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Oilfield definitions 

 Fracture: A crack or surface of breakage 
within rock not related to foliation or cleavage 
in metamorhic rock along which there has 
been no movement.  

 
 Fault: A break or planar surface in brittle rock 

across which there is observable 
displacement. 
 Depending on the relative direction of displacement 

between the rocks, or fault blocks, on either side of 
the fault, its movement is described as normal, 
reverse or strike-slip.  

http://www.glossary.oilfield.slb.com/default.cfm 
 

http://www.glossary.oilfield.slb.com/default.cfm�
http://www.glossary.oilfield.slb.com/DisplayImage.cfm?ID=75�
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Rock Failure in 3D Stress Space 
Rock failure is controlled by effective 
stresses; i.e. (total stress - pore pressure) 
 
Tensile failure criterion:  
 
 
Mohr-Coulomb Shear failure criterion: 
 
 
Compactive failure criterion:  
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Earth Stresses 
 Vertical stress: Given by weight of overburden 

 
 
 Average density <ρ>~1.8-2.3g/cm3 

 

 Normal pore pressure: 
 Average pore fluid density: <ρf>∼1.05 g/cm3 

 
 Horizontal stress: Gravitational component: 

   κ may be < (usually the case at depth) or > 1 (often near the 
Earth’s surface) 

 σH > σh due to tectonics, topography or structural heterogeneiteies 
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World Stress Map 

http://dc-app3-14.gfz-potsdam.de/pub/stress_data/stress_data_frame.html 
 

http://dc-app3-14.gfz-potsdam.de/pub/stress_data/stress_data_frame.html�
http://dc-app3-14.gfz-potsdam.de/pub/stress_data/stress_data_frame.html�
http://dc-app3-14.gfz-potsdam.de/pub/stress_data/stress_data_frame.html�
http://dc-app3-14.gfz-potsdam.de/pub/stress_data/stress_data_frame.html�
http://dc-app3-14.gfz-potsdam.de/pub/stress_data/stress_data_frame.html�
http://dc-app3-14.gfz-potsdam.de/pub/stress_data/stress_data_frame.html�
http://dc-app3-14.gfz-potsdam.de/pub/stress_data/stress_data_frame.html�
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Natural Fractures & Faults –  
for Good & Bad… 
 Fractures & faults influence fluid flow 

 Sealing / Leaky faults? 
 Conductive / Closed fractures?  

 
 Fractures & faults influence wells during drilling and production 
 Risk of borehole instability (fault slip) or mud loss into fractures 

during drilling 
 Risk of casing collapse in producing wells 
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Man-Made Fractures & Faults –  
for Good & Bad… 
Well-induced rock failure: 
 Hydraulic fractures generated by increasing well pressure 

 Enhanced production by facilitating fluid flow 
 Subsurface storage of solid or fluid waste  

 Hole collapse by shear or tensile failure by reducing well 
pressure 
  Borehole failure / breakouts formed during drilling may lead 

to ”stuck pipe”/”tight hole”  
 Sand failure in producing wells may lead to erosion of 

production equipment, but may also enhance petroleum 
production 
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Borehole Stresses: Collapse case 
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Borehole Stresses: Hydrofrac case 

Stress concentration near vertical impermeable borehole wall (based 
on linearly elastic rock and isotropic horizontal stresses) 

At 
borehole 

wall: 

w rp σ=
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Field example: Gas Shales 
 The 1st producing US natural gas well was drilled in shale in New 

York in 1821 
 During the last 10 years, US development of gas shale has increased 

steadily; in 2009 amounting to an equivalent of 30 % of US crude oil 
production 

 Recoverable resources have ben estimated to cover ∼ 100 years of 
US gas consumption 

Europe: Several 
prospects are evaluated, 
Poland about to start 
production 

Zoback et al., WWI 2010 

http://www.dailyyonder.com/files/images/shale_map.png�
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Field Example: Gas Shales 
 Shale gas is produced directly from the source 

rock (not necessarily shale in geological terms! 
– clay contents may be 10 – 40 %) 

 Shales have low permeability (towards 
nanoDarcy) 

 Shale gas reservoirs are often naturally 
fractured 

 Natural gas is in fractures, in pores and 
adsorbed to organic matter 

 The key to success has been combined use of 
horizontal wells & multi-stage hydraulic 
fracturing 

 But: Recovery peaks early (after ~ 1 year) and 
shows a rapid decline (over ~ 10 years) 
 
 

Zoback et al., WWI 2010 
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Field example: Gas Shales 

 Massive hydraulic fracturing is necessary because of extremely low 
rock permeability 

 Need to know where fracture grows, and to what extent it contribues 
to production 

 Evironmental aspects: 
 Hydrofrac fluid effects on water quality? 

 Use of enormous amounts of water in dry places… 
 Gas leakage from reservoir to surface? 
 Impact on residents and land use –”footprints” 
  On the other hand: Use of natural gas is ”green” compared to use of coal 

and oil… 
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Field example: Borehole Stability 

 5-10 % of drilling time world wide is spent on ”stuck pipe” / ”tight hole” 
incidents – amounting to billion(s) of $ per year 

 Most instabilities occur in overburden or interbedded reservoir shales 
 Solutions through well design and choice of mud weight & mud 

chemistry 
 Need to: 

 Understand relevant mechanisms at in situ operational conditions 
 Model mechanisms with a borehole stability model 
 Generate proper input data to modeling 
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Mechanics of Borehole Failure 

 Shear failure 
→ Tight hole/stuck pipe  
→ Decreased borehole diameter (typically soft shales) 

(“Gumbo shale”) 
→ Increased borehole diameter & cavings  

(typically more brittle shales) (“Sloughing shale”) 
→ Plasticity is a key property 

 
 Tensile failure (too high mud weight) 
→ Mud losses 

 
 Low (nanoDarcy & below) permeability 
→ Time dependent stability 

 
 Mineralogy 
→ Drilling fluid – shale interaction 

Borehole instability problems in shales may be related to 

Lab tests on hollow cylinder samples by 
SINTEF Petroleum Research 
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Man-Made Fractures & Faults –  
for Good & Bad… 

Reservoir-induced faults & fractures 
 Reservoir depletion leads to increased 

effective stresses inside depleted zone 
(reservoir), vertical stress reduction above 
centre and vertical stress increase near 
edges (stress arching) 

 In ideal elastic case with no contrast 
between reservoir and surroundings, the 
mean stress is constant (no volumetric 
strain) in surrounding formations 

Reservoir

surface

compaction

S T R E S S        A R C H

Stretching and
reduction in v v

Increase 
in

Incresed 
shear
stress

Casing
subject to
shear

 Injection acts opposite to depletion, except for non-elastic effects of 
stress reversal 

Fjær, 2005 
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Field Case: Ekofisk Subsidence 
Ekofisk is a major 
North Sea Oil 
Field, producing 
from naturally 
fractured, high 
porosity chalk 
 

Chin & Nagel, 2004 

Courtesy of 
ConocoPhillips 
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Field Case: Ekofisk subsidence 

 Evidence that field is in marginally stable state, so that new 
fractures (faults!) are generated all the time, maintaining 
productivity 

Teufel, 1991 

 Water injection (since 
1989) led to accelerated 
compaction,  which has led 
to dramatic increase in 
production 
 
 Field life extended from 
2011 to > 2045! 
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Field Case: Ekofisk incident 2002 

Leakage from an injector well into 
overburden shales started in 1999, but 
was not noticed until 2002, when a 
significant Earthquake occurred 
 
15-25 cm uplift of the sea-floor can be 
seen North of the main reservoir, which 
is subsiding by 10-20 m 
 
The inflated zone was detected in 4D 
seismics, showing slow-down inside & 
speed-up above and below 

Guri Tveitnes, MSc Thesis @ NTNU, 2009 
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Research Example:  
Compaction Bands 

 Holt, R.M., Li, L. &  Holcomb, D.J. (2008) A qualitative comparison 
between discrete particle modeling and laboratory observations of 
compaction bands in porous rock. ARMA 08-292; pres. at ”San 
Fransisco Rocks”; 6 pp. 
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Strain Localization 

Localized strain in the form of 
shear bands or compaction 

bands is a source of wellbore 
instabilities during drilling and 

production, casing damage, and 
may potentially lead to large 

permeability changes. 

Compaction Band: Localized 
compaction in a band normal 
to the major principal stress 
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Compaction Localization – Observations 

Olsson & Holcomb, 2000 
Mollema and  Antonellini, 1996 
Sternlof, 2004 
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Propagation of a CB 
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compaction band 
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fundamental nature 
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practical 

implications 

The plane associated with AE is 
propagating through the sample in a 
screw like motion with a band angle 
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Holcomb, Gettemy & Olsson, 2005 
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Compacted 
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Strain Localization studies using PFC2D 

 24601 circular disk elements ⇒ 18642 
numerical grains  (8427 clusters + 10215 
single particles)  

Particle 
properties 

Contact modulus (GPa) Stiffness ratio 
(normal/tangential) 

15 1.5 

Bond properties 
Bond 
modulus 
(GPa) 

Stiffness ratio 
(normal/tangential) 

Tensile 
strength 
(MPa) 

Shear strength 
(MPa) 

Intergranular 40 1.2 20 22 

Intragranular 60 1.2 80 100 
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Simulations: Biaxial tests 

 Inter- and intragranular bonds 
inserted at σx = σy = 1 MPa 
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Failure evolution: Low confinement 

 Low confinement (2 MPa): 
 1st broken bond @ 5.2 MPa axial stress 
 Peak axial stress = 13.7 MPa 
 3215 broken bonds in total: Predominantly intergranular tensile bond 

breakages; 3.4 % of cracks are intragranular 
 Shear bands developed primarily during stress relief periods 
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Failure evolution: High confinement 

 High confinement (14 MPa): 
 1st broken bond @ 6.2 MPa axial stress; 86 cracks in hydrostatic part 
 Peak axial stress = 29.7 MPa 
 9203 broken bonds in total: Both intergranular tensile & shear bond 

breakages; 8.4 % of cracks are intragranular 
 Low angle shear bands + Compaction band like features  
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Research Example:  
Development of a Numerical Rock 

Mechanics Laboratory 

 Li, L., Larsen, I. & Holt, R.M. (2011) Grain scale modeling of rock 
mechanical and petrophysical behaviour. Pres. at 9th Euroconference on 
Rock Physics & Geomechanics, Trondheim, Norway. 
http://www.ntnu.edu/c/document_library/get_file?uuid=017f5dd5-fe70-
4890-a440-aa5b6afc4798&groupId=3969452 
 

http://www.ntnu.edu/c/document_library/get_file?uuid=017f5dd5-fe70-4890-a440-aa5b6afc4798&groupId=3969452�
http://www.ntnu.edu/c/document_library/get_file?uuid=017f5dd5-fe70-4890-a440-aa5b6afc4798&groupId=3969452�
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Discrete element modeling of rock 
properties under stress 

A DEM model (here 
using PFC3D from Itasca 

 To simulate the deformation of an assembly of 
elastic spheres, in the simplest case, a DEM model 
may be identical to or better than a grain-pack-based 
effective medium model. 

 Simplified bonding logic can be applied in order to 
simulate rock or rock-like material. 

Wave propagation, complex rock deformation and 
failure behavior can be directly simulated. 
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Generation of a microstructure-based 
model for sandstone 

Sandstone 
specimen 
(may be from 
disintegrated 
core material 
or drill 
cuttings) 

3D micro-CT 
image 

Segmented 3D 
micro-CT data 

Discrete element 
model of the 
sandstone (Each 
sand grain is 
represented by a 
cluster of elements 
of the same color.) 
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Using clusters of elements to 
represent grains 

Two sets of bonding parameters: 

Intergranular bonds: for a pair of 
elements which belong to two different 
grains. 

Intragranular bonds: for a pair of 
elements which belong to the same 
grain. 
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Model calibration to determine input 
parameters  

Model generation 

Load the model 
hydrostatically to 
different pressures 

Triaxial test with 
15 MPa confining 
stress 

Triaxial test with 5 
MPa  
confining stress 

Triaxial test with 2 
MPa  
confining stress 

Fit the results of different lab tests with real rock specimens using 
the same model (same parameters).  
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Research Example:  
Development of Modified DEM Model 

for large scale 

 Alassi, Haitham (2008)Modeling reservoir geomechanics using discrete 
element method: Application to reservoir monitoring. PhD Thesis at 
NTNU 2008 :233. 

 Alassi, H., Holt, R. & Landrø, M. (2010) Relating 4D seismics to reservoir 
geomechanical changes using a discrete element approach. Geophysical 
Prospecting 58, 657-668. 

 Alassi, H., Holt, R.M., Nes, O.-M. & Pradhan, S. (2011) Realistic 
Geomechanical Modeling of Hydraulic Fracturing in Fractured Reservoir 
Rock. SPE149375.  
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Ongoing development within projects related to CO2    
storage and to gas shale exploration and exploitation 

Status: 
 Converts between FEM & DEM 
 Fluid coupling in place 
 A 3D version has been made 

 

Modified Discrete Element Model 
(MDEM) for well, reservoir and basin 
scale geomechanics 
 

• Objective:  To simulate stress and strain evolution, including 
fracture initiation and growth, as a result of subsurface  depletion / 
injection in complex geological settings   

 
36 
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Effect of initial stress field on fracture 
growth 
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Fracture development from 
a horizontal injection well: 
Fracture orientation depends 
on intial stress anisotropy – 
horizontal fractures are 
possible even if the initial 
stress state is in normal 
faulting regime 

Effect of initial stress field on fracture 
growth 

Initial Stress Ratio: 
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'
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Modeling Hydraulic Fracturing, 
the Coupled Model 

• The Pressure P (from TOUGH 2) is applied 
as external load to MDEM. 

• The permeability multiplier α is updated based 
on fracturing condition.  

24 24
kq Pα
µ

= ∆

Geomechanical 
Model, MDEM 

Fluid Flow 
Simulator, 
TOUGH2 

α P 
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Effects of “brittleness” 

Modeling Hydraulic Fracturing, 
Single Fracture Case 

Modeling Tensile & 
Shear failure 
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Modeling Hydraulic Fracturing in 
Fractured Rock, Case 1 
 Pre-existing 

fractures affect 
the fracture 
propagation 
behavior.  

New Fractures 
Development 

Pressure 
Distribution 
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Modeling Hydraulic Fracturing in 
Fractured Rock, Case 2 (Dense ) 

 Less fractures are 
developed 
because of good 
fluid flow 
communication.    

New Fractures 
Development 

Pressure 
Distribution 
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Last Research Example:  
Anisotropy of Fractured Rock 

 Rathore, J.S., Fjær, E., Holt, R.M. & Renlie, L. (1995) 
P- and S-wave anisotropy of a synthetic sandstone 
with controlled crack geometry. Geophysical 
Prospecting 43, 711-728. 
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Thomsen (1995): Pore 
pressure equalization 

between cracks and pores  
⇒ anisotropy prevails also in 

saturated rocks 

Hudson (1980): No normal 
compliance in thin, saturated 

cracks  
⇒ saturation nearly 

eliminates anisotropy 

Velocities are influenced by the crack density ζ = n <a3> & 
the crack orientational distribution + fluid saturation 
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Anisotropy from Cracks: 
Experimental validification 

For a water-
saturated sample, 
the data fitted 
Thomsen’s model, 
permitting fluid 
transport between 
cracks and pores. 
For the dry case, 
both Hudson and 
Thomsen agree with 
the data. 
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