Identities & Sylvester-Gallai Configurations

Nitin Saxena (Hausdorff Center for Mathematics, Bonn)

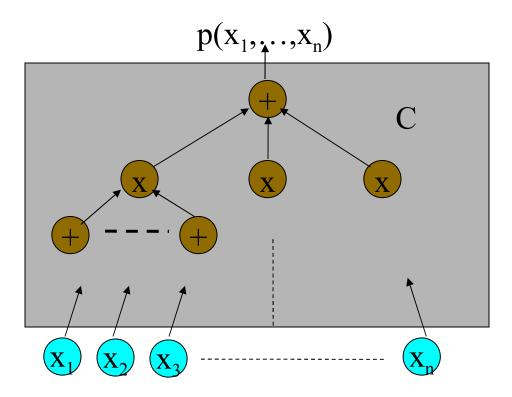
Joint work with

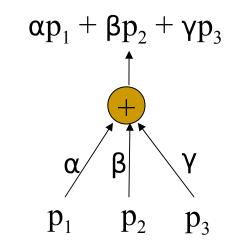
C. Seshadhri (IBM Almaden Research Center, San Jose)

The problem of PIT

- Polynomial identity testing: given a polynomial p(x₁,x₂,...,x_n) over F, is it identically zero?
 - All coefficients of $p(x_1,...,x_n)$ are zero.
 - (x+y)² x² y² 2xy is identically zero.
 So is: (a²+b²+c²+d²)(A²+B²+C²+D²) - (aA+bB+cC+dD)² - (aB-bA+cD-dC)² - (aC-bD-cA+dB)² - (aD-dA+bC-cB)²
 - x(x-1) is NOT identically zero over F_2 .

Circuits: Blackbox or not

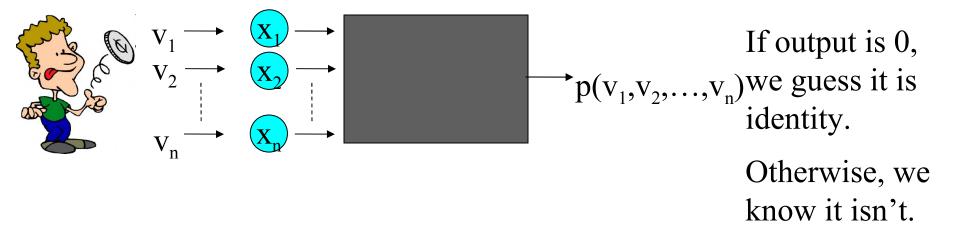




We want algorithm whose running time is polynomial in size of the circuit.

- Non blackbox: can analyze structure of C
- Blackbox: cannot look inside C
 - Feed values and see what you get

A simple, randomized test



- [Schwartz80, Zippel79] This is a randomized blackbox poly-time algorithm.
- (Big) open problem: Find a deterministic polynomial time algorithm.
 - We would really like a black box algorithm

- Come on, it's an interesting mathematical problem. Do you need a further reason?
- [Impagliazzo Kabanets 03] Derandomization implies circuit lower bounds for permanent
- [AKS] Primality Testing ; $(x + a)^n x^n a = 0 \pmod{n}$
- [L, MVV] Bipartite matching in NC?...
- Many more

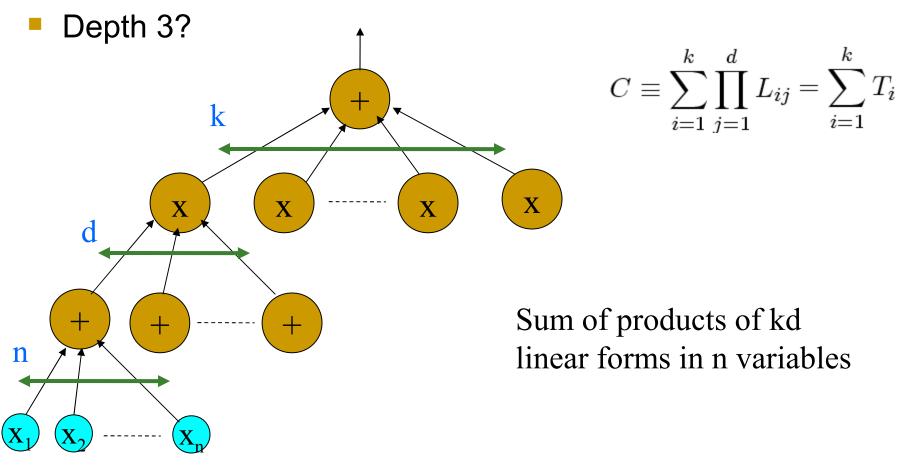
What do we do?

George Pólya 1887-1985

If you can't solve a problem, then there is an easier problem you *can* solve. Find it.

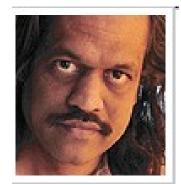
Get shallow results

- Let's restrict the depth and see what we get
- Depth 2? Non-blackbox trivial!
 - GK87, BOT88,...,KS01, A05] Polytime & blackbox



Some good news

M. Agrawal



V. Vinay

- They say...
- [Agrawal Vinay 08] Chasm at Depth 4!
- If you can solve blackbox PIT for depth 4, then you've "solved" it all.
- Build the bridge from depth 3 end!

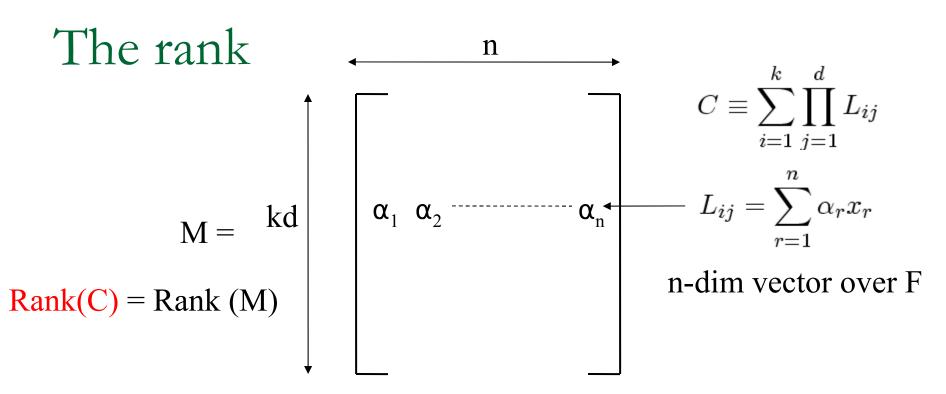
A ΣΠΣ(k,d,n) circuit:

- [Dvir Shpilka 05] Non-blackbox poly(n)exp((log d)^k) algorithm.
- [Kayal Saxena 06] Non-blackbox poly(n,d^k) algorithm.

The past...

<u>A Tale of Three Methods</u>

- [Karnin Shpilka 08] poly(n)exp((log d)^k) algorithm.
- [Saxena Seshadhri 09] poly(n)exp(k³(log d)²) algorithm.
- [Kayal Saraf 09] poly(n)exp(k^klog d) algorithm over Q.
- [Us] poly(n)exp(k²log d) algorithm over Q.
 This almost matches the non-blackbox test!
- [Us] poly(n)exp(k²(log d)²) algorithm.



- Introduced by [DS05]: fundamental property of depth 3 circuits
- [DS] Rank of simple minimal identity < (log d)^{k-2} (compare with kd)
- How many independent variables can an identity have?
 - An identity is very constrained, so few degrees of freedom

What we did

- Rank of depth 3 (simple minimal) real identity < 3k²
 There is identity with rank k, so this is almost optimal.
 Over any field, we prove 3k²(log 2d).
- Therefore, [KS] gives det. blackbox exp(k²log d) test.
- We develop powerful techniques to study depth 3 circuits.
 - Probably more interesting/important than result.
- Every depth 3 identity contains a (k-1)-dim Sylvester-Gallai Configuration (SG_{k-1} config.).

To be simple and minimal

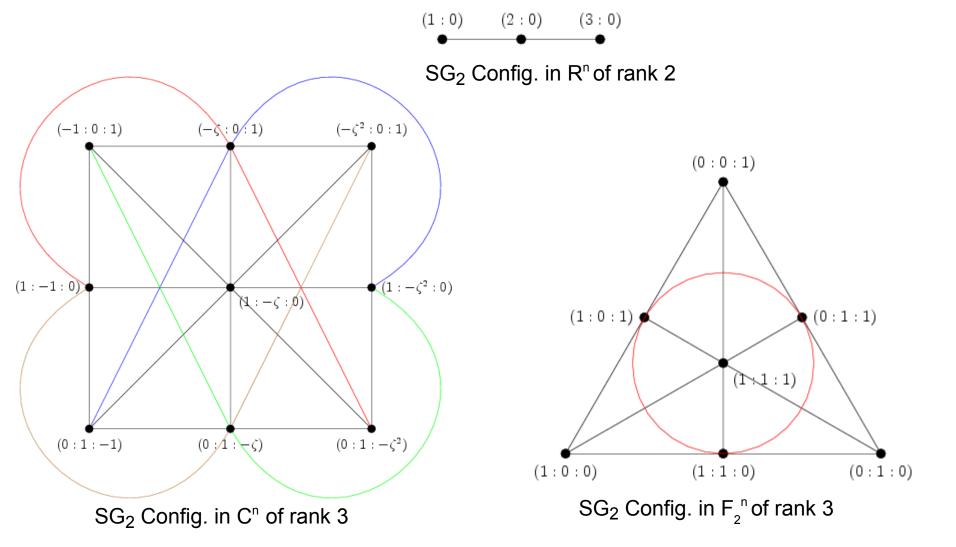
- Depth-3: $C = T_1 + T_2 + ... + T_k$
- Simplicity: no common (linear) factor for all T_r 's $x_1x_2...x_n - x_1x_2...x_n$ (Rank = n)
- Minimality: no subset of T_r's is identity
 - $x_1 x_2 \dots x_n z_1 x_1 x_2 \dots x_n z_1 + y_1 y_2 \dots y_n z_2 y_1 y_2 \dots y_n z_2$ (Rank = 2n+2)
- Strong minimality: T_1 ,..., T_{k-1} are linearly independent.

Meet Sylvester-Gallai (SG₂Config.)

- <u>Theorem</u>: If $S \subset \mathbb{R}^2$ is a finite set whose every two 2 points lie on a line passing through a third point. Then S is collinear.
- This is a fundamental property of the field R. 2
 - It is not true for C^2 .
- We abstract the following concepts out,
- SG_k-closed: S \subset Fⁿ such that for all linearly 2 independent $v_1, ..., v_k \in S$, there is another point of S in span $(v_1, ..., v_k)$.
- $SG_{k}(F,m)$: the largest rank of a SG_{k} -closed subset S ($|S| \le m$) of F^{n} .
- Rephrasing SG Theorem: $SG_2(R,m) \le 2$, for all m. 2

J. J. Sylvester 1814-1897

More Examples of SG₂ Config.



Higher dim Sylvester-Gallai

- Theorem [Hansen65, BE67]: $SG_k(R,m) \le 2(k-1)$.
- We feel that for any field F of zero char:
 SG_k(F,m) = O(k).
- $S:=F_p^r$ is SG_2 -closed. Thus $SG_2(F_p,m) = \Omega(\log_p m)$.
- We prove for any field: SG_k(F,m) = O(k log m).

Our Structure Theorem

- The rank of a simple, strongly minimal ΣΠΣ(k,d) identity is : SG_{k-1}(F,d) + 2k².
- Let the identity be C=T₁+...+T_k. We show that forms in T_i yield a SG_{k-1}-configuration in Fⁿ.
- Meta-Theorem: $\Sigma \Pi \Sigma(k)$ identity is an SG_{k-1}-configuration.

- From SG Theorems this gives rank bounds of:
 - O(k²) over reals.
 - O(k²log d) over all fields.

Where's the Beef ? k=3.

• $C = T_1 + T_2 + T_3 = \Pi L_i + \Pi M_j + \Pi N_k = 0$

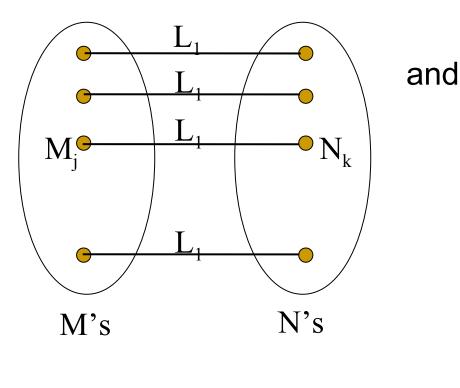
[AB99,AKS02,KS06] Go modulo!

$$\prod L_i + \prod M_j + \prod N_k = 0$$
Vanishes! $\prod L_i + \prod M_j + \prod N_k = 0 \pmod{L_1}$

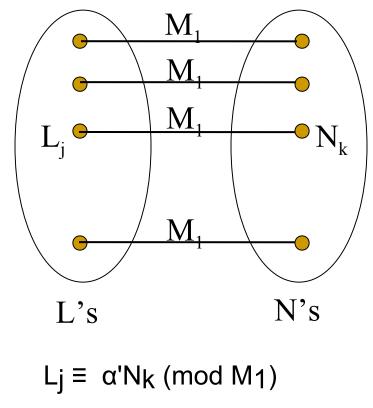
$$\prod M_j = -\prod N_k \pmod{L_1}$$

- By unique factorization, there is a bijection between M's and N's (they are same upto constants)
- This is the L_1 matching.

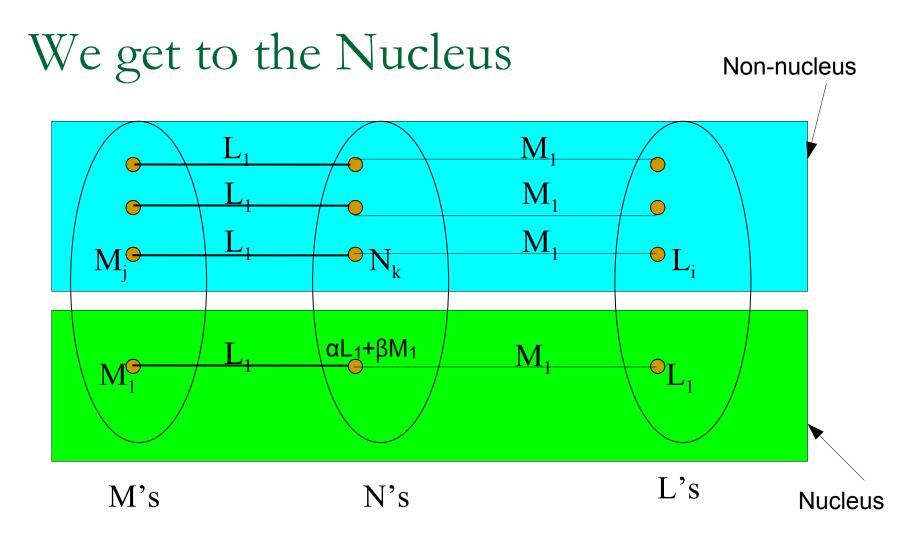
Matching all the Gates



 $M_{j} \equiv \alpha N_{k} \pmod{L_{1}}$ $M_{j} = \alpha N_{k} + \beta L_{1}$

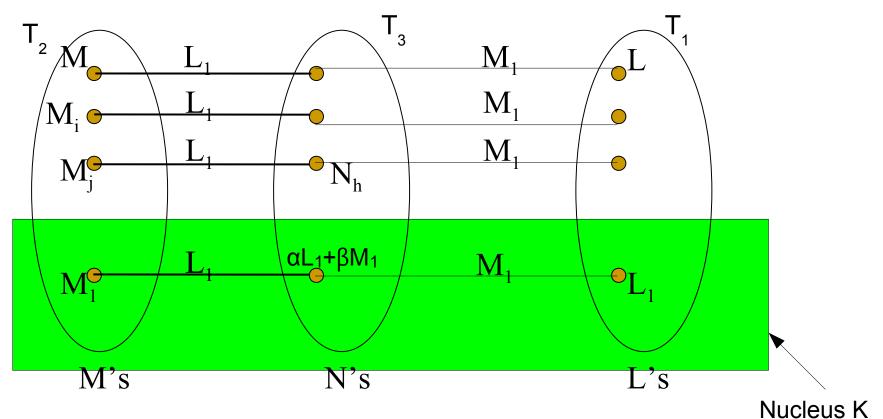


 $L_j = \alpha' N_k + \beta' M_1$



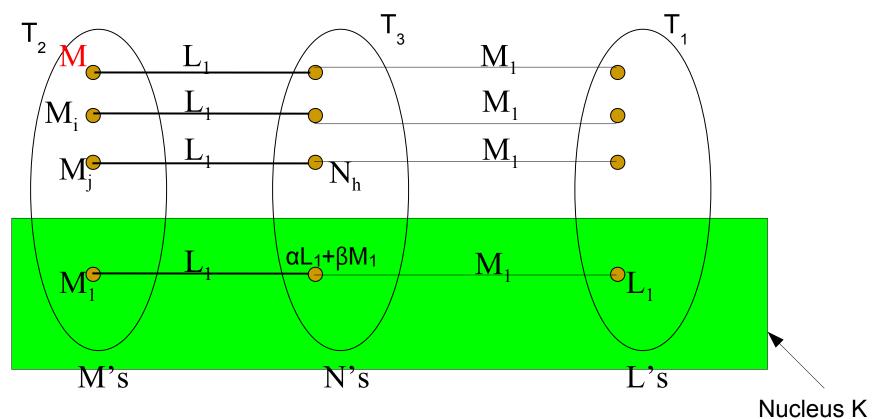
- Forms in nucleus are in span(L_1, M_1)=:K.
- Forms in non-nucleus are matched mod K.

Proof Idea



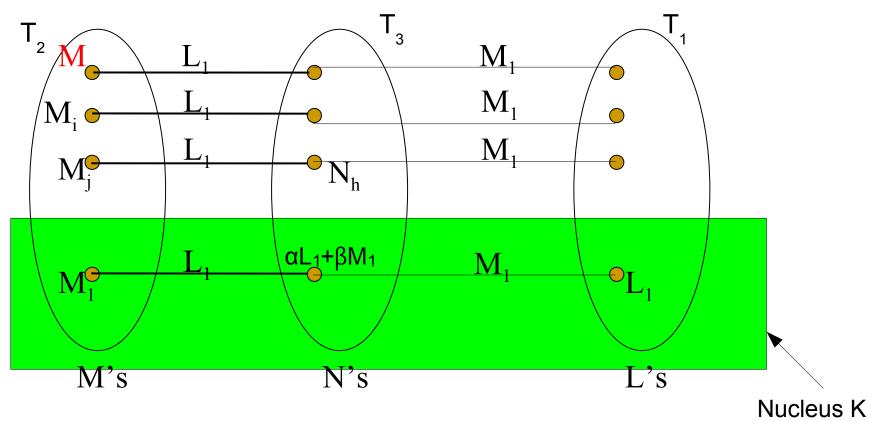
- Pick M_i, M_i non-similar mod K.
- $T_1 \equiv 0 \pmod{M_i, N_h}$
- There exists L in T₁ s.t. L = α Mi+ β Nh
- Its image M satisfies : M (mod K) ∈ span(Mi, Mj)

Proof Idea (Contd.)



- M (mod K) ∈ span(Mi, Mj)
- The non-nucleus part of T_i is SG₂-closed (mod K).
- Explicitly, the map (∑α_i x_i) → (α₁,...,α_n) converts linear forms to a SG₂-closed subset of Fⁿ/K.

Proof Idea (Contd.)

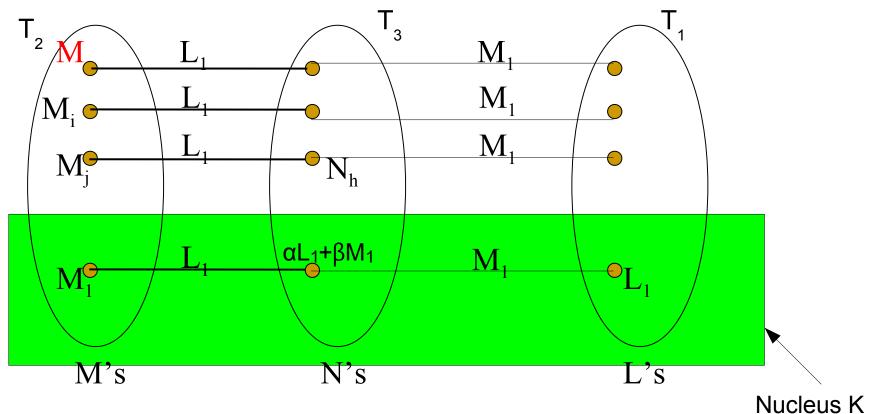


- The non-nucleus part of T_i is SG₂-closed (mod K).
- Rank of this identity $\leq 2 + SG_2(F,d)$

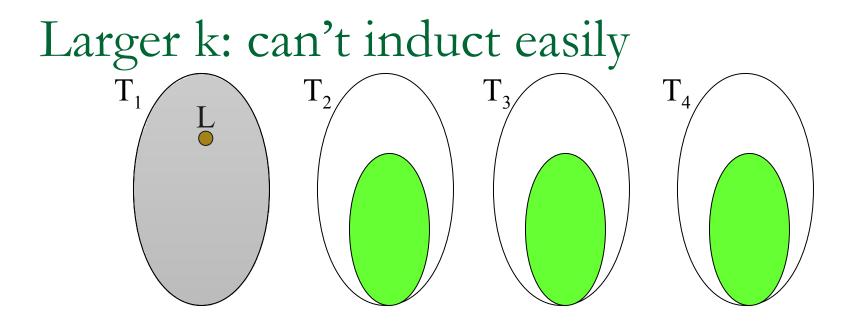
• Over reals, $\leq 2 + 2 = 4$

→ Any field, $\leq 2 + \log d = O(\log d)$

A Bonus...



- The non-nucleus part of T_i is SG₂-closed (mod K).
- By degree comparison, the green part forms a subidentity.
- The nucleus part is a simple minimal subidentity.

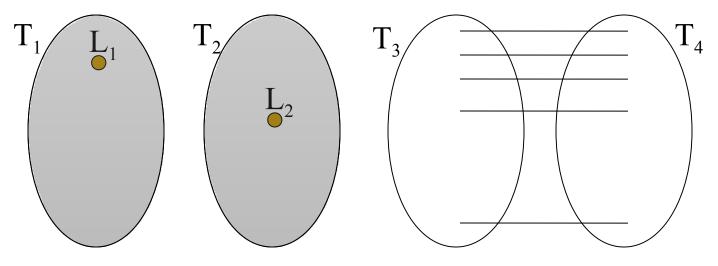


- $C = T_1 + T_2 + T_3 + T_4$
- $L \in T_1$. So how about C (mod L)? Top fanin is now 3.
- But C(mod L) may not be simple or minimal any more!
- $x_1x_2 + (x_3-x_1)x_2 + (x_4-x_2)x_3 x_3x_4$
- Going (mod x_1), we get $x_2x_3 + (x_4-x_2)x_3 x_3x_4$

The ideal way to Matchings

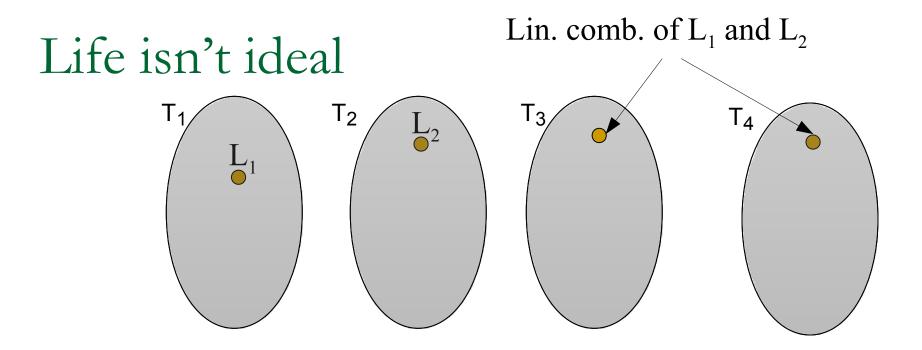
- We'll avoid induction and attack directly!
- We saw the power of matchings for k=3
- We extend matchings to ideal matchings for all k
 Looking at C modulo an ideal, not just a linear form

Ideal matchings



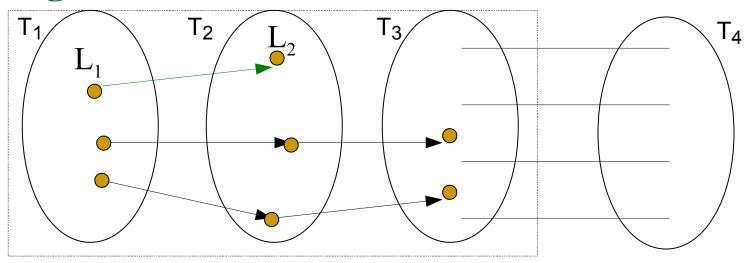
- C (mod L₁, L₂) or C (mod I)
 - I is ideal $<L_1, L_2>$
- $T_3 + T_4 = 0 \pmod{I}$

By unique factorization, we get I-matching



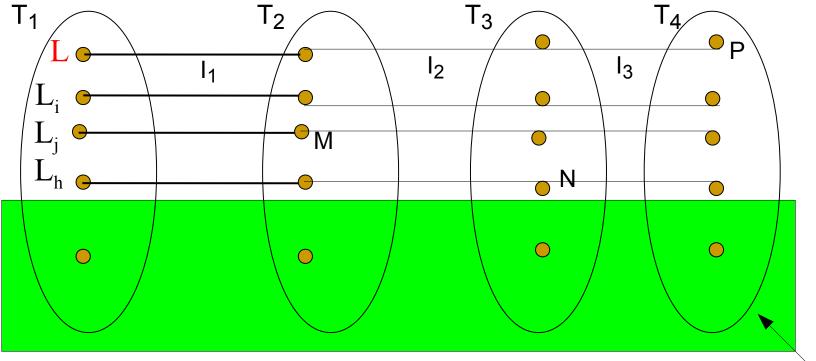
- C (mod L_1 , L_2) has no terms (i.e. we get 0=0)
- How can we get a matching?
- We need L_1 , L_2 s.t. T_3 (mod L_1 , L_2) is nonzero.

The Right Path



- We need L_1 , L_2 s.t. T_3 (mod L_1 , L_2) is nonzero.
- By minimality of C, $T_1+T_2+T_3 \neq 0$.
- A generalization of [KS06]'s non-blackbox ideas ensures the existence of a path {L₁, L₂} not hitting T₃.
- Now $T_3+T_4=0$ (mod L_1,L_2) is nontrivial and matches.

Summing Up...



Nucleus K:=span(I_1, I_2, I_3)

- The non-nucleus part of T_i is SG₃-closed (mod K).
- Rank of this identity \leq (rk K)+ SG₃(F,d)
- This idea (with a lot of work!) gives $\leq 2k^2 + SG_{k-1}(F,d)$
- The nucleus part is a simple, strongly minimal subidentity.

In conclusion...

- Interesting matching & geometric structures in depth 3 identities.
 - Combinatorial view of algebraic properties
- Every depth 3 identity hides a nucleus subidentity.
 - Can we characterize the nucleus?
- SG_k(F,d) is a fundamental property of fields.
 - Is SG_k(F,d)=O(k) for fields of zero char. (large char.) ?

A Saxena-Seshadhri paper