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Sparsification

Approximate any graph G by a sparse 
graph H.

– Nontrivial statement about G

– H is faster to compute with than G

G H



H approximates G if 

for every cut S½V

sum of weights of edges leaving S is preserved

Can find H with O(nlogn/2) edges in              time

Cut Sparsifiers [Benczur-Karger’96]

S S



The Laplacian (quick review)

Quadratic form

Positive semidefinite

Ker(LG)=span(1) if G is connected



Cuts and the Quadratic Form

For characteristic vector

So BK says:



A Stronger Notion [ST’04]

For characteristic vector

So BK says:



Why?



1. All eigenvalues are preserved

By Courant-Fischer,

G and H have similar eigenvalues.

For spectral purposes, G and H are equivalent.



(xTLx says a lot)

2. Behavior of electrical flows.

(xTLx = “energy” for potentials x:V->R)

3. Behavior of random walks: commute 
times, mixing time, etc.

4. ‘Relative condition number’ in lin-alg.

5. Fast linear system solvers.

strong notion of approximation.



Examples



Example: Sparsify Complete Graph by 
Ramanujan Expander [LPS,M]

G is complete on n vertices. 

H is d-regular Ramanujan graph.



Example: Sparsify Complete Graph by 
Ramanujan Expander [LPS,M]

G is complete on n vertices. 

H is d-regular Ramanujan graph.

So,           is a good sparsifier for G.

Each edge has weight (n/d)
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Results



Results

We can do this well for every G.

(upto a factor of 2)
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Expanders/Ramanujan graphs exist:

“There are very sparse H that look like Kn”
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New Result

Expanders/Ramanujan graphs exist:

“There are very sparse H that look like Kn”

Sparsifiers exist:

“There are very sparse H that look like any 
graph G.”

avg. degree 2d

degree d

deterministic 
O(dmn3)
algorithm

weighted
subgraph

1+²
1¡²

8=²2



The Method



The Method

(13-approximation with 6n edges.)



Step 1: Reduction to Linear 
Algebra



Goal



Outer Product Expansion

Recall:



Outer Product Expansion

Recall:

For a weighted subgraph H:











A closer look at ve

m vectors
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A closer look at ve
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m vectors

in Rn-1

“decomposition 
of identity”

A closer look at ve



Choosing a Subgraph

G H



New Goal

G H
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If

then there are scalars with

and .



Step 2: Intuition for the 
proof



Main theorem

If

then there are scalars with

and .



Main theorem

If

then there are scalars with

and . will build this one 
vector at a time.



What happens when we add a vector?



Interlacing



More precisely

Characteristic Polynomial:



More precisely

Characteristic Polynomial:

Matrix-Determinant Lemma:



More precisely

Characteristic Polynomial:

Matrix-Determinant Lemma:are zeros of this.



Physical model of interlacing

i = positive unit charges

resting at barriers on a slope



Physical model of interlacing
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Physical model of interlacing

<v,ui>
2 =charges added

to barriers



Physical model of interlacing

Barriers repel eigs.



Physical model of interlacing

Barriers repel eigs.

gravity

Inverse law 
repulsion



Physical model of interlacing

Barriers repel eigs.



Examples



Ex1: All weight on u1
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Ex1: All weight on u1



Ex1: All weight on u1



Ex2: Equal weight on u1 ,u2



Ex2: Equal weight on u1 ,u2



Ex2: Equal weight on u1 ,u2



Ex3: Equal weight on all u1, u2 , 
…un



Ex3: Equal weight on all u1, u2 , 
…un



Adding a balanced vector



Consider a random vector

If 



Consider a random vector

If 

thus a ‘random’ vector has the same expected 
projection in every direction i :



Ideal proof
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Ideal proof



Ideal proof



Punch Line



Punch Line



Punch Line find actual vectors 
that realize this 
ideal behavior.



Step 3: Actual Proof
(for 6n vectors, 13-approx)



Broad outline: moving barriers

0 n-n
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Step 1

0 n-n

0

+1/3 +2

-n+1/3 n+2

tighter 
constraint

looser constraint
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Step 6n

0 … n

13-approximation with 6n vectors.

13n
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need to show that an appropriate
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Problem

is not strong enough to do the induction.

need to show that an appropriate

always exists.



Problem

is not strong enough to do the induction.

need to show that an appropriate

always exists.
need a better way to measure

quality of eigenvalues.



The Upper Barrier



The Upper Barrier



No i within dist. 1
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.

.
No k i within dist. k
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No i within dist. 1
No 2 i within dist. 2
No 3 i within dist. 3

.

.
No k i within dist. k

The Upper Barrier
‘Total repulsion’ in 

physical model



The Lower Barrier



The Beginning
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The Beginning
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Step 6n

0 … n

13-approximation with 6n vectors.

13n



Goal

+1/3 +2

Lemma. 

can always choose                           so

that both potentials do not increase.



The Right Question

“Which vector should we add?”



The Right Question

“Which vector should we add?”

“Given a vector, how much of it can we 
add?”



Upper Barrier Update

Add & set

+2
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Upper Barrier Update

Add & set

Sherman-Morrisson
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Upper Barrier Update
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Upper Barrier Update

Add & set

+2



How much of            can we add?

Rearranging:



How much of            can we add?

Rearranging:



The Lower Barrier

Similarly:



Goal

Show that we can always add some vector while 
respecting both barriers.

+1/3 +2



There is always a vector with

Both Barriers



There is always a vector with

Both Barrierscan add must add



There is always a vector with

Both Barriers

Then, can squeeze scaling factor in between:

can add must add



Taking Averages



Taking Averages
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Bounding Tr(UA)

induction

convexity
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Step i+1

0

+1/3 +2

Lemma. 

can always choose       

so that potentials do not increase.


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Step 6n

0 … n

13-approximation with 6n vectors.

13n



Main Sparsification Theorem

If

then there are scalars with

and .





Sparsification of Graphs

G H

G H 



Twice-Ramanujan

Fixing           steps and tightening parameters 
gives

(zeros of Laguerre polynomials).



Major Themes

• Electrical model of interlacing is useful

• Can use barrier potential to iteratively
construct matrices with desired spectra

• Analysis of progress is greedy / local

• Requires fractional weights on vectors



Sparsification of PSD Matrices

Theorem. If

then there are scalars                  for which

and at most are nonzero. 

V =
P
i viv

T
i

si ¸ 0

V ¹Pi siviv
T
i ¹ (1+ ²)V

n=²2



Given: 

Spectral Theorem: If rank(V)=n then 

for eigenvectors ui.

To put this in context…

V =
P
i·n¸iuiu

T
i

V =
P
i·m viv

T
i

n terms!



ui need not be ‘meaningful’ directions…

(e.g., vi = edges of graph)

Given: 
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Given: 

Spectral Theorem: If rank(V)=n then

This Theorem. Can find scalars si so that: 

To put this in context…

V =
P
i·n¸iuiu

T
i

V =
P
i·m viv

T
i

n terms

V »²
P
i siviv

T
i

terms!n=²2



Open Questions

• The Ramanujan bound

• Unweighted sparsifiers for Kn

• A faster algorithm

• Directed graphs? (must be weaker notion)

• The Kadison-Singer Conjecture
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“meaningful” directions
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Sums of Outer Products

A=
P

i·m viv
T
i vi 2Rn;mÀ n

•Q: Can we write A as a sparse sum?

•A: Yes, Spectral Theorem: 

•Good: only n terms = optimal!

•Bad: ui hard to interpret in terms of vi

A=
P
i·n¸iuiu

T
i for eigvecs ui



Example: Graphs

Undirected graph G(V,E)

Laplacian Matrix 

LG =
P

ij2E(ei ¡ ej)(ei ¡ ej)
T
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Example: Graphs

Undirected graph G(V,E)

Laplacian Matrix 

Interested in `sparse approximation’: write LG as 
sum of a small number of edges.

Spectral Thm: LG = i=1:n ¸i ui ui
T

Sparse, but ui do not correspond to edges… : ( 

LG =
P

ij2E(ei ¡ ej)(ei ¡ ej)
T



Spectral Sparsification [BSS’09]

Theorem. Given

there are nonnegative weights si¸ 0 s.t.

and at most  1.1n of the si are nonzero.

A=
P

i·m viv
T
i

A» ~A=
P

i siviv
T
i



Spectral Sparsification [BSS’09]

Theorem. Given

there are nonnegative weights si¸ 0 s.t.

and at most  1.1n of the si are nonzero.

•cf. n terms for ¸i uiui
T

A» ~A=
P

i siviv
T
i

A=
P

i·m viv
T
i

•same vi



Back to Graphs

Undirected graph G(V,E)

Laplacian Matrix 

LG =
P

ij2E(ei ¡ ej)(ei ¡ ej)
T



Back to Graphs

Undirected graph G(V,E)

Laplacian Matrix 

Apply Theorem: 

LG =
P

ij2E(ei ¡ ej)(ei ¡ ej)
T

~LG =
P

ij2E si(ei ¡ ej)(ei ¡ ej)
T

L » ~L

•· 1.1n edges !


