 + t†i,0}

+ (−1)ℓ
√

(2S − 1)(2S + 3)

5

[

1√
3
{t†i,0qi,0+q†i,0ti,0}

+
1

2
{t†i,1qi,1 + q†i,1ti,1 + t†i,−1qi,−1 + q†i,−1ti,−1}

]

+
1

2
{t†i,1ti,1 − t†i,−1ti,−1 + q†i,1qi,1 − q†i,−1qi,−1}+ q†i,2qi,2 − q†i,−2qi,−2.

We rewrite the Hamiltonian of Eq. 4.1 using these spin expressions. The correction terms

beyond mean field theory that involve quintet states may be grouped as

∆HS>1/2 ∼D̂tttt+s̄Êttq(S
2)+F̂ttqq(S

2)+Ĝqqqq(S
0). (4.26)

The subscripts indicate the composition of the terms in terms of bond operators. The

scaling of each term with S is indicated in parentheses . For example, Êttq(S
2) is composed

of terms which involve two triplet operators and one quintet operator. The coefficients

of these terms scale as S2.

For large values of S, the dominant correction will arise from terms which scale as

S2. As quintets are high-energy excitations, we only retain the lowest order terms which

are linear in quintet operators given by s̄Êttq. (For the case of S = 1, we have checked

that this term dominates over triplet-triplet interactions encoded by D̂tttt). In the neigh-

bourhood of the dimer-Néel transition, we assert that R̂ttq(S
2) will remain the dominant

correction term for any S > 1/2 even if higher spin states such as heptets, nonets, etc.,

are included. As the dimer-Néel transition occurs via condensation of triplet excitations,

it is reasonable that the dominant corrections come from quintets which are immediately

higher in energy than triplets. Heptets, nonets, etc. occur at much higher energies and

are unlikely to affect the triplet condensation point. To argue this, we first note that

the Hamiltonian of Eq.4.1 can change the spin of a bond by ±1 at most (this can be

seen from the rotation properties of a single spin operator acting on a bond eigenstate).

For example, on any one particular bond, the Hamiltonian connects a triplet state to
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singlet, triplet and quintet states. The matrix element connecting the triplet to a nonet

state (or a state of even higher spin) is zero. Similarly, on a given bond, the heptet state

has non-zero matrix elements only with quintet, heptet and nonet states. The resulting

terms in the Hamiltonian involving heptets, nonets, etc. will not contribute at second

order in perturbation theory, but will only appear at higher order. As an illustration,

upon including heptets, the Hamiltonian can have a term of the form h†i,mqi,nt
†
j,m′tj,n′.

Clearly, this term does not contribute to ground state energy at first or second order. In

addition, at whichever order it contributes, the energy denominators will involve large

heptet excitation energies which will further suppress the energy contribution.

In summary, in the vicinity of the dimer-Néel transition for any value of S > 1/2, the

leading correction to bond operator mean field theory comes from s̄R̂ttq(S
2). We write

∆H(S>1/2) ≈ ∆H(q) ≡ s̄R̂ttq(S
2). (4.27)

For the square/honeycomb lattice, we obtain

∆H
S>1/2
2/7 ≈ s̄Êttq(S

2). (4.28)

In order to treat this term perturbatively, we take the quintet states to be local excita-

tions. The energy cost of creating a quintet is given by Eq. 4.3. We measure this energy

cost from the Lagrange multiplier µ, to get

εq − µ = J⊥{3− S(S + 1)− µ} (4.29)

as the energy cost of a quintet excitation.

4.7.1 Coupling to quintets on the square lattice

The terms in s̄Êttq(S
2) may be organized as

s̄Êttq(S
2) = s̄

∑

i

∑

n=−2,··· ,2

[

q†i,n
∑

δ

T̂
[n]
i,i+δ + h.c.

]

. (4.30)
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The operator T̂
[n]
i,i+δ is composed of triplet bilinears. The index δ sums over the four

nearest neighbour vectors on the square lattice. The explicit form of these operators is

given in Appendix C.2. The operator Êttq(S
2) does not contribute to ground state energy

at first order, as it is linear in quintet operators. The energy correction, at second order,

is given by

∆E
S>1/2
2 = s̄2

∑

σ 6=0

∑

i, n, δ

i′, n′, δ′

〈0|qi′,n′(T̂
[n]
i′,i′+δ′)

†|σ〉〈σ|q†i,nT̂
[n]
i,i+δ|0〉

E0 − Eσ
. (4.31)

The index σ sums over all excited states of H
(0)
2 , the variational Hamiltonian. The only

intermediate states that contribute are those with a single quintet. In our variational

formalism, we take the quintets to be local excitations. This constrains us to (i = i′),

(n = n′). This leaves us with

∆E
S>1/2
2 = s̄2

∑

ν 6=0

∑

i,n

〈0|
∑

δ′(T̂
[n]
i,i+δ′)

†|ν〉〈ν|
∑

δ T̂
[n]
i,i+δ|0〉

E0 − Eν
. (4.32)

The intermediate states |ν〉 which contribute involve a single quintet excitation. Within

the triplet sector, at zero temperature, the intermediate states can have either (a) no

triplon quasiparticles, or (b) two triplon quasiparticles. The contribution from states

with no triplon quasiparticles vanishes due to global spin-rotational symmetry of the

Hamiltonian. The energy correction from two triplon intermediate states is evaluated

(see Appendix C.2), to obtain the energy correction, ∆E
[S>1/2]
2 .

Being second order in Êttq(S
2), the energy correction from quintet coupling näıvely

scales as S4. However, the energy denominator involves the energy of quintet states

which is proportional to J⊥. Close to the dimer-Néel transition, at mean field level, J⊥

approximately scales as S2 (see Eq. 4.11). We expect small perturbative corrections to

preserve this scaling of J⊥c with S
2. Thus, near the dimer-Néel transition, ∆E

S>1/2
2 scales

as S4/S2 ∼ S2. The ground state energy to leading order in perturbation theory is given
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S QMC MFT MFT + triplet interactions MFT + quintet coupling

0.5 2.5220(1) 2.286 2.52 -

1 7.150(2) 6.095 6.40 7.13

1.5 13.634(3) 11.428 11.74 13.75

Table 4.1: Value of J⊥c on the square lattice from different methods for different values of

S. The column QMC gives results of QMC simulations performed by S. V. Isakov[90]. The

QMC data for S=1/2 has been reported earlier in Ref. [76]. MFT stands for Mean Field

Theory. The column ‘MFT+Triplet interactions’ gives variational results appropriate for

S=1/2. The column ‘MFT+quintet coupling’ gives variational results appropriate for

S > 1/2.

by

E
S>1/2
2,var (s̄, µ) = E

[2]
2 +∆E

S>1/2
2 . (4.33)

This energy is a function of s̄ and µ. As discussed earlier, µ is tuned to enforce single

boson occupancy per site, while s̄ is chosen to minimize Evar.

Having determined s̄ and µ variationally, we can find the gap to triplon excitations as

a function of J⊥. The Dimer-Néel transition is indicated by the vanishing of the triplon

gap in the variationally obtained state. As summarized in Table 4.1, the renormalized

critical points obtained in this manner are within 1% of the QMC results. This precise

quantitative agreement is perhaps fortuitous, and will certainly change depending on the

nature of the approximations made. The important problem we have resolved is to show

that the large discrepancy between QMC and simple bond operator mean field theory

for S > 1/2 can be accounted for by virtual quintet excitations. Also, this high degree of

quantitative agreement indicates that the neglected correction terms compete with each

other to yield a small net correction. Precisely how this happens is not clear, and could

be explored in future studies.
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4.7.2 Coupling to quintets on the honeycomb lattice

On the honeycomb lattice, the terms in s̄Êttq(S
2) may be written as

s̄Êttq = s̄
∑

i

∑

n=−2,··· ,2

[

q†i,A,n

∑

δ

Â
[n]
i,i+δ + q†i,B,n

∑

δ

B̂
[n]
i,i−δ + h.c.

]

. (4.34)

The operators Âi,i+δ and B̂i,i−δ are triplet bilinears centred on nearest neighbour bonds.

We give their explicit forms in momentum space in Appendix C.4. The terms in Êttq(S
2)

contribute to ground state energy only at second order in perturbation theory. The

energy correction may be written as

∆E
S>1/2
7

= s̄2
∑

σ 6=0

∑

i,n

〈0|
[

qi,A,n

∑

δ′ Â
[n]
i,i+δ′

]

|σ〉〈σ|
[

q†i,A,n

∑

δ Â
[n]
i,i+δ

]

|0〉
{E0 −Eσ}

+ (A→ B), (4.35)

where the index σ sums over all excited states of Hvar. As the terms in Êttq(S
2) involve

one quintet operator, only intermediate states with a single occupied quintet state will

contribute.

∆E
S>1/2
7

= s̄2
∑

ν 6=0

∑

i,n

〈0|
∑

δ′(Â
[n]
i,i+δ′)

†|ν〉〈ν|
∑

δ Â
[n]
i,i+δ|0〉

{E0 − Eν}

+s̄2
∑

ν 6=0

∑

i,n

〈0|
∑

δ′(B̂
[n]
i,i−δ′)

†|ν〉〈ν|
∑

δ B̂
[n]
i,i−δ|0〉

{E0 − Eν}
. (4.36)

We evaluate these overlaps in momentum space, as described in Appendix C.4. The

intermediate state |ν〉 could have either (i) no triplon quasiparticles, or (ii) two triplon

quasiparticles. However, the contribution from states with no triplons vanishes due

to global spin rotational symmetry. The explicit expression for ∆E
S>1/2
7

is given in

Appendix C.4.

Thus, the energy of the ground state to leading order in quintet coupling, is given by

E
S>1/2
7,var = E

(0)
7

+∆E
S>1/2
7

. (4.37)

We choose s̄ to minimize this energy. The vanishing of the triplet gap in the variationally

determined state signals the dimer-Néel transition. Our results for J⊥c on the honeycomb
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S QMC MFT MFT + triplet interactions MFT + quintet coupling

0.5 1.645(1) 1.311 1.59 -

1 4.785(1) 3.496 3.80 4.91

1.5 9.194(3) 6.555 6.86 9.79

Table 4.2: Value of J⊥c on the honeycomb lattice from different methods for different

values of S. The column QMC gives results of QMC simulations performed by S. V.

Isakov[90]. MFT stands for Mean Field Theory.

lattice are shown in Table 4.2. While the renormalized critical points for S = 1, 3/2 are

within 6% of the QMC value, the agreement in this case is not as good as on the square

lattice.

4.8 Discussion

We have studied the Néel to dimer transition in Heisenberg antiferromagnets on bilayer

square and honeycomb lattices for different spin values using the bond operator method.

Going beyond bond operator mean field theory, we find two regimes in which different

correction terms dominate. We take these corrections into account corrections using a

variational approach. Our results agree well with QMC simulations, giving us confidence

in our method. The critical bilayer exchange J⊥c scales as S(S + 1) within, both, bond

operator mean field theory and QMC simulations. However, there is a systematic devia-

tion between bond operator mean field theory and QMC, with the deviation itself scaling

as ∼ S2. Our variational extension of bond operator theory successfully captures this

systematic deviation and gives a more precise estimate of J⊥c.

Bi3Mn4O12(NO3) provides an example of a bilayer honeycomb antiferromagnet[61]

with S = 3/2, where strong interlayer exchange couplings ∼ 2J1 have been inferred from

electronic structure calculations[63]. Despite this strong bilayer coupling, our study in-
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dicates that this material would be deep in the Néel ordered phase if there are no other

frustrating interactions. We thus rule out large bilayer coupling as the cause of the ob-

served lack of magnetic order in Bi3Mn4O12(NO3). One recent example of a dimer system

with S = 1 is the triangular dimer material[88, 96] Ba3Mn2O8. Our approach could be

applied to understand the triplon spectrum and the effect of quintet corrections in this

material. In particular, our work shows that extracting exchange couplings from fitting

experimental data to bond operator mean field theory will not yield precise estimates

when S > 1/2. Our work provides a starting point to think about the physics of high

spin Heisenberg antiferromagnets in a variety of model systems and materials.



Chapter 5

Lattice nematic phases on the

honeycomb lattice

We begin this chapter with a brief introduction to the intermediate-U physics of the

honeycomb lattice Hubbard model. This provides another motivation for the study of

frustration on the honeycomb lattice.

5.1 Intermediate-U phase of the honeycomb lattice

Hubbard model

A parallel motivation for the study of frustrated magnets is their utility as model systems

for the physics of strongly correlated electrons. In the limit of strong coupling, Hubbard-

like electronic models can be mapped onto appropriate pseudospin models which may

be frustrated. This confluence of magnetism and strongly correlated electron systems

is seen in the recently discovered spin-gapped phase in the honeycomb lattice Hubbard

model. At weak coupling, electrons on the honeycomb lattice have low density of states

at the Fermi level; consequently, the system remains a ‘semi-metal’ with point-like Fermi

surfaces. At strong coupling, the Hubbard repulsion leads to Mott insulating phase

78
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with antiferromagnetic order driven by superexchange. In the intermediate regime(3.5 .

U/t . 4.3), determinantal Monte-carlo simulations by Meng et al.[97] have revealed a

spin-gapped insulating phase which interpolates between the semimetal and the Mott

insulator. The nature of this intervening state has been debated with great interest.

At half-filling, in the limit of large U/t, the low energy description is restricted to

the subspace of singly occuppied sites. An effective description can be given in terms

of a spin-1/2 Heisenberg model of localized spins[98, 99]. Superexchange between near-

est neighbour sites leads to antiferromagnetic J1 coupling. Exchange interactions with

further neighbours are suppressed by factors of t/U . On the honeycomb lattice which

is bipartite, the resulting ground state is a Néel antiferromagnet. As U/t is decreased,

however, longer range exchange interactions become important. Approaching the inter-

mediate U/t regime from the strong-coupling side, the leading correction is expected to

next-nearest neighbour exchange. This gives rise to the effective Hamiltonian,

H = J1
∑

〈ij〉

Si · Sj + J2
∑

〈〈ij〉〉

Si · Sj . (5.1)

where J1 and J2 denote nearest neighbour exchange and next-nearest neighbour exchange

respectively. In terms of the Hubbard model parameters, the exchange constants[100] are

given by

J1 =
4t2

U
− 16t4

U3
; J2 =

4t4

U3
. (5.2)

This J2 coupling is a frustrating term which disfavours Néel order. The degree of frus-

tration is tuned by the frustration paramter J2/J1. The spin-gapped phase of the Hub-

bard model is expected to be realized for intermediate values of frustration, around

J2/J1 & 0.07.

Various techniques have been used to study this J1 − J2 model with a view to under-

standing the spin-gapped phase of the honeycomb lattice Hubbard model. The J1 − J2

model is not amenable to Quantum Monte Carlo simulations due to frustration-induced

sign problems. This makes it a difficult proposition to determine its ground state for
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Figure 5.1: Monte Carlo study of the honeycomb lattice Hubbard model from Ref.[97]:

plots of ∆s (spin gap), ∆sp (single particle gap) and ms (magnetization) as functions of

U/t. Density is fixed at half-filling. A spin-gapped phase occurs between the semimetal

and antiferromagnetic Mott insulating phases. Reprinted by permission from Macmillan

Publishers Ltd: Nature 464, 847 c©2011.

intermediate values of the frustration parameter J2/J1. Two proposals have been put

forward: a Z2 spin liquid and a plaquette RVB state.

Initially, it was suggested that the spin-gapped phase is a spin-liquid that does not

break any symmetries[97]. Projective symmetry group analysis has been used to identify

the number of distinct spin liquid states[101, 102]. A ‘zero-flux state’[101] was pro-

posed on the basis of a Schwinger-boson analysis and a ‘sublattice pairing state’[102]

was suggested using a slave-fermion approach. These two descriptions were shown to

be equivalent[102]. A variational Monte Carlo calculation[100] analysed various possi-

ble spin-liquid candidates and concluded that the sublattice pairing state has the lowest

energy for 0.08 < J2/J1 < 0.3.

Another candidate for the spin-gapped state of the Hubbard model is the ‘plaquette

RVB’ state shown in Fig. 1.3(c). Exact diagonalization studies[36, 34] on the J1 − J2

model have found this to be the ground state for 0.16 . J2/J1 . 0.4. This state breaks

http://www.nature.com
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translational symmetry, and is therefore not a spin liquid. As the Z2 spin liquid and the

plaquette RVB state have been suggested by two different approaches, the nature of the

spin-gapped state has not yet been established. Precise calculations using an unbiased

approach may help resolve the true ground state.

In this chapter, we study the honeycomb lattice J1 − J2 model in various limits.

We are inspired by experiments on Bi3Mn4O12(NO3)and by the intermediate-U physics

of the honeycomb lattice Hubbard model. For the case of spin-1/2, we postulate a

‘Nematic Valence Bond Solid’ (NVBS) ground state for large values of the frustration

parameter. Various studies of the J1 − J2 model which were inspired by the honeycomb

lattice Hubbard model, have confirmed the occurrence of an NVBS ground state for

J2/J1 & 0.4[36, 34, 100]. In Chapter 6, we predict within a quantum melting picture

that the spin-gapped phase will develop Néel order in an applied magnetic field.

We hope that calculations of the J1−J2 model will soon clarify the spin-gapped state of

the Hubbard model. Conversely, the honeycomb lattice Hubbard model provides a simple

system that can be analyzed numerically using determinental Monte Carlo techniques.

Further numerical studies of the Hubbard model may help us understand the physics of

frustrated magnetism on the honeycomb lattice.

5.2 Lattice nematics and the honeycomb lattice J1−

J2 model: Introduction

Bipartite lattices, such as cubic and honeycomb lattices, do not possess geometric frustra-

tion. They are composed of two sublattices; each site interacts with its nearest neighbours

which belong to the other sublattice. With antiferromagnetic interactions, such systems

invariably exhibit Néel ground states with opposite spins residing on the two sublattices.

However, large additional interactions can break the bipartite nature of the Hamiltonian

by favouring anti-alignment of spins within the same sublattice. If Néel order is thus
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disfavoured, various states compete to be the true ground state and in the process, novel

phases can emerge.

This effect is particularly well-studied in the case of the square lattice. Both next-

nearest neighbour(J2) exchange and third-nearest neighbour(J3) interactions can frus-

trate Néel order. Both these interactions lead to novel states which break Ising-like

symmetries. In the classical limit of the square lattice J1-J2 model[33, 103], the ground

state remains Néel ordered for J2 < J1/2. However, when J2 exceeds J1/2 there is

a large set of degenerate ground states in which the two sublattices are individually

perfectly Néel ordered with an arbitrary relative angle between their ordering vectors.

Within this classical manifold, quantum O(1/S) fluctuations and weak thermal fluctua-

tions select collinear ground states with ordering wavevectors Q = (π, 0) or (0, π). Being

two-dimensional, this model exhibits exponentially decaying spin correlations at any non-

zero temperature consistent with the Mermin-Wagner theorem, but the broken lattice

rotational symmetry survives at low temperatures. Upon further heating, this ‘lattice

nematic’ undergoes a phase transition into the high temperature paramagnetic phase via

an Ising transition[33, 104]. For the extreme quantum case of S = 1/2, despite a large

number of numerical studies[105, 106, 107], the ground state phase diagram has not been

fully understood.

Nematic order arising from fluctuations has also been explored in the J1-J3 model on

the square lattice[108]. In this case, there is a Néel-spiral Lifshitz transition for J3 > J1/4.

The classical ground state manifold is doubly degenerate, composed of two spirals with

wavevectors (Q,Q) and (Q,−Q) which are related by a π/2 rotation of the lattice. At any

non-zero temperature, the magnetic spiral ordering is lost. However, the Ising nematic

order remains up until a nematic-paramagnetic transition temperature.

In analogy with the square lattice models, we study non-geometric frustration on

the honeycomb lattice in its simplest realization - the Heisenberg model with frustration
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Figure 5.2: Left: The honeycomb lattice made of two interpenetrating sublattices -

sublattice A(B) is shown in red(blue). Nearest neighbour(J1) and next-nearest neighbour

bonds (J2) are as indicated. The shaded area marks the unit cell, â and b̂ are the primitive

lattice vectors. Right: The first Brillouin zone, with the high-symmetry points labelled.

arising from the next-nearest neighbour (J2) couplings.

H = J1
∑

〈ij〉

Si · Sj + J2
∑

〈〈ij〉〉

Si · Sj . (5.3)

where 〈.〉 and 〈〈.〉〉 denote nearest and next-nearest neighbour bonds respectively. Interest

in this model stems from (a) possible relevance to the frustrated magnet Bi3Mn4O12(NO3)[61],

and (b) relevance to the intermediate coupling physics of the honeycomb lattice Hubbard

model[97, 100, 36, 34]. This model Hamiltonian is not exactly solvable, nor does it lend

itself to quantum Monte Carlo methods on account of frustration-induced sign prob-

lems. In order to make progress, we study this model in various limits. We begin with

a classical analysis of the J1 − J2 model. We then discuss the effects of weak quantum

fluctuations within a large-S expansion. We next consider thermal fluctuations. Finally,

in the extreme quantum case of S = 1/2, we use bond operator theory to study some

aspects of the system. In all three cases, frustration leads to a three-fold degeneracy

associated with the breaking of lattice rotational symmetry .
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5.3 Classical ground state

As a first step, we take the spins to be ‘classical’ - as three-dimensional vectors with

all components commuting with each other. This corresponds to the (S→ ∞) limit of

the quantum spin-S model. We take the ground state to be a coplanar spiral state,

in keeping with the general argument that quantum and thermal fluctuations favour a

coplanar state over a non-coplanar state[109, 110]. By this reasoning, a collinear state

would be even more favoured, but in our case, the collinear Néel state is frustrated by

J2 interactions. We have verified using classical Monte Carlo simulations[66] that the

ground state is indeed coplanar. We note that non-coplanar ground states exist at the

special point J2/J1 = 0.5, at which additional degrees of freedom allow for non-coplanar

ordering[111].

As the Hamiltonian is invariant under global spin rotations, coplanar ordering could

occur in any plane in spin space. The plane of ordering would be spontaneously chosen

by the system, we pick the plane to be the XZ plane (in spin space) below. The spins on

each sublattice may be characterized as

SA(r) = S [cos(Q · r)ẑ + sin(Q · r)x̂] ; SB(r) = −S [cos(Q · r+ φ)ẑ + sin(Q · r+ φ)x̂](5.4)

where Q is the spiral wavevector, r denotes sites of the triangular sublattice, and φ+π is

the angle between A and B spins within a unit cell. This notation is chosen so that the

Néel state corresponds to Q = (0, 0) and φ = 0, with spins aligned along ±ẑ. Evaluating

the Hamiltonian of Eq. 5.3 in the classical spiral state, we find the energy per spin to be

Ecl

N
=−J1S

2

2
[cosφ+cos(φ−Qb)+cos(φ−Qa−Qb)]+J2S

2 [cosQa + cosQb + cos(Qa+Qb)],(5.5)

where â = x̂, and b̂ = −x̂/2 + ŷ
√
3/2, are unit vectors depicted in Fig. 5.2. Minimizing

this classical energy, we find that the minimum energy solution for J2/J1 < 1/6 corre-

sponds to Q∗ = (0, 0), φ = 0. For this range of frustration, the classical ground state

is the Néel state. For J2/J1 > 1/6, the minimum energy solutions correspond to Q∗
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Figure 5.3: Top: Phase diagram of the classical J1 − J2 model. Bottom: The manifold

of classically degenerate spiral wavevectors is drawn for J2/J1 = 0.3 (red, thin solid),

J2/J1 = 0.5 (purple, dash-dotted), and J2/J1 = 0.7 (green, dashed). Black (thick solid)

hexagon is the first Brillouin zone.

satisfying the relation

cosQ∗
a + cosQ∗

b + cos(Q∗
a +Q∗

b) =
1

2

[

(

J1
2J2

)2

− 3

]

, (5.6)

while φ∗ is determined completely by

sinφ∗ = 2
J2
J1

(sinQ∗
b + sin(Q∗

a +Q∗
b)), (5.7)

cosφ∗ = 2
J2
J1

(1 + cosQ∗
b + cos(Q∗

a +Q∗
b)). (5.8)

The spiral wavevector is not uniquely fixed by the above relations. As shown in Fig.

5.3, the set of classically degenerate solutions to Eq. 5.6 (which we label Q∗) forms

a closed contour around Q=(0, 0) for 1/6 < J2/J1 < 1/2. For J2/J1 > 1/2, it forms

a closed contour around (Qa, Qb) ≡ ±(2π/3, 2π/3). In the limit J2/J1→∞, the two

triangular sublattices of the honeycomb lattice approximately decouple. In this limit,



Chapter 5. Lattice nematic phases on the honeycomb lattice 86

we find Q∗ →±(2π/3, 2π/3) which is the ordering wavevector of the 120◦ state on the

triangular lattice. We next discuss how quantum or thermal fluctuations select specific

spin spirals from this manifold of classical ground state spirals.

5.4 Weak quantum fluctuations: spin wave analysis

Using Holstein-Primakoff (HP) spin wave theory, we calculate the leading quantum cor-

rection to the energy of the spiral state defined in Eq. 5.4. We first define new spin

operators S̃ via












S̃x
ν (r)

S̃y
ν (r)

S̃z
ν(r)













=













cos θν(r) 0 − sin θν(r)

0 1 0

sin θν(r) 0 cos θν(r)

























Sx
ν (r)

Sy
ν (r)

Sz
ν(r)













(5.9)

where ν = A,B labels the sublattice, θA(r) =Q·r, and θB(r) =Q·r+φ. This transforms

our spiral state into a ferromagnet with spins pointing along the Z axis. We work in

this new basis with the parameters of the original spiral absorbed into the Hamiltonian.

Reexpressing the Hamiltonian in terms of the new S̃ operators and rewriting these spin

operators in terms of HP bosons, we arrive at the following Hamiltonian which includes

the leading spin wave correction to the classical spiral energy,

Hqu = Ecl + 2S
∑

k>0

[

~bk
†Mk

~bk − 2Ak

]

. (5.10)

Here ~b† =

(

b†A(k) b
†
B(k) bA(−k) bB(−k)

)

,
∑

k>0 indicates that the sum runs over half

the first Brillouin zone (so that k and −k are not both included). The Hamiltonian

matrix Mk takes the form

Mk =



















Ak Bk Ck Dk

B∗
k Ak D∗

k Ck

Ck Dk Ak Bk

D∗
k Ck B∗

k Ak



















, (5.11)
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with Ak-Dk given by

Ak =
J1
2
[cos φ+cos(φ−Qb)+cos(φ−Qa−Qb)]− J2[cosQa + cosQb + cos(Qa +Qb)]

+
J2
2
[(cosQa + 1) cos ka + (cosQb + 1) cos kb + (cos(Qa +Qb) + 1) cos(ka + kb)],

Bk =
J1
4
[(cos φ− 1) + (cos(φ−Qb)− 1)e−ikb + (cos(φ−Qa −Qb)− 1)e−i(ka+kb)],

Ck =
J2
2
[(cos(Qa)− 1) cos(ka) + (cos(Qb)− 1) cos(kb) + (cos(Qa +Qb)− 1) cos(ka + kb)],

Dk =
J1
4
[(cos φ+ 1) + (cos(φ−Qb) + 1)e−ikb + (cos(φ−Qa −Qb) + 1)e−i(ka+kb)].

Diagonalizing this problem via a generalized Bogoliubov transformation, we obtain the

spin wave corrected spiral energy as

Equ = Ecl + 2S
∑

k>0

[λ−(k) + λ+(k)− 2Ak] (5.12)

The eigenvalues λ±(k) are given by

λ±(k) =
√

αk ± βk, (5.13)

where

αk = A2
k − C2

k + |Bk|2 − |Dk|2, (5.14)

βk =
√

4|AkBk−CkDk|2+(DkB
∗
k−BkD

∗
k)

2. (5.15)

The quantum correction Equ is not uniform over the classical ground state manifold.

It breaks the classical degeneracy and selects a subset of the classical manifold as the

quantum ground state, by an ‘order by disorder’ mechanism[112]. Minimizing Equ over

the classical manifold, we find the following results for Q∗∗, the spiral wavevector selected

by quantum fluctuations. The associated φ∗∗ is determined by Eqns. 5.7, 5.8.

For 1/6 < J2/J1 < 1/2: The ground state is a spiral state S1, with

Q∗∗
b = cos−1(

J2
1

16J2
2

− 5

4
),

Q∗∗
a = 0. (5.16)
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Figure 5.4: Order by disorder: For each value of J2/J1 >
1
6
, quantum fluctuations pick six

distinct spirals from the classical ground state manifold. The selected spiral wavevectors

are indicated by purple (solid) dots for J2/J1=0.3, 0.5 and 0.7.

While the above relations specify a single spiral state, there are a total of six symmetry

related spirals, the other five being obtained by 2π/6 rotations of the above Q∗∗. As

J2/J1 is increased from 1/6 to 1/2, the wavevector Q∗∗ moves from the centre of the

Brillouin zone towards an edge centre (see Fig. 5.4).

For 1/2 < J2/J1 <∞: The ground state is a spiral S2, with

Q∗∗
b = π − cos−1(

J1
4J2

+
1

2
),

Q∗∗
a = 2 cos−1(

J1
4J2

+
1

2
). (5.17)

There are six symmetry related S2 spirals, the other five being obtained by 2π/6 rotations

of the above Q∗∗. As J2/J1 is increased beyond 1/2, the wavevector Q∗∗ moves from an

edge centre along the edge towards a corner of the Brillouin zone (see Fig. 5.4).

The spin wave correction to the ground state energy is shown in Fig. 5.5. The sharp

features at J2/J1 ≈ 1/6 and 1/2 indicate transitions from Néel-S1 spiral and S1-S2 spirals
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Néel

S1 spiral

S2 spiral

Figure 5.5: Equ, quantum correction to ground state energy (in units of J1) as a function

of J2/J1. The nature of the ground state changes from Néel to S1 spiral to S2 spiral as

described in the text.

respectively. When J2/J1 →∞, the honeycomb lattice decouples into two independent

triangular lattices; in this limit we find that Q∗
a = Q∗

b = 2π/3, while φ∗ is undetermined

since spins on the two sublattices can be rotated independently.

5.4.1 Rotational symmetry breaking

In both S1 and S2 spirals, the quantum selected ground state appears to be six-fold degen-

erate. The ground state spirals come in three pairs of the form {(Q∗∗, φ∗∗), (−Q∗∗,−φ∗∗)},

where we label spirals by the two parameters Q and φ as defined in Eq. 5.4. However,

within each pair, the spirals (Q∗∗, φ∗∗) and (−Q∗∗,−φ∗∗) are not distinct as they are

related by a global spin rotation. As can be seen from Eq. 5.4, rotating the spins by π

about the Y axis is equivalent to the transformation (Q, φ) → (−Q,−φ).

Thus, after properly accounting for global spin-rotational symmetry, the quantum-

selected ground state is three-fold degenerate with the three ground states related by

2π/3 rotations of the lattice. The system will spontaneously break this three-fold ro-
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(a) (b) (c)

Figure 5.6: Lattice rotational symmetry breaking by quantum fluctuations: This figure

shows the three nearest neighbour bonds of a site on the A-sublattice. (a), (b) and (c)

correspond to the three spiral states selected by quantum fluctuations. Si ·Sj is the same

on two bonds (shown with green solid lines) and different on the third (shown with red

dashed line). Choosing one of (a), (b) and (c) is equivalent to choosing the direction of

the ‘unequal’ bond.

tational symmetry of the honeycomb lattice at zero temperature by picking one of the

three quantum-selected spirals. This three-fold symmetry breaking has a clear physical

signature. A site of the honeycomb lattice has three nearest neighbour bonds, with each

ground state spiral picking out one of these. This can be seen from the dot product Si ·Sj

on the three nearest bonds of a site on sublattice A:

SA(r)·SB(r) = −S2 cosφ (5.18)

SA(r)·SB(r−b̂) = −S2 cos(Qb − φ) (5.19)

SA(r)·SB(r−â−b̂) = −S2 cos(Qa +Qb − φ). (5.20)

In both S1 and S2 spirals, we find that two of these bond objects are equal, while

the third bond is not, as shown in Fig. 5.6. The three-fold degeneracy of the ground

state corresponds to the three ways of choosing this unequal bond direction. We note

that these local correlations of Si · Sj are invariant under lattice translations. Thus,

for J2/J1 > 1/6, quantum fluctuations lead to a spiral ground state that breaks lattice

rotational symmetry. If spiral magnetic order is lost due to long-wavelength fluctuations,

the resulting state is a ‘lattice nematic’. For small values of S, we expect quantum

fluctuations to give rise to a lattice nematic ground state.
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5.4.2 Stability of spiral order

Apart from selecting specific wavevectors, spin wave fluctuations will also renormalize

spiral order, and may even render the spiral states unstable. Within our spin wave

analysis, the leading spin wave correction to the spiral order parameter is given by

S − 1

N/2

∑

r

〈S̃z
ν(r)〉 =

1

N/2

∑

k

〈b†ν(k)bν(k)〉, (5.21)

where N is the total number of sites in the honeycomb lattice. We find that this correction

diverges as log(N) since the spin wave energy vanishes on the entire classical manifold

of degenerate spiral wavevectors. This line zero of the Holstein Primakoff spin waves

(‘Bose surface’) is not protected by any symmetry arguments. We only expect to have

gapless modes at the quantum-selected wavevectors. Spin-wave interactions, which we

have ignored, may therefore gap out the spin waves at all other wavevectors and stabilize

the spiral state for large enough S. For small spin values, however, spin wave fluctuations

may ‘melt’ the spiral order, possibly leading to other competing phases. The resulting

state may retain the Bose surface leading to interesting consequences[113].

5.5 Weak thermal fluctuations

In this section, we consider thermal fluctuations of spins about the classical spiral state.

As our system is two-dimensional, any non-zero temperature will restore spin rotational

symmetry and wipe out spiral order, in accordance with the Mermin-Wagner theorem.

However, if the zero-temperature ground state breaks a discrete symmetry in addition

to spiral order, there could still be a finite-temperature phase transition associated with

discrete symmetry-breaking. Such phase transitions are known to occur on the square

lattice J1−J2[33] and J1−J3[108] model. In both these cases, the ground state is a spiral

which also breaks an Ising symmetry thereby leading to a finite temperature Ising-like

phase transition. These Ising-like phase transitions may be understood as follows. At
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finite temperature, the system traverses through state space as a function of time. The

softer the fluctuations about a particular state, the system will spend more time in its

vicinity[114]. If there are two such states α and β which allow for the greatest entropy,

the system will remain in the vicinity of one of them, say α. The soft fluctuations about

α may wash out any magnetic order that existed at zero temperature. Yet, at finite

temperature, there is a residual tendency to stay in the vicinity of α rather than β.

Above the phase transition temperature, this preference for one of the states vanishes.

In the honeycomb lattice case, the spiral ground state breaks three-fold lattice ro-

tational symmetry and will similarly have a finite-temperature phase transition. We

consider the low-temperature limit in which deviations from the classical ground state

are small. Within the canonical ensemble picture, we evaluate the free energy of fluctu-

ations about each classical ground state. The state(s) with minimum free energy allow

for the highest entropy gain.

Assuming the system is in one of classical ground states, the spin at a site will point in

the direction given by the spiral order, which we call this the local Z̃ axis. Upon including

thermal fluctuations, there are two degrees of freedom for the spin vector corresponding

to θ and φ directions (in standard spherical co-ordinates). The partition function of the

system is given by

Z =
∑

config.

exp [−βEconfig.] =

∫

D{θi}D{φi}exp
[

−βE{θi},{φi}

]

. (5.22)

We denote a fluctuation configuration as {θ1, φ1, θ2, φ2, . . . , θN , φN}, where θi, φi are the

displacement angles at site i. We denote the energy of this configuration by E{θi},{φi}. In

the low temperature limit, only configurations with small energy cost will contribute. As

θi and φi are small, we take our E{θi},{φi} to be a quadratic function of the displacement

angles (there are no linear terms as we are in a classical equilibrium state). To compute

the free energy, we go to a basis in which E{θi},{φi} is diagonal.

Z =

∫

D{xj}exp [−β (xjλjxj)] . (5.23)
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where xj ’s are the co-ordinates in the new basis and λj are the corresponding eigenen-

ergies. As only small fluctuations contribute, we approximate the limits of xj to be

(−∞,∞). This allows us to evaluate this free energy using Gaussian integrals,

Z ≈
∏

j

√

β

λj
, (5.24)

ignoring multiplicative constants. The free energy is given by

F = − 1

β
lnZ ≈

∑

j

ln(λj). (5.25)

The eigenenergies λj are simply the spin wave energies evaluated in large-S quantum case

in Eq. 5.13. The generalized co-ordinates xj are spin wave amplitudes. The Holstein-

Primakoff approach further quantizes these fluctuations, but here we only require the

eigenenergies. The free energy selects six spiral wavevectors from the classical manifold

as follows:

For 1/6 < J2/J1 . 0.237: The thermally selected wavevector Qth lies on the line join-

ing the Γ point to a K point (Brillouin zone centre to the Brillouin zone corner).

For 0.237 . J2/J1 . 0.549:Qth coincides withQ∗∗ obtained in the case zero-temperature

weak-quantum fluctuations (large-S Holstein Primako result).

For J2/J1 & 0.549: Qth again lies on the line joining the Γ point to a K point. In the

limit of very large J2/J1, Q
th approaches the K point.

Irrespective of the location of Qth, thermal fluctuations select six symmetry related

wavevectors. All the arguments of Sec. 5.4.1 also hold here. Accounting for global spin

rotation symmetry, there are three distinct spiral states with minimum free energy. The

object Si · Sj is equal along two nearest neighbour bonds but not on the third. The

three chosen spirals correspond to the three choices for the unique bond. Thus, as long

as J2/J1 > 1/6, the thermal state breaks lattice rotational symmetry which is a discrete

symmetry in the same universality class as the 3-state Potts model[115]. Thus, we expect

the classical honeycomb J1−J2 model to exhibit a thermal phase transition in the 3-state
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Potts model universality class. This has been confirmed by a Landau theory analysis and

classical Monte Carlo simulations done by A. Paramekanti[66].

5.6 Extreme quantum case: Nematic VBS

For large values of J2/J1, we have seen that the ground state of the classical model is

highly degenerate. Weak quantum and thermal fluctuations break this degeneracy in

such a way as to break the lattice rotational symmetry of the honeycomb lattice. In

this section, we demonstrate that strong quantum fluctuations may also result in lattice

nematic order. For the case of spin-1/2 where quantum fluctuations are largest, we pro-

pose a ‘Nematic Valence Bond Solid’ (NVBS) ground state which is the natural analogue

of the large-S lattice nematic state. This state consists of singlet dimers arranged on

the honeycomb lattice as shown in Fig. 5.7(a). There are three possible arrangements

related by a 2π/3 rotation of the lattice, depicted in Fig. 5.7(a-c). The NVBS state has

been discussed earlier on the basis of an exact diagonalization study[111] in the vicinity

of J2 = 0.4J1.

An alternate way to understand this NVBS state is to think of it as arising from

coupling together frustrated spin S = 1/2 J1-J2 chains, as shown in Fig. 5.7(d). If

we imagine the interchain couplings being tuned to zero, this would lead to decoupled

Majumdar-Ghosh chains[116], which are known to possess dimer order with a spin gap. In

particular, the dimerized state is the exact ground state of the single chain at J2 = 0.5J1.

The NVBS arises from incorporating interchain couplings while leaving the singlet gap

intact. The choice of the direction along which these chains run is arbitrary, so that

there are three degenerate ground states that break lattice rotational symmetry. This

state has been discussed earlier as the exact ground state of a Heisenberg model with

multispin interactions[117].

With singlet dimers arranged on the the indicated bonds, the lowest energy excitations
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(a) (b)

(c)

(d)

Figure 5.7: ‘Nematic Valence Bond Solid’ (NVBS) - the double bonds represent singlet

correlations. This state preserves spin rotational and translation symmetries. Along

single bonds, spins are uncorrelated. (a), (b) and (c) are three degenerate states related

by 2π/3 lattice rotations. (d) shows the NVBS state as being composed of Majumdar-

Ghosh chains, coupled by the dashed bonds.

correspond to breaking the singlets to form triplets. The triplets can then disperse

forming a ‘triplon’ band. The energetics and stability of such a dimer state with triplon

excitations is naturally studied using the bond operator formalism proposed in Ref.[91],

as follows. Instead of working in the näıve basis of S = 1/2 operators on every site, we

switch to a basis of singlet and triplet bosonic operators defined as

s†|0〉 =
1√
2
(| ↑↓〉 − | ↓↑〉)

t†x|0〉 =
−1√
2
(| ↑↑〉 − | ↓↓〉); t†y|0〉 =

i√
2
(| ↑↑〉+ | ↓↓〉); t†z|0〉 =

1√
2
(| ↑↓〉+ | ↓↑〉),

on the double (dimer) bonds in Fig. 5.7(a). Equivalently, we could define these operators

on the dimer bonds of Fig. 5.7(b,c). The vacuum |0〉 is not a physical state. It can be

shown that spin commutation relations are preserved when the singlets and triplets are

taken to be obey Bose statistics. To preserve the Hilbert space, we have a local constraint

s†rsr +
∑

α=x,y,z

t†r,αtr,α = 1. (5.26)

We will satisfy this constraint on average, using a Lagrange multiplier µ to tune boson
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occupancy. The original spin operators can be rewritten in terms of these singlet/triplet

operators as

Ŝ{i,ν=A,B,γ=x,y,z} =
(−1)ν

2
(s†i ti,γ + sit

†
i,γ)−

i

2

∑

β,δ=x,y,z

ǫγβδt
†
i,βti,δ, (5.27)

where (−1)ν is −1 when ν = A and +1 when ν = B. ǫγβδ is the Levi-Civita symbol.

The NVBS state is described by the Bose condensation of singlet bosons, allowing us to

replace the operator si with a number s̄ close to unity . Thus, on every dimerized bond,

the probability of finding singlet correlations is s̄2. The probability of having a triplet is

1− s̄2, a small number. The J1 − J2 Hamiltonian can be rewritten using this expression

for the spin operators. The resulting terms can be arranged as

H = s̄2Ltt + s̄Mttt +Ntttt. (5.28)

The terms in Ltt, Mttt and Ntttt are respectively quadratic, cubic and quartic in triplet

operators. As the ground state has a very low density of triplets, terms with larger

number of triplet operators are progressively less important. As a first step, we only keep

the quadratic Ltt terms. This is the conventional bond-operator mean-field approach[91]

which is known to work well in other contexts[84, 76]. The Hamiltonian in momentum

space is given by

H
[2]
BO = C+

∑

k>0

[

t†γ(k) tγ(−k)

]







Gk Fk

F ∗
k Gk













tγ(k)

t†γ(−k)






.

where µ is the Lagrange multiplier introduced to satisfy the constraint in Eq. 5.26. The

terms in the Hamiltonian are given by

Gk =
J1
4

− µ− s̄2

4
J1(ǫk + ǫ−k) +

s̄2

4
J2(ηk + η−k)

Fk = − s̄
2

4
J1(ǫk + ǫ−k) + J2

s̄2

4
(ηk + η−k)

C = −3N

4
J1s̄

2 −Nµs̄2 +Nµ− 3
∑

k>0

Gk, (5.29)
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Figure 5.8: Ground state energy (in units of J1) as a function of J2/J1. The red (solid)

line is the energy of the spiral state including leading order spin wave corrections, the

green (dashed) line is the NVBS energy up to quadratic order in triplon operators, and the

blue (dash-dotted) line indicates NVBS energy up to quartic order in triplon operators

where

ǫk = e−ikb + e−i(kb+ka)

ηk = 2[cos(ka) + cos(kb) + cos(ka + kb)].

Diagonalizing the Hamiltonian by a bosonic Bogoliubov transformation gives the disper-

sion the ‘triplon’ modes:

Ek =
√

G2
k − |Fk|2. (5.30)

The energy of NVBS state obtained from Eq. 5.29 is plotted as the green dashed line in

Fig. 5.8. While this quadratic theory gives a consistent picture of our lattice nematic

state, higher order terms may lower its energy significantly. We take these into account

by means of a self consistent Hartree-Fock approach[91],[118]. This approach has been

shown to work well on the star lattice wherein it gives results that reconcile exact-

diagonalization and Gutzwiller-projected wavefunction studies[119],[120]. The terms in
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d1,∆1

d2,∆2 d2,∆2

Figure 5.9: Quartic bond operator theory: d1,2 and ∆1,2 are Hartree-Fock-Bogoliubov

mean field parameters in the bond operator mean field theory (see text for details).

These operators are defined between bonds as shown.

Mttt, of cubic order, do not contribute in this scheme since we assume that the triplon

operators themselves are not condensed. The quartic part of the Hamiltonian is given by

H
[4]
BO =

−1

2N

∑

k,k′,q

ǫµβγǫµκδ(J1ǫk−k′ + J2ηk−k′)t†β(k+ q)tγ(k
′ − q)t†κ(k

′)tδ(k).

Guided by the symmetry of the NVBS phase, we postulate the following real-space order

parameters:

d1 =
1

3
〈t†r,γtr+δ1,γ〉; d2 =

1

3
〈t†r,γtr+δ2,γ〉 (5.31)

∆1 =
1

3
〈tr,γtr+δ1,γ〉; ∆2 =

1

3
〈tr,γtr+δ2,γ〉 (5.32)

where δ1 = ±â, and δ2 = ±b̂,±(â + b̂). These order parameters are defined on bonds as

shown in Fig. 5.9. They are the only bilinears that couple to s̄2 at quadratic level. We

calculate these order parameters d1, d2, ∆1 and ∆2 self-consistently, and thereby obtain

the energy of the NVBS. This is plotted in Fig. 5.8 as the blue (dot-dashed) line.

Fig. 5.8 compares the energy of the NVBS state with the energy of the spiral state.

The energy of the spiral state in the figure includes spin-wave corrections, setting S = 1/2.

Although spin wave fluctuations are calculated in the large-S limit, the Holstein-Primakoff

approach is known to work reasonably well even for S=1/2[49, 50]. We have ignored
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spin-wave interactions which may somewhat renormalize the energy of the spiral state.

At quadratic level, the NVBS phase is energetically favoured over the spiral in a small

window near J2 ∼ 0.35J1. Upon including quartic corrections, the energy of the NVBS

state is lower than that of the spiral state for J2 & 0.25J1, except for a small window

around J2 = 0.5J1. Since the spiral order is anyway likely to be suppressed by low-lying

spin wave modes, our results suggest NVBS order over a wide window of frustration.

We note that this bond operator formalism does not take into account the fluctuations

of the singlets themselves; the kinetic energy lowering from such resonating singlet valence

bonds might favor plaquette order as indicated by some exact diagonalization studies[36,

34].

5.7 Relation to previous work

Earlier investigations have considered various aspects of the honeycomb lattice J1 − J2

model. The classical phase diagram has been discussed within an extended J1 − J2 − J3

model[121, 111]. Our work has built upon these calculations by systematically including

quantum and thermal fluctuations. A later calculation of thermal fluctuations using

classical Monte Carlo simulations[67] agrees well with our results.

We have shown that in various limits, weak thermal/quantum fluctuations lead to

lattice nematic order, similar to the case of the square lattice J1−J2 and J1−J3 models.

The main differences of our honeycomb lattice problem compared with these cases are:

(i) The classical ground degeneracy in the square J1 − J2 model arises from the

arbitrary relative orientation between Néel vectors of each sublattice. In the square

J1 − J3 model, the classical ground state is only doubly degenerate. In contrast, in the

honeycomb problem, the classical ground state manifold is a one-parameter family of

distinct spirals. As a consequence, the spin wave spectrum is gapless at all classical

ordering wavevectors, leading to a ‘Bose surface’. Although the Bose surface could be
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destroyed by spin-wave interactions, we expect it to be stable atleast at large S. Apart

from making the honeycomb spiral more susceptible to quantum melting, such a Bose

surface is interesting in its own right[113].

(ii) While the square lattice models give rise to Ising symmetry breaking, the honey-

comb model breaks a threefold rotational symmetry and is in the same universality class

as a 3-state Potts model.

(iii) There is no simple S = 1/2 quantum analogue of the nematic states on the square

lattice. On the other hand, the honeycomb nematic smoothly maps onto the Nematic

Valence Bond Solid state in the extreme quantum limit.

In the S = 1/2 case, the honeycomb lattice J1−J2 model has been extensively studied

in the context of the honeycomb lattice Hubbard model. Quantum Monte Carlo studies

have hinted that the Hubbard model at intermediate coupling has a spin-liquid ground

state. Approaching this spin liquid phase from the strong coupling limit, the J1 − J2

model is expected to capture the relevant physics. Exact diagonalization studies[36, 34]

and variational Monte Carlo calculations[100] have confirmed our prediction of an NVBS

ground state for J2/J1 & 0.3. In Chapter 6, we will discuss the implications of our results

in the context of the material Bi3Mn4O12(NO3).



Chapter 6

Field-induced Néel order on the

honeycomb lattice

6.1 Introduction

In the previous two chapters, we have discussed two models of antiferromagnetism on

the honeycomb lattice - next-nearest neighbour exchange and bilayer coupling. Both

models embody competition between Néel and non-Néel phases - next-nearest neighbour

exchange leads to spiral ground states with lattice nematic order, while bilayer coupling

gives rise to an interlayer dimer state that does not break any symmetries. In this

chapter, we examine these models in an applied magnetic field. We show that both these

models, within some parameter range, show field-induced Néel order. Thus, an applied

field provides an additional axis to tune competition between Néel and non-Néel orders.

We place our discussion in the context of experiments on Bi3Mn4O12(NO3)(BMNO).

We point out connections to numerical investigations of the honeycomb lattice Hubbard

model which indicate a possible spin liquid ground state at intermediate interaction

strengths.

The recently synthesized S = 3/2 antiferromagnet BMNO is believed to have a mag-

101
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netically disordered ground state[61, 62, 65](see Chapter 4 for an overview) . At a critical

applied magnetic field, it undergoes a phase transition into Néel order. The experiments

on BMNO raise two questions:

(i) What frustrates Néel order in BMNO?

(ii) How does the applied field induce Néel order?

We begin this chapter by discussing bilayer coupling as a route to suppressing Néel

order. When the bilayer coupling is large enough, an interlayer dimer state arises. Field-

induced Néel order arises due to Bose-condensation of triplon excitations. However,

this scenario is unlikely to be relevant to BMNO as a very large bilayer coupling is

required to stabilize the interlayer dimer state. We then discuss frustration due to next-

nearest neighbour exchange. Within a quantum-melting picture, this scenario can explain

the disordered ground state and field-induced Néel order. We point out connections to

numerical studies of the honeycomb lattice Hubbard model. Finally, we comment on the

role of disorder in BMNO.

6.2 Bilayer coupling

The Mn sites in a unit cell of Bi3Mn4O12(NO3) form an AA stacked bilayer honeycomb

lattice. If the interplane antiferromagnetic exchange Jc is large compared to J1, adjacent

spins on the two layers will dimerize as shown in Fig.6.1, leading to loss of Néel order. We

study this scenario in the simplified J1 − Jc model, ignoring other exchange interactions

in the honeycomb plane. Chapter 4 presents a detailed analysis of this interlayer dimer

state using the bond-operator formalism. In the limit of large Jc/J1, each interlayer

bond becomes independent with the spectrum Ej = −Jc(S(S + 1)− j(j+1)/2), with

j = 0, 1, . . . , 2S denoting the total spin state of the bond. We are primarily interested

in the dimer-Néel transition which is driven by condensation of triplon modes. Keeping

this in mind, we restrict our attention to the low energy Hilbert space spanned by the
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MnO6

Bi

NO3

Figure 6.1: Left: Crystal structure of BMNO, showing bilayer nature. Reprinted with

permission from JACS 131, 8313 c©2009 American Chemical Society. Right: Cartoon

picture of interlayer VBS state (blue ellipsoids indicate bonds with singlet correlations).

singlet(j = 0) and triplet(j = 1) states. This will suffice for our purpose of demonstrating

field-induced Néel order, with higher energy quintet states only renormalizing the location

of the critical transition point.

Within a single bilayer, we denote an interlayer bond as {i, ν}, where i labels the unit

cell of the honeycomb lattice and ν = A,B is the sublattice index. Each bond can be in

a singlet or a triplet state, denoted as

|s〉i,ν, |t0〉i,ν , |t+1〉i,ν, |t−1〉i,ν. (6.1)

We label the triplet states as |tm〉 where m = −1, 0, 1 is the z-component of the spin

angular momentum.

The bond-operator formalism replaces each of these singlet and triplet states with

a boson, with the constraint that the number of bosons on an interlayer bond should

be unity. The interlayer dimer state is described by a uniform Bose-condensate of the

singlet bosons, while excitations about this state correspond to breaking singlets to form
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Figure 6.2: Triplon dispersion along depicted path in the Brillouin zone in the interlayer

dimer state forS = 3/2 and Jc/J1=3.8 (in units where J1=1).

triplets. As the energy cost of making a triplet is ∼ Jc, there is an energy gap to forming

triplets. These triplet bosons disperse over the lattice and form ‘triplon’ bands. At the

level of bond-operator mean-field theory, the dispersion of these triplon excitations is

given by Eq. 4.13 of Chapter 4.

Fig. 6.2 shows the triplon dispersion in the dimer phase, obtained using bond-operator

mean-field theory, for the case of S = 3/2, relevant to BMNO. We ignore triplet-triplet

interactions and quintet corrections - we assume that the location of the minimum in

the triplet bands is not affected by these corrections terms. As can be seen from Fig.

6.2, the lowest triplon excitation occurs at k = 0 (the Γ point). When a magnetic field

Bẑ is applied, the singlet bosons are unaffected. However, the triplets being S = 1

objects, acquire a Zeeman shift in energy given by ∆E = −mB, where m = −1, 0, 1 is

the z-component of spin angular momentum. The triplet state with m = +1 is lowered in

energy. At a critical magnetic field, this triplet mode becomes gapless and also undergoes

Bose-condensation. The resulting state has Néel order, which can be seen as follows.

The m = +1 triplet with wavevector Bose-condenses at the wavevector k = 0, which

corresponds to uniform condensation within a sublattice. From the expressions for the
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eigenvectors(derived in Appendix C.3), we see that the condensing triplet eigenvector

has opposite signs on the two sublattices. The resulting state at bond {i, ν} is a linear

combination of the singlet and the (m = +1) triplet. Up to an overall phase, we may

write

|ψ〉i,ν ≈ |s〉i,ν + (−1)νc0e
iφ|t+1〉i,ν. (6.2)

where (−1)ν is 1 when ν = A and -1 when ν = B. The quantity (−1)νc0e
iφ is the

amplitude of the triplet condensate. The amplitude comes with a factor of (−1)ν since

the condensing eigenvector has opposite signs on the two sublattices. Within the singlet-

triplet sector, the spin operators are given by

S+
i,ℓ = (−1)ℓ

√

2S(S + 1)

3
{s†i ti,−1 − sit

†
i,1}+

1√
2
{t†i,1ti,0 + t†i,0ti,−1},

Sz
i,ℓ = (−1)ℓ

√

S(S + 1)

3
{s†i ti,0 + sit

†
i,0}+

1

2
{t†i,1ti,1 − t†i,−1ti,−1}.

Using this spin-wavefunction on a bond, we evaluate the following expectation values:

〈Sx
1/2〉 ≈ ∓(−1)νc0

√

S(S + 1) cos(φ),

〈Sy
1/2〉 ≈ ∓(−1)νc0

√

S(S + 1) sin(φ),

〈Sz
1/2〉 ≈ c20

2
. (6.3)

We have ignored multiplicative constants. As seen from these expressions, triplon

condensation leads to Néel order within the XY plane along with uniform polarization

along the Z axis. The phase of the triplon condensate φ determines the orientation of

Néel ordering within the plane.

We have shown that the interlayer dimer state undergoes a field-induced Néel transi-

tion. With respect to BMNO, bilayer coupling can therefore account for (i) the absence

of long range order and for field-induced Néel ordering. However, as we show in Chapter

4, we need a large value of bilayer coupling to stabilize the dimer state. Within the

J1 − Jc model, we need Jc/J1 & 9 to reach the dimer state(see Table. 4.2 in Chapter
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4). If we include other exchange interactions in the honeycomb plane, the strength of

bilayer coupling required may somewhat decrease. However, we don’t expect it to change

significantly. In BMNO, density functional calculations[63] estimate Jc/J1 ≈ 2. Even

though this is fairly large, the value is much lower than that required for dimerization.

Thus, we rule out bilayer coupling as the source of frustration in BMNO and discuss

another possibility in the next section.

6.3 Nearest-neighbour exchange

Next nearest neighbour (J2) exchange is the simplest interaction that can frustrate Néel

order in a honeycomb plane. It is also the most plausible source of frustration in BMNO.

Indeed, the J1−J2 model has been discussed as a possible minimal model for BMNO[61,

67]. In this section, we examine whether the J1 − J2 model can explain (i) the absence

of long range order at zero field, and (ii) field-induced Néel ordering.

In an applied magnetic field, we have the J1 − J2 − B model:

H = J1
∑

〈ij〉

Si · Sj + J2
∑

〈〈ij〉〉

Si · Sj − B
∑

i

Sz
i , (6.4)

where 〈.〉 and 〈〈.〉〉 denote nearest and next-nearest neighbour bonds respectively, and B

is a Zeeman field.

The classical analysis (S = ∞) at B = 0 is presented in Chapter 5. For J2/J1 < 1/6,

the classical ground state is Néel ordered. When a magnetic field is applied (along Z axis),

the spins start off in the XY plane and cant along the field direction until they are fully

polarized at B = Bpol. This uniform canting leads to maximum energy lowering from

the Zeeman term. As shown in Fig. 6.3, for B < Bpol, the spin components transverse

to the magnetic field have staggered Néel order.

The canting of spins in an applied magnetic field is easily explained when the field

strength is much lower than the exchange energy scales. To understand the classical

ground state at large field strength, we study the fully polarized phase at large fields.
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B

B=0

Figure 6.3: Canted Néel state: In an applied magnetic field, spins cant uniformly along

the field. The components of the spin perpendicular to the applied field show Néel order.

As the magnetic field is lowered, magnon excitations of the ferromagnet come down in

energy. At B = Bpol, the lowest lying magnon mode condenses leading to Néel or spiral

order. For J2/J1 < 1/6, we have confirmed that the magnon modes condense at the

wavevector corresponding to Néel order. For J2/J1 > 1/6, the condensing wavevectors

correspond to the classical ground state manifold discussed in Chapter 5 for the B = 0

case. Thus, the classical ground state for B < Bpol has canted Néel order for J2/J1 < 1/6

and canted spiral order for J2/J1 > 1/6. The classical phase diagram of the J1 − J2 −B

model is depicted in Fig.6.4.

For J2/J1 > 1/6, the ground state at B=0 is a spiral. As B increases, the spins in the

spiral state cant uniformly along the applied field. In this chapter, we will not discuss

the canted spiral state as it is not relevant to the physics of BMNO for the following

reasons.

(i) The absence of long range order could be due to long wavelength fluctuations

destroying spiral order in part of the spiral region in the classical phase diagram of

Fig.6.4. However, in any part of the canted spiral region, an applied magnetic cannot

give rise to Néel order.

(ii) Chapter 5 establishes that upon including quantum/thermal fluctuations, the spi-

ral state breaks threefold lattice rotational symmetry. While magnetic order may be lost

due to long wavelength fluctuations, there should be a thermal phase transition associ-

ated with rotational symmetry breaking. As no such transition is seen in BMNO[61], it

is unlikely to be described by the J1 − J2 − B model with J2/J1 > 1/6.

The regime J2/J1 < 1/6, corresponding to the classical canted Néel state, could be
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Figure 6.4: Phase diagram of the J1 − J2 − B model on the honeycomb lattice in the

classical limit. CAF stands for ‘Canted Antiferromagnet’. The boundaries of the fully

polarized ferromagnetic phase have been obtained from magnon condensation. Upon

including quantum fluctuations in the canted spiral phase, the ground state is threefold

degenerate and breaks lattice rotational symmetry as described in Chapter 5.

applicable to BMNO. We study quantum fluctuations around the canted Néel state to

see if fluctuations can ‘melt’ magnetic order.

6.3.1 Spin-wave fluctuations

We now work with the assumption that quantum fluctuations ‘melt’ the order Néel in

some part of the classical phase diagram, and we seek to find out if this melted phase

can undergo field-induced Néel order. If we knew the nature of the melted phase, we

could precisely determine the melting boundary in the J1 − J2 − B phase diagram. As

indicated in Fig.6.5, we could determine the in-field behaviour from a simple susceptibility

calculation. However, as we do not know the state that results from quantum melting,

we will use a heuristic criterion to determine the melting line.

In the classical limit, spins in the canted Néel state can be characterized by Sr =

S(∓ cosχ, 0, sinχ) on the two sublattices of the honeycomb plane. We define new spin
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Melted NéelMelted Néel

J2J2

BB

Figure 6.5: Magnetic susceptibility determines the in-field phase boundary: (Left) Phase

boundary when χNéel > χmelted, (Right) Phase boundary when χNéel < χmelted.

operators, denoted by Ti,α, via a sublattice-dependent local spin rotation












T x
i,ν

T y
i,ν

T z
i,ν













=













sinχ 0 −(−1)ν cosχ

0 1 0

(−1)ν cosχ 0 sinχ

























Sx
i,ν

Sy
i,ν

Sz
i,ν













, (6.5)

where ν = A,B, is a sublattice index and i sums over each unit cell. The term (−1)ν is

+1 when ν = A and -1 when ν = B. In the new basis, the ground state is a ferromagnet

with all spins pointing along the local T z axis. To study spin wave fluctuations, we

rewrite the T operators in terms of Holstein-Primakoff bosons as follows:

T z
i,ν=S − b†i,νbi,ν ; T x

i,ν=

√

S

2
(bi,ν + b†i,ν); T y

i,ν=
1

i

√

S

2
(bi,ν − b†i,ν).

The Hamiltonian can be rewritten as H ≈ ECl + Hqu. The classical energy ECl is

proportional to S2, and the leading order quantum correction, Hqu, arising from the

zero-point energy of spin wave modes, is of order S. The classical energy is given by

ECl = NS2

[

−3

2
J1 cos 2χ+

3

2
J2 −

B

S
sinχ

]

. (6.6)

where N is the number of sites in the honeycomb lattice. We take the magnetic field

B to be of order S, so that the Zeeman term −BSz
i is treated on the same level as the

exchange terms JijSi · Sj.

The canting angle χ is set by demanding that terms of order S3/2, which are linear

in the boson operators, should vanish. Equivalently, demanding ∂ECL/∂χ = 0 gives the
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same result. We obtain

sinχ =
B

6J1S
. (6.7)

The field at which spins fully polarize is given by Bpol = 6J1S, independent of J2 (as

long as J2 < 1/6). This matches with the magnon-condensation result at large B, shown

in Fig. 6.4. The leading quantum correction is given by

Hqu = −3NS

2
J1 cos 2χ+ 3NSJ2 −

NB

2
sinχ+

∑

k>0

ψ†
kHkψk, (6.8)

where we have defined

ψk =



















bk,A

bk,B

b†−k,A

b†−k,B



















; Hk = S



















Ik Fk 0 Gk

F ∗
k Ik G∗

k 0

0 Gk Ik Fk

G∗
k 0 F ∗

k Ik



















. (6.9)

The entries in the Hamiltonian matrix are given by

Ik = 3J1 cos 2χ− 6J2 +2J2{cos ka + cos kb + cos(ka + kb)}+
B

S
sinχ,

Fk = J1γk sin
2 χ ≡ |Fk|eiηk ,

Gk = −J1γk cos2 χ,

where γk = 1+e−ik·b̂+e−ik·(â+b̂), with unit vectors â and b̂ as shown in Fig.5.2 of Chapter

5. This Hamiltonian can be diagonalized by a bosonic Bogoliubov transformation. The

eigenvalues are given by

Ω±
k = S

√

(Ik ± |Fk|)2 − |Gk|2. (6.10)

The Bogoliubov transformation matrix is given by

Pk =







U2×2 0

0 U2×2













C2×2 S2×2

S2×2 C2×2






,
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where

U2×2=
1√
2







−eiηk eiηk

1 1






; C2×2=







cosh θk 0

0 coshφk






; S2×2=







sinh θk 0

0 sinhφk






.(6.11)

The angles θk and φk are given by

tanh 2θk =
|Gk|

Ik − |Fk|
; tanh 2φk =

−|Gk|
Ik + |Fk|

. (6.12)

The matrix Pk preserves the commutation relations of the bosonic operators and diago-

nalizes the Hamiltonian, giving P †
kHkPk = Diag{Ω−

k ,Ω
+
k ,Ω

−
k ,Ω

+
k }. Fig.6.6 shows plots of

the spin-wave dispersion in the Néel state along high symmetry directions in the Brillouin

zone.

6.3.2 Melting of Néel order

For finite S, quantum fluctuations are likely to destabilize Néel order even for J2<J1/6.

As J2 is increased from zero, quantum fluctuations about the Néel state increase. At

some critical value of J2, long wavelength fluctuations will wash out Néel order. Using

spin wave theory, we argue that a small nonzero B enhances the stability of the Néel

order compared to the zero field case.

(i) For small nonzero B, spin canting leads to a small decrease, ∝ B2, in the classical

staggered magnetization transverse to the field.

(ii) On the other hand, one of the two magnon modes (labelled Ω+
k ) acquires a nonzero

gap ∝ B at the Γ-point as shown in Fig.6.6. Thus, the applied field suppresses low-lying

spin wave fluctuations. For B≪6J1S, we will show that the latter effect overwhelms the

former, leading to enhanced stability of Néel order.

To estimate the ‘melting curve’, we assume that the transverse spin components

have Néel order along the Sx-direction. The conventional criterion for melting driven

by spin-waves can be written as (〈Sx
i,ν〉 = 0), i.e., magnetic order ‘melts’ when the

magnitude of the ordered moment is renormalized to zero. Within spin wave theory, 〈Sx
i,ν〉
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Figure 6.6: Spin-wave dispersion Ω±
k in the J1 − J2 − B model along depicted path in

the Brillouin zone for J2=0.15J1 and S=3/2. Left: (B=0) - there are two Goldstone

modes. Right: (B=0.5J1S) - one low-lying mode acquires a gap due to the applied field.

(the component of the ordered moment normal to applied field) vanishes concurrently

with 〈Sz
i,ν〉 (component along applied field). Therefore, if we use this criterion, the

state resulting from quantum melting will not have any polarization along the applied

field direction. However, the ferromagnetic component along the applied field does not

correspond to any symmetry breaking. We expect fluctuations to first wash out in-

plane Néel ordering before killing the ferromagnetic component. Thus, we expect the

conventional criterion to overestimate the critical value of J2 required for melting.

Instead, we use a Lindemann-like criterion to describe melting: (
√

〈S2
x〉 − 〈Sx〉2 &

α〈Sx〉), i.e., Néel order melts when the fluctuation in the in-plane moment is comparable

to its magnitude. This is analogous to the Lindemann criterion used for melting of a

crystal, which postulates that melting occurs when the deviation in position of an ion

(due to thermal fluctuations) is comparable to lattice spacing[122]. Our criterion for

melting of Néel order shares two features with the Lindemann criterion for crystals:

(i) It is a heuristic criterion, i.e., melting lines are only approximate and should not

be treated as phase boundaries.
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(ii) The criterion does not give any information about the state that results from

melting. We expect the melting of Néel order to lead to a quantum disordered state such

as a valence-bond solid or a spin liquid.

In evaluating the melting criterion (
√

〈S2
x〉 − 〈Sx〉2 & α〈Sx〉), we evaluate expectation

values to order 1, even though the Hamiltonian has terms upto order S only. We set α=5

since this leads to melting of Néel order for S=1/2 at J2 ≈ 0.08J1, in agreement with

a recent variational Monte Carlo study[100]. We find no qualitative change upon using

other values of α, or even upon using the conventional criterion 〈Sx
i,ν〉 = 0. The resulting

Néel melting curves, at zero and nonzero temperatures, are shown in Fig.6.7 and Fig.6.8.

At zero temperature, it is straightforward to evaluate the expectation values in the

melting criterion. For T 6= 0 however, we have to take into account a small coupling along

the third dimension to allow for a stable magnetically ordered state. For a layered system

with very weak interlayer coupling, we can use the two-dimensional Hamiltonian together

with an infrared cutoff Λ which is of the order of the interlayer coupling. Spin wave modes

with energies greater than Λ appear the same as two-dimensional spin waves. However,

modes with energies below Λ can be dropped as their contribution will be suppressed by

phase space factors in the three-dimensional problem. In our numerics, we impose this

infrared cutoff by simply restricting to a finite system size. Finite size automatically cuts

off long wavelength modes with k < kc ∼ 2π/
√
N . In our calculations, we restricted our

system size to 2× 120× 120 spins. This corresponds to kc ∼ 0.05, and an infrared cutoff

of Λ ∼ 0.04JS.

6.3.3 Field-induced Néel order

As shown in Fig.6.7 and its inset, quantum fluctuations at B = 0 lead to melting of Néel

order even for J2/J1 < 1/6, before the classical destruction of Néel order. For nonzero

B, the ‘melting point’ moves toward larger J2, leading to a window of J2 over which the

quantum disordered liquid can undergo a field-induced phase transition to Néel order.
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Figure 6.7: T =0 melting of Néel order for S=3/2 in the B-J2 plane (open triangles)

obtained using a Lindemann-like criterion,
√

〈S2
x〉−〈Sx〉2=5〈Sx〉. The region “??” is

a quantum disordered state - possibly a valence bond solid or a quantum spin liquid.

Arrow depicts a field-induced transition to Néel order. (Inset) A similar melting curve

for S=1/2.

The window of J2 which allows for a field-induced Néel transition appears to be small for

S=3/2. However, small non-zero temperatures widen this window, as shown in Fig.6.8.

Finally, we expect field-induced Néel order even for S=1/2 (see inset to Fig.6.7). The

S = 1/2 J1−J2 model has been extensively studied[100, 36, 34] as an effective model for

the honeycomb lattice Hubbard model at intermediate interaction strengths(see Chapter

5 for an overview). Approaching the intermediate-U phase from large values of U, we

expect the J1 − J2 model with relatively small J2 to be the appropriate effective model.

We therefore expect the spin-gapped intermediate phase to also arise from quantum

melting of Néel order. Our assertion of field-induced Néel order can be tested by redoing

the variational and determinental Monte Carlo calculations of the honeycomb Hubbard

model in an applied magnetic field.

Our results are consistent with neutron diffraction experiments[65] on Bi3Mn4O12(NO3)

which find field induced Néel order. Our results also explain recent Monte Carlo simula-
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Figure 6.8: Melting of Néel order for S= 3/2 in the B-J2 plane for depicted nonzero

temperatures. To the left of the curve, there is stable canted Néel order. To the right,

combined effects of quantum and thermal fluctuations melt the in-plane Néel order.

tions of the classical J1−J2−B model[67]. In these simulations, with J2 = 0.175 and at

fixed temperature, increasing the magnetic field leads to Néel-like correlations. In light

of our results, this cannot be an indication of long-range Néel order. Instead, increasing

the magnetic field simply takes us closer to the Néel phase in the J2 −B phase diagram

shown in Fig. 6.7.

6.4 Summary

Inspired by experiments on the S = 3/2 material Bi3Mn4O12(NO3)and numerical studies

of the honeycomb lattice Hubbard model, we have considered two models of antifer-

romagnetism on the honeycomb lattice. Both models lead to magnetically disordered

ground states which develop Néel order in an applied magnetic field.

In our first model, bilayer coupling leads to an interlayer valence-bond solid state,

composed of singlet dimers on every interlayer bond. We use a simplified J1 − Jc model

having only nearest neighbour exchange and bilayer coupling. We use bond-operator

theory to study this state and its triplon excitations. When an applied field closes the
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spin gap, the lowest lying triplon mode undergoes Bose-condensation, resulting in in-

plane Néel order. Chapter 4 describes a variational extension of bond-operator theory,

which shows that the bilayer coupling required to stabilize the interlayer valence-bond

solid is very large (Jc/J1 & 9). Thus, bilayer coupling is highly unlikely to be the source

of frustration in BMNO. However, our analysis may prove useful for the study of other

bilayer antiferromagnetic systems.

In our second model, we study frustration arising from next-nearest neighbour ex-

change. We show that quantum fluctuations lead to ‘melting’ of Néel order. The result-

ing quantum disordered state develops Néel order in an applied field. Our calculations

are relevant to studies on the honeycomb lattice Hubbard model as well. We expect that

numerical studies of the spin-gapped phase at intermediate U will also show field-induced

Néel order.

Further experiments are needed to understand the physics of Bi3Mn4O12(NO3). So

far, only powder samples have been analyzed. The growth of a single crystal sample

could greatly improve our understanding. Experiments could try to determine whether

triplon-condensation is responsible for the onset of Néel order. With a single crystal

sample, neutron scattering could track magnetic excitations across the Néel transition.

Careful specific heat measurements (in comparison with a non-magnetic analogue to

remove phonon contributions) can determine if the Néel transition is a Bose-condensation

transition.



Chapter 7

Future directions

7.1 Superflow instabilities in ultracold atom gases

We have studied the collective mode spectrum of the attractive Hubbard model, which

could soon be realized in experiments with ultracold atoms. This system shows competi-

tion between superfluidity and Charge Density Wave(CDW) order, which is reflected in

the collective mode spectrum. We study imposed superfluid flow as a tool to drive this

competition. We classify the various mechanisms through which superflow breakdown

may occur and draw stability phase diagrams.

Beyond the dynamical commensurate instability, there are indications that a time-

dependent state arises. Can a supersolid phase be stabilized? Further work is needed to

definitively answer this question. Adding elements such as nearest neighbour repulsion

(perhaps using dipolar gases) could help to stabilize the coexistence phase. A similar

question could be posed about the Landau instability. While collective mode energies

are negative, external couplings or non-linearities are required to transfer momentum

into these modes. A careful study of the Landau instability could give us insights into

mode-mode coupling terms. In the strong-coupling pseudospin language, the Landau

instability will tell us about spin wave interaction terms that were not taken into account
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in our analysis.

Our study could be generalized to other lattice systems which may allow for different

kinds of CDW order. For instance, the triangular and honeycomb lattices have nested

Fermi surfaces at a filling of 3/4 fermions per site[123]. The competition between su-

perfluidity and stripe-like CDW phases is an interesting direction to pursue. There are

many proposals to study competing orders in cold atoms using other systems such as

Bose-Fermi mixtures[123], dipolar bosons[124], polar molecules[125], etc. Experiments

on ultracold gases may help us develop a deep understanding of competition and interplay

between phases.

7.2 Low dimensional magnetism

In Chapter 4, we have discussed spin-S bilayer antiferromagnets with square and hon-

eycomb lattice geometries. Using bond operator theory, we have studied the dimer-Néel

transition which is driven by triplon condensation. Standard bond operator theory suffers

from a systematic error as S increases. We bridge this deviation by using a variational

procedure to take leading corrections into account.

A natural extension of our study would be to map out the complete phase diagram as

a function of applied field and interlayer coupling strength. With increasing field, triplet

bands with higher energy will sequentially condense followed by higher spin objects such

as (spin-2) quintets. In the semi-classical (S≫1) picture, increasing the applied field

smoothly increases the out-of-plane canting of spins all the way upto full polarization.

For finite-S, there are likely to be discrete intermediate steps in between with interesting

magnetic patterns(e.g., see Ref. [126]). Experimentally, quintet condensation has been

observed in Ba3MnO8, a bilayer material with a somewhat complicated geometry[127].

Another direction to explore is the effect of magnetic frustration. As the square and

honeycomb bilayers are bipartite, the triplon dispersion in the interlayer dimer phase has
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a unique minimum at the wavevector corresponding to Néel order. As interlayer coupling

is decreased (or when a magnetic field is applied), this triplon mode condenses leading

to a dimer-Néel transition. In the limit of decoupled layers (or for large magnetic fields),

the in-plane exchange terms are maximally satisfied in a Néel ground state. In non-

bipartite frustrated lattices however, simple Néel ordering is not favoured. In the limit

of decoupled layers, in the classical (S = ∞) model, the ground state has macroscopic

degeneracy. As a consequence, we expect the triplon dispersion in the dimer phase to

have multiple minima reflecting the ground state degeneracy - we have explicitly checked

this for the case of the honeycomb lattice J1 − J2 − Jc model. Decreasing the interlayer

coupling (or applying a magnetic field) will lower the energy of this ‘ring’ of triplons.

It is possible that correction terms such as triplon-triplon interactions may break this

degeneracy to give a dimer-spiral transition. Or, the large number of low-lying triplet

excitations could destroy spiral order leading to new ground states and phase transitions.

This may be relevant to studies of deconfined quantum criticality. In particular, in the

honeycomb lattice spin-1/2 bilayer, a deconfined quantum phase transition[128] has been

proposed between an interlayer dimer state and a Nematic Valence Bond Solid (bilayer

version of the NVBS state discussed in Chapter 5).

Inspired by the physics of Bi3Mn4O12(NO3)(BMNO) and the intermediate-U phase of

the honeycomb lattice Hubbard model, we studied the honeycomb lattice J1−J2 model in

Chapter 5. This model leads to ‘lattice nematic’ states in various limits. In the context of

BMNO, the J1−J2 model can explain the absence of long-range order within a quantum

melting picture. This description also accounts for the observed field-induced Néel order.

However, the precise nature of the disordered state is not known. An analysis of spin-3/2

spin liquid states may resolve this issue. Disorder may also play a significant role in the

physics of BMNO as neutron diffraction sees some evidence of glassy behaviour[65]. The

role of disorder in melting Néel order could be investigated in the future.

In the honeycomb lattice Hubbard model, the nature of the intermediate spin-gapped
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phase has not been conclusively established. There are two candidate ground states -

sublattice-pairing spin liquid and plaquette RVB. An unbiased variational approach could

be used to resolve the ground state. Determinental Quantum Monte Carlo could also

be used to look for a thermal phase transition associated with translational symmetry

breaking, which should occur in the plaquette RVB state.

The physics of the J1−J2 model at large frustration also holds interesting possibilities.

In the regime J2/J1 > 1/6, the spin wave spectrum has macroscopically degenerate

minima leading to a ‘Bose surface’. When corrections arising from spin-wave interactions

are taken into account, this Bose surface may not survive. However, a very similar model

(the honeycomb lattice J1 − J2 XY model) has been shown to support a robust Bose

surface[113]. In our J1 − J2 Heisenberg model, a renormalization group analysis can

be used to reveal if the Bose surface is stable. A resulting ‘Bose metal’ phase will have

interesting properties.

In the future, we hope that there will be many more material realizations of models of

low dimensional magnetism which can be used to synthesize, characterize and understand

novel quantum phases. The study of competing orders in such magnetic systems will help

to develop a more complete understanding of quantum phases and phase transitions.

We hope that lessons learnt from the study of magnetism will contribute to a fuller

understanding of condensed matter physics.
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Appendices to Chapter 2

A.1 Bare Susceptibility

To evaluate the matrix elements in Eq. 2.17, it is convenient to resolve each perturbation

operator into two parts – one that creates two QPs and one that annihilates two QPs –

as follows:

ρ̂c−K= 1
2

∑

k(uk+Kvk+ukvk+K)γ
†
k+K↑γ

†
−k↓ ρ̂a−K= 1

2

∑

k(uk−Kvk+ukvk−K)γ−k↓γk−K↑

∆̂c
−K=−∑

k
vkvk+Kγ

†
k+K↑γ

†
−k↓ ∆̂a

−K=
∑

k
ukuk−Kγ−k↓γk−K↑

∆̂†c
K=

∑

kukuk+Kγ
†
k+K↑γ

†
−k↓ ∆̂†a

K =−∑kvkvk−Kγ−k↓γk−K↑

Here the superscript ‘c’ denotes creation of 2 quasiparticles, and ‘a’ denotes annihi-

lation.
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Since χ0 is a symmetric matrix, it suffices to use the above to compute the following

distinct elements:

χ0
1,1 =

1

4N

∑

k

[

(uk−Kvk + vk−Kuk)
2

ω + Ek−K + E−k

− (ukvk+K + vkuk+K)
2

ω − Ek+K − E−k

]

,

χ0
1,2 =

1

2N

∑

k

[

(uk−Kvk + vk−Kuk)ukuk−K

ω + Ek−K + E−k

+
(ukvk+K+vkuk+K)vkvk+K

ω−Ek+K−E−k

]

,

χ0
1,3 =

1

2N

∑

k

[

−(uk−Kvk + vk−Kuk)vkvk−K

ω + Ek−K + E−k

− (ukvk+K+vkuk+K)ukuk+K

ω−Ek+K−E−k

]

,

χ0
2,2 =

1

N

∑

k

[

u2ku
2
k−K

ω + Ek−K + E−k

− v2kv
2
k+K

ω −Ek+K − E−k

]

,

χ0
2,3 =

1

N

∑

k

[

− ukvkuk−Kvk−K

ω + Ek−K + E−k

+
ukvkuk+Kvk+K

ω −Ek+K − E−k

]

,

χ0
3,3 =

1

N

∑

k

[

v2kv
2
k−K

ω + Ek−K + E−k

− u2ku
2
k+K

ω −Ek+K − E−k

]

. (A.1)

A.2 Derivation of strong coupling pseudospin model

We study the strong-coupling limit of the attractive Hubbard Hamiltonian (Eq. 2.1) on

a bipartite lattice. In the strong coupling limit, the chemical potential and the Hubbard

attraction dominate while the hopping terms act as a small perturbation. The local

Hilbert space has four states. The four states and their energies are given by

|−〉 −U/4

| ↑〉 −µ + U/4

| ↓〉 −µ + U/4

| ↑↓〉 −2µ− U/4

At half-filling, µ is zero as discussed in the Section. 2.1.1. The states |−〉 and | ↑↓〉

are degenerate while singly occuppied states have much higher energy. Even away from

half-filling, we argue that singly occuppied states have much higher energies and may

be neglected in a low-energy description. This argument may be phrased as follows.

Suppose there are two singly occuppied sites, one with an up spin fermion and another
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with a down spin fermion. By rearranging the fermions to have one doubly occuppied

site and one empty site, the system can lower its energy by U . Thus, as long as the

system is unpolarized (having equal number of up and down fermions, as in our case),

its low energy description will only involve sites that are doubly occuppied or empty.

In this low energy subspace, the Hilbert space for two sites is given by (column on

the right gives the energy of each state)

|−,−〉 −U/2

|−, ↑↓〉 −2µ− U/2

| ↑↓,−〉 −2µ− U/2

| ↑↓, ↑↓〉 −4µ− U/2

Within this two-site problem, we treat the hopping perturbatively. The states with zero

occupancy (|−,−〉) and those with maximum occupancy (|↑↓, ↑↓〉) are not altered by the

hopping Hamiltonian. The other two states are connected in second order perturbation

theory. The processes that contribute are

|−, ↑↓〉 −t−−−−→











| ↑, ↓〉

| ↓, ↑〉











−t−−−−→











| ↑↓,−〉

|−, ↑↓〉











|−, ↑↓〉 −t−−−−→











| ↑, ↓〉

| ↓, ↑〉











−t−−−−→











| ↑↓,−〉

|−, ↑↓〉











The amplitude of each of these processes is −2t2/U . Incorporating these amplitudes, the

Hamiltonian for the two site problem may be written as

H=



















〈−,−|

〈−, ↑↓ |

〈↑↓,−|

〈↑↓, ↑↓ |



















T

















−U/2 0 0 0

0 −2µ− U/2− 2t2/U −2t2/U 0

0 −2t2/U −2µ− U/2− 2t2/U 0

0 0 0 −4µ− U/2





































|−,−〉

|−, ↑↓〉

| ↑↓,−〉

| ↑↓, ↑↓〉



















.

This low energy Hamiltonian may be mapped onto a spin-1/2 local moment system. On

each site, the state with double occupancy is mapped onto an ‘up’ pseudospin and the
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state with zero occupancy is mapped onto a ‘down’ pseudospin.

|−〉fermion → | ↓〉spin; | ↑↓〉fermion → | ↑〉spin.

Our Hamiltonian maps onto a pseudospin-exchange Hamiltonian given by

Hsp=J
∑

〈ij〉

Sz
i S

z
j −

J

2

∑

〈ij〉

[

S+
i S

−
j + S−

i S
+
j

]

− B
∑

i

Sz
i, (A.2)

with J = 4t2/U and B = µ (we have ignored a constant energy shift of−2µ−U/2−t2/U).

This spin model has positive couplings along the spin-z direction, and negative cou-

plings along the spin-x and spin-y directions. We transform this Hamiltonian into the

symmetric Heisenberg model, by using the bipartite nature of the lattice as follows.

We divide the lattice into A and B sublattices.

Hsp = J
∑

i∈A,j(i)∈B

Sz
i,AS

z
j,B − J

∑

i∈A,j(i)∈B

[

Sx
i,AS

x
j,B + Sy

i,AS
y
j,B

]

−B
∑

i

[

Sz
i,A + Sz

i,B

]

,(A.3)

where j(i) indicates the nearest neighbours of site i. The nearest neighbours of site i of

the A sublattice all lie on the B sublattice. We perform a SU(2) pseudospin rotation on

one of the sublattices:

Sx
i,B → −T x

i,B; Sy
i,B → −T y

i,B; Sz
i,B → T z

i,B. (A.4)

The transformed T operators, in terms of the original fermions, are identical to the

Anderson pseudospin operators defined in Eq. 2.4. In terms of these operators, the

Hamiltonian reduces to the Heisenberg model:

Hpseudospin = J
∑

i∈A,j(i)∈B

Ti,A ·Tj,B −B
∑

i

[

T z
i,A + T z

i,B

]

. (A.5)

The z-component of the spins corresponds to density and the magnetic field B is the

chemical potential, µ. The x and y components correspond to superfluid order. all done

with
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Appendices to Chapter 3

B.1 Landau criterion

Landau first estimated the maximum superflow that a superfluid can sustain[129]. Let

us consider a many particle system described by a generic Hamiltonian of the form

Ĥ0 =
∑

i

p̂2
i

2mi

+
∑

〈ij〉

V̂ (|r̂i − r̂j|). (B.1)

We take the ground state of this system to be a superfluid, denoted by |ψGS〉. The

eigenstates which embody the excitations about the superfluid ground state, have well-

defined momentum. We label an excited state as |ψp〉 with momentum p and energy ωp,

given by

ωp = 〈ψp|Ĥ0|ψp〉 − 〈ψGS|Ĥ0|ψGS〉,

p = 〈ψp|
∑

i

p̂i|ψp〉. (B.2)

If there is no position-dependent constraining potential, this system possesses Galilean

invariance, i.e., the eigenstates of this Hamiltonian are unchanged under a Galilean boost

given by

ri → ri − vt; pi → pi −miv. (B.3)
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This is equivalent to switching to a frame that is moving with a velocity v. With this

boost, the Hamiltonian transforms as

Ĥflow = Ĥ0 +
1

2

(

∑

i

mi

)

v2 − v · {
∑

i

p̂i}. (B.4)

As seen from this expression, the eigenstates of Ĥ0 are also eigenstates of Ĥflow, however

the eigenenergies may be different. In the moving frame, the excited state |ψp〉 has the

energy

ωflow
p = 〈ψp|Ĥflow|ψp〉 − 〈ψGS|Ĥflow|ψGS〉

= ωp − p · v. (B.5)

In the last step above, we have used Eqs.B.4 and B.2.

Now, let us say the superfluid is forced to flow with a velocity v against a fixed

obstacle. We work in the lab frame in which the superfluid is flowing and the obstacle

is at rest. In this frame, the excitation spectrum of the superfluid is given by Eq.B.5.

Due to the superfluid nature of the system, the flow will be dissipationless (for small flow

velocities) with no momentum transferred to the obstacle. The underlying reason is that

the superfluid does not have any gapless excitations at non-zero wavevectors. Thus, it is

not possible to transfer momentum to the stationary obstacle while conserving energy.

The critical superflow velocity can be determined from this reasoning - the maximum

superflow velocity occurs when the excitations become gapless at non-zero wavevectors,

i.e., when ωflow
p′ 6=0 = 0. When this condition is met, these excitations with momentum p′

can be populated while transferring momentum to the obstacle. The obstacle will start

moving with the superfluid, and superfluidity will be lost. This gives the Landau critical

velocity

vcrit = min
q 6=0

[ωq

q‖

]

, (B.6)

where q‖ is the component of momentum along the direction of flow.
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B.2 Bare Susceptibility in the flowing superfluid

To evaluate the matrix elements of the bare susceptibility matrix (in Eq. 3.22), we resolve

each perturbation operator into two parts – one that creates two QPs and one that

annihilates two QPs – as follows:

ρ̂c−K= 1
2

∑

k(uk+Kvk+ukvk+K)γ
†
k+K↑γ

†
−k+Q↓ ρ̂a−K= 1

2

∑

k(uk−Kvk+ukvk−K)γ−k+Q↓γk−K↑

∆̂c
−K+Q=−∑

k
vkvk+Kγ

†
k+K↑γ

†
−k+Q↓ ∆̂a

−K+Q=
∑

k
ukuk−Kγ−k+Q↓γk−K↑

∆̂†c
K+Q=

∑

kukuk+Kγ
†
k+K↑γ

†
−k+Q↓ ∆̂†a

K+Q=−∑kvkvk−Kγ−k+Q↓γk−K↑

Here the superscript ‘c’ denotes creation of 2 quasiparticles, and ‘a’ denotes annihi-

lation.

Since χ0 is a symmetric matrix, it suffices to use the above to compute the following

distinct elements:

χ0
1,1 =

1

4N

∑

k

[

(uk−Kvk + vk−Kuk)
2

ω + Ek−K + E−k+Q

− (ukvk+K + vkuk+K)
2

ω − Ek+K − E−k+Q

]

,

χ0
1,2 =

1

2N

∑

k

[

(uk−Kvk + vk−Kuk)ukuk−K

ω + Ek−K + E−k+Q

+
(ukvk+K+vkuk+K)vkvk+K

ω−Ek+K−E−k+Q

]

,

χ0
1,3 =

1

2N

∑

k

[

−(uk−Kvk + vk−Kuk)vkvk−K

ω + Ek−K + E−k+Q

− (ukvk+K+vkuk+K)ukuk+K

ω−Ek+K−E−k+Q

]

,

χ0
2,2 =

1

N

∑

k

[

u2ku
2
k−K

ω + Ek−K + E−k+Q

− v2kv
2
k+K

ω −Ek+K − E−k+Q

]

,

χ0
2,3 =

1

N

∑

k

[

− ukvkuk−Kvk−K

ω + Ek−K + E−k+Q

+
ukvkuk+Kvk+K

ω −Ek+K − E−k+Q

]

,

χ0
3,3 =

1

N

∑

k

[

v2kv
2
k−K

ω + Ek−K + E−k+Q

− u2ku
2
k+K

ω −Ek+K − E−k+Q

]

. (B.7)

B.3 Mean-field theory of coexistence phase

Beyond the dynamical commensurate instability, we expect the onset of checkerboard

density correlations. This could lead to coexisting superfluidity and density order, a

“flowing supersolid”. We perform a mean field analysis including both orders in order to

examine the existence and stability of this coexistence phase.
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We decouple the Hubbard interaction using the following mean field order parameters:

∆ ≡ U

N

∑

k

〈c−k+Q↓ck↑〉,

ρ̃ ≡ U

2N

∑

k

〈c†k+Πσckσ〉,

∆̃ ≡ U

N

∑

k

〈c−k+Π+Q↓ck↑〉, (B.8)

where Π ≡ (π, π) in 2D or (π, π, π) in 3D.

Using global phase rotation U(1) symmetry, we choose ∆ to be real but we allow ∆̃

to be complex. ρ̃, being the expectation value of the staggered density, is real.

Upto a constant, the Hamiltonian may be written as:

H =
∑

k

′

Ψ†
kH(k)Ψk, (B.9)

where the primed summation in the Hamiltonian indicates that if k is included, then

k+Π is to be excluded. We have used

Ψk =



















ck↑

c†−k+Q↓

ck+Π↑

c†−k−Π+Q↓



















; H =



















ξk −∆ −ρ̃ −∆̃

−∆ −ξ−k+Q −∆̃∗ ρ̃

−ρ̃ −∆̃ ξk+Π −∆

−∆̃∗ ρ̃ −∆ −ξ−k−Π+Q



















. (B.10)

For given U , Q and density, we numerically diagonalize this matrix and solve the

self-consistency equations for ∆, ρ̃, ∆̃ and the filling f . We also evaluate the uniform

current in the converged solution,

〈Ĵ 〉 = −2t〈
∑

k

c†kσckσ∇kǫk〉 (B.11)

where −2tǫk is the non-interacting fermion dispersion.

A “flowing supersolid” phase is indicated by simultaneous non-zero values for ∆ and

ρ̃. As expected, we do find a “flowing supersolid” phase beyond the dynamical commen-

surate instability. However, as shown in Fig. B.1, the onset of density order coincides
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Figure B.1: Mean field theory of the “flowing supersolid” state: mean field order parame-

ters as functions of the flow momentum in 2D for U/t=7 and with a filling of 0.8 fermions

per site. Supersolid order onsets around Qx ≈ 0.2π, as both ∆ and ρ̃ have simultaneous

non-zero expectation values. This coincides with a maximum in the current as a function

of the flow momentum, indicating a dynamical instability.

with a maximum in current as a function of flow momentum. This indicates that the

system is dynamically unstable to long wavelength phase and density fluctuations, as we

argue below.

Let us consider a one-dimensional superfluid system for simplicity. Denoting the mean

field density and the phase of the superfluid order parameter by n0 and φ0 respectively,

we consider fluctuations δn and δφ. The current is some function of the gradient of the

phase:

〈Ĵ 〉 = J
(

dφ

dx

)

. (B.12)

The equations governing the dynamics of the fluctuations are the Josephson relation and

the continuity equation. The former gives:

dδφ

dt
= −αδn, (B.13)

where α = dµ/dn is a positive-definite quantity closely related to compressibility. The
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continuity equation is:

dn

dt
= −dJ

dx
.

Substituting n = n0 + δn and dφ
dx

= Q+ dδφ
dx

, where Q ≡ dφ0

dx
, we obtain

dδn

dt
= −dJ

dQ

d2δφ

dx2
. (B.14)

Combining this with the Josephson relation, we finally obtain:

1

α

d2δφ

dt2
=
dJ
dQ

d2δφ

dx2
(B.15)

When dJ /dQ, becomes negative, the wavelike solutions of this equation develop complex

frequencies. Fluctuations will grow exponentially in time, making the system dynamically

unstable when the current goes through a maximum as a function of the flow momentum

Q. The unstable nature of the “flowing supersolid” phase has been explored in Ref.[51]

in a one-dimensional model. Within a simple real-time simulation, the commensurate

dynamical instability seems to lead to a time-dependent and chaotic state.
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Appendices to Chapter 4

C.1 Square bilayer: bosonic Bogoliubov transforma-

tion

The MFT Hamiltonian of Eq. 4.4 is diagonalized by a pseudounitary matrix,

Uk =







cosh θk sinh θk

sinh θk cosh θk






. (C.1)

Imposing tanh 2θk = −2ǫk/(A+ 2ǫk), we get

ψ†
k,u







A+ 2ǫk 2ǫk

2ǫk A+ 2ǫk






ψk,u = φ†

k,u







λk 0

0 λk






φk,u. (C.2)

We have defined new quasiparticle operators given by ψk,u = Ukφk,u so that







tk,u

t†−k,u






=







cosh θk sinh θk

sinh θk cosh θk













τk,u

τ †−k,u






. (C.3)
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The τ operators are the triplon quasiparticles. The bilinears defined in Eq. 4.20, may be

evaluated using the elements of U as follows:

ρ =
1

4N⊥

∑

k,δ

[

〈t†k,vtk,v〉eik.δ
]

=
1

4N⊥

∑

k

′

(2 cos kx + 2 cos ky)
A+ 2ǫk
λk

, (C.4)

∆ =
1

4N⊥

∑

k,δ

[

〈t†k,vt
†
−k,v〉eik.δ

]

=
1

4N⊥

∑

k

′

(2 cos kx + 2 cos ky)
(−2ǫk)

λk
. (C.5)

C.2 Square Bilayer: inclusion of quintets

The spin operators with the inclusion of quintets are given in Eq. 21 of Ref. [89]. Using

this reference, we now give explicit expressions for Êttq(S
2). In the main text, we de-

fined Êttq(S
2) in terms of triplet bilinears T̂

[n]
i,i+δ. Here, we give expressions for T̂

[n]
i,i+δ in

momentum space. We use the Fourier transform convention

ti,u∈{x,y,z} =
1√
N⊥

∑

k

tk,ue
ik.ri. (C.6)

The operator T̂
[n]
i,i+δ is composed of bilinears of the form ti,u(ti+δ,v ± t†i+δ,v). Using the

Fourier transform, this generic bilinear may be written as (1/N⊥)
∑

k,p t−k+p,u(tk,u ±

t†−k,u)e
ik.δeip.ri.

Thus, we may write

∑

δ

T̂
[n]
i,i+δ =

M

N⊥

∑

k,p

T̂
[n]
−k+p,ke

ip.riηk, (C.7)

where ηk =
∑

δ e
ik·δ = 2(cos kx + cos ky) and the coefficient M =

√

S(S+1)(2S−1)(2S+3)
30

.
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The explicit forms of T̂
[n]
−k+p,k are:

T̂
[−2]
−k+p,k = t̃−k+p,x(tk,x + t†−k,x)− t̃−k+p,y(tk,y+t

†
−k,y)

+ it̃−k+p,x(tk,y+t
†
−k,y) + it̃−k+p,y(tk,x+t

†
−k,x)

T̂
[−1]
−k+p,k = t̃−k+p,z(tk,x+t

†
−k,x) + t̃−k+p,x(tk,z+t

†
−k,z)

+ it̃−k+p,z(tk,y+t
†
−k,y) + it̃−k+p,y(tk,z+t

†
−k,z)

T̂
[0]
−k+p,k =

√

2

3

[

−t̃−k+p,x(tk,x+t
†
−k,x)

− t̃−k+p,y(tk,y+t
†
−k,y)+2t̃−k+p,z(tk,z+t

†
−k,z)

]

T̂
[−1]
−k+p,k = −t̃−k+p,z(tk,x+t

†
−k,x)− t̃−k+p,x(tk,z+t

†
−k,z)

+ it̃−k+p,z(tk,y+t
†
−k,y) + it̃−k+p,y(tk,z+t

†
−k,z)

T̂
[2]
−k+p,k = t̃−k+p,x(tk,x + t†−k,x)− t̃−k+p,y(tk,y+t

†
−k,y)

−i t̃−k+p,x(tk,y+t
†
−k,y)− it̃−k+p,y(tk,x+t

†
−k,x) (C.8)

We have denoted some triplet operators as t and some as t̃. For the purposes of the

square lattice, this distinction can be ignored. We will use these same expressions in the

context of the honeycomb lattice also. For the honeycomb case, t and t̃ operators will

act on different sublattices.

The energy correction due to coupling to quintets is given in Eq. 4.32. Using the

Fourier transformed expression in Eq. C.7, we rewrite the energy as

∆E
S>1/2
2 =

M2s̄2

N⊥

∑

m=−2,··· ,2

∑

p

E[m]
p (C.9)

where p is the momentum of the intermediate state. The quantity E
[m]
p is given by

E[m]
p =

∑

ν 6=0

|〈ν|∑k T̂
[n]
−k+p,kηk|0〉|2

E0 − Eν
. (C.10)

Here, (−p) is the momentum of the intermediate state |ν〉. As described in the Section

4.7.1, the intermediate states |ν〉 that contribute have two triplon quasiparticle excita-

tions and one quintet excitation. An intermediate state with momentum (−p) may be
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represented as

|ν2−triplon〉 = τ †q−p,u′τ
†
−q,v′ |0〉. (C.11)

With this parametrization, the sum over intermediate states |ν〉 may be written as

∑

ν 6=0

−→
∑

q

∑

u′,v′∈{x,y,z}

. (C.12)

Evaluating the matrix elements using this parametrization of the intermediate state, we

find that the energy contribution E
[m]
p is the same from every m-sector, i.e., E

[m]
p = Ep

for all m. The quantity Ep is given by

Ep = −2
∑

q

[

sinh2(θq)η
2
p−q{cosh(2θp−q) + sinh(2θp−q}

+ sinh2(θp−q)η
2
q{cosh(2θq) + sinh(2θq)}

]

/{εq − µ+ λ−q + λ−p+q}(C.13)

C.3 Honeycomb bilayer: bosonic Bogoliubov trans-

formation

The mean field Hamiltonian of Eq. 4.12 may be diagonalized by the matrix,

Pk =
1√
2



















1 1 0 0

−bk bk 0 0

0 0 1 1

0 0 −bk bk





































Ck,1 0 Sk,1 0

0 Ck,2 0 Sk,2

Sk,1 0 Ck,1 0

0 Sk,2 0 Ck,2



















.

Here, we have defined bk ≡ β∗
k/|βk|. We take the other entries to be hyperbolic func-

tions given by Ck,n = cosh κk,n and Sk,n = sinh κk,n, with n = 1, 2. With this defi-

nition, this matrix Pk satisfies the pseudo-unitarity condition PkσP
†
k = σ, where σ =

Diag{1, 1,−1,−1}. To diagonalize the Hamiltonian matrix Mk, we set

tanh 2κk,1 = βk/(C − βk);

tanh 2κk,2 = −βk/(C + βk). (C.14)
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With this choice, the matrix Pk diagonalizes the Hamiltonian,

P †
kMkPk = Diag{λk,1, λk,2, λk,1, λk,2}. (C.15)

where λk,1/2 are as defined in the main body. We transform the triplet operators defined

in Eq. 4.12 into new quasiparticle operators using



















tk,A,u

tk,B,u

t†−k,A,u

t†−k,B,u



















= Pk



















ϑk,1,u

ϑk,2,u

ϑ†−k,1,u

ϑ†−k,2,u



















. (C.16)

The ϑ operators are the triplon quasiparticles. Compared to the square lattice case, the

quasiparticle operators have an additional index on account of the sublattice degree of

freedom. We can express our original triplet operators as follows:

tk,A,u =
∑

f=1,2

(

Ck,fϑk,f,u + Sk,fϑ
†
−k,f,u

)

,

t−k,B,u =
∑

f=1,2

(−1)fb∗k

(

Ck,fϑ−k,f,u+Sk,fϑ
†
k,f,u

)

. (C.17)

The bilinears defined in Eq. 4.23 can be evaluated as

ρ =
2

3N⊥

∑

k

〈t†k,A,vtk,B,v〉γk =
1

6N⊥

∑

k

|γk|
[

−C − |βk|
λk,1

+
C + |βk|
λk,2

]

,

∆ =
2

3N⊥

∑

k

〈t†k,A,vt
†
−k,B,v〉γk =

−1

6N⊥

∑

k

|γk|
[ |βk|
λk,1

+
|βk|
λk,2

]

.

C.4 Honeycomb bilayer: inclusion of quintets

In the main text, we defined Êttq(S
2) in terms of triplet bilinears Â

[n]
i,i+δ and B̂

[n]
i−δ,i. Here,

we give expressions for Â
[n]
i,i+δ and B̂

[n]
i−δ,i in momentum space. We use the Fourier trans-

form convention

ti,α∈{A,B},u∈{x,y,z} =
1

√

N⊥/2

∑

k

tα,k,ue
ik.ri. (C.18)
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(i) The terms in Â
[n]
i,i+δ are of the form ti,A,u(ti+δ,B,v + t†i+δ,B,v). Using our Fourier

transform convention, we may write

∑

δ

Â
[n]
i,i+δ =

M

N⊥/2

∑

k,p

Â
[n]
−k+p,ke

ip·riγk, (C.19)

where γk =
∑

δ e
ik·δ = 1 + e−ikb + e−ika−ikb and the coefficient M =

√

S(S+1)(2S−1)(2S+3)
30

is the same as that defined for the square lattice case. The explicit forms of Â
[n]
−k+p,k are

the same of those of T̂
[n]
−k+p,k given in Eq. C.8 with the following redefinition:

t̃k,u ≡ tA,k,u

tk,u ≡ tB,k,u (C.20)

(ii) The terms in B̂
[n]
i,i−δ are of the form ti,B,u(ti−δ,A,v ± t†i−δ,A,v). Using our Fourier

transform convention, we write

∑

δ

B̂
[n]
i,i−δ =

M

N⊥/2

∑

k,p

B̂
[n]
−k+p,ke

ip·riγ−k (C.21)

Explicit expressions for B̂
[n]
−k+p,k are the same as those of T̂

[n]
−k+p,k given in Eq. C.8 but

with the following redefinition:

t̃k,u ≡ tB,k,u

tk,u ≡ tA,k,u (C.22)

The quintet energy correction of Eq. 4.36 may be rewritten as

E[quint.] =
M2s̄2

N⊥/2

∑

p

∑

m

[

(A[m]
p ) + (B[m]

p )
]

, (C.23)

where

(A[m]
p ) =

∑

ν 6=0

|〈ν|
∑

k Â
[m]
−k+p,kγk|0〉|2

E0 −Eν

(B[m]
p ) =

∑

ν 6=0

|〈ν|
∑

k B̂
[m]
−k+p,kγ−k|0〉|2

E0 −Eν

(C.24)
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The only intermediate states |ν〉 that contribute to the energy are states with two triplon

quasiparticle excitations. A generic intermediate state with momentum (−p) may be

characterized as

|ν2−triplon〉 = ϑ†−q,f,uϑ
†
q−p,g.v|0〉. (C.25)

Using this parametrization of a generic state, the sum over intermediate states in Eq. C.24

becomes

∑

ν 6=0

−→ 1

2

∑

q

∑

f,g∈{1,2}

∑

u,v∈{x,y,z}

, (C.26)

There is a factor of 1/2 to account for double counting as (q′ = p − q, f ′ = g, g′ = f)

corresponds to the same state as (q, f, g). Evaluating the necessary overlaps, we find

that the contribution from each m is the same (A
[m]
p ) = (B

[m]
p ) = Ep for m = −2, · · · , 2.

The quantity Ep is given by

Ep=−2
∑

q,f,g

[

Sq,f(−1)g(S−p+q,g + Cp−q,g)|γp−q|+ Sp−q,g(−1)f (S−q,f + Cq,f)|γq|
]2

εq − µ+ λ−q,f + λq−p,g
(C.27)

By plugging these expressions into Eq.C.23, the correction to ground state energy

may be computed.
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[82] K. H. Höglund, A. W. Sandvik, and S. Sachdev, “Impurity induced spin texture

in quantum critical 2D antiferromagnets,” Phys. Rev. Lett., vol. 98, p. 087203, Feb

2007.

[83] T. Roscilde and S. Haas, “Quantum localization in bilayer Heisenberg antiferro-

magnets with site dilution,” Phys. Rev. Lett., vol. 95, p. 207206, Nov 2005.

[84] Y. Matsushita, M. P. Gelfand, and C. Ishii, “Bond-operator mean field theory for

the bilayer Heisenberg model,” Journal of the Physical Society of Japan, vol. 68,

no. 1, pp. 247–252, 1999.



Bibliography 148

[85] D.-K. Yu, Q. Gu, H.-T. Wang, and J.-L. Shen, “Bond-operator approach to the

bilayer Heisenberg antiferromagnet,” Phys. Rev. B, vol. 59, pp. 111–114, Jan 1999.

[86] A. Collins and C. J. Hamer, “Two-particle bound states and one-particle structure

factor in a Heisenberg bilayer system,” Phys. Rev. B, vol. 78, p. 054419, Aug 2008.

[87] H. Liao and T. Li, “Variational study of the quantum phase transition in bilayer

Heisenberg model with bosonic RVB wave function,” ArXiv e-prints, Feb. 2011.

[88] M. B. Stone, M. D. Lumsden, S. Chang, E. C. Samulon, C. D. Batista, and I. R.

Fisher, “Singlet-triplet dispersion reveals additional frustration in the triangular-

lattice dimer compound Ba3Mn2O8,” Phys. Rev. Lett., vol. 100, p. 237201, Jun

2008.

[89] B. Kumar, “Bond operators and triplon analysis for spin-S dimer antiferromag-

nets,” Phys. Rev. B, vol. 82, p. 054404, Aug 2010.

[90] R. Ganesh, S. V. Isakov, and A. Paramekanti, “Néel to dimer transition in spin-S
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