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Problem

Let n ≥ 2 and suppose that S ⊂ [n]× [n] with

|S | ≥ 2n − 1.

Then some three points in S determine a right angle.

If true, then sharp by letting

S = {(x , y) : x = 1 or y = 1} \ (1, 1).
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Heilbronn Problem/Conjecture (1947)

How large is the smallest triangle among n points in general
position in the unit square?

S – collection of n points in general position in the unit square

T (S) = area of smallest triangle

T (n) = max
S

T (S)
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Trivial: T (n) < c/n

Observation (Erdős): T (n) > c/n2

Explicit Construction (first lower bound)
n = prime, y = x2 mod n

I No three points on a line (line and parabola have at most two
common points)

I Every lattice triangle has area at least 1/2 (follows from
Pick’s Theorem)

I Shrink by a factor of n − 1. Areas shrink by a factor of
(n − 1)2.

I T (n) > 1
2(n−1)2

Conjecture: T (n) = Θ(1/n2)

Dhruv Mubayi Coloring Simple Hypergraphs



Trivial: T (n) < c/n

Observation (Erdős): T (n) > c/n2
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Upper Bounds

I Roth (1951)
1

n
√

log log n

I Schmidt (1971)
1

n
√

log n

I Roth (1972)
1

n1.117...+o(1)
, 1.117 . . . =

17−
√

65

8

I Komlós-Pintz-Szemerédi (1982)
1

n1.142...+o(1)

Lower Bound

Komlós-Pintz-Szemerédi (1982) T (n) >
c log n

n2
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1

n1.142...+o(1)

Lower Bound

Komlós-Pintz-Szemerédi (1982) T (n) >
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1

n1.142...+o(1)

Lower Bound

Komlós-Pintz-Szemerédi (1982) T (n) >
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Number Theory - Infinite Sidon Sets

S is a Sidon set if its pairwise sums are all distinct

Greedy Algorithm shows that there exists an infinite S with

|S ∩ [n]| > cn1/3

for all n

Ajtai-Komlós-Szemerédi (1981) (n log n)1/3

Ruzsa (1998) n
√

2−1−o(1)

Conjecture (Erdős) n1/2−ε
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Coding Theory

Fix k , r ≥ 2. Let A be an n ×M matrix over Z2 with

I k one’s in each column

I every r columns linearly independent over Z2 (i.e. every set of
at most r column vectors does not sum to 0)

M := M(n, k , r) = maximum number of columns in A

In other words, M is the maximum length of a binary linear code
with minimum distance at least r + 1 and parity check matrix with
n rows and every coordinate having at most k check equations.
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Lefmann-Pudlak-Savický (1997)

M(n, k , r) > cn
kr

2(r−1)

Results of Frankl-Füredi on union closed families yield

M(n, k , 4) < cn
d4k/3e

2 ,

so when k ≡ 0 (mod 3), M(n, k , 4) = Θ(n
2k
3 )

Kretzberg-Hofmeister-Lefmann (1999)
If r ≥ 4 is even, gcd(r − 1, k) = 1, then

M(n, k , r) > cn
kr

2(r−1) (log n)
1

k−1 .

Naor-Verstraëte (2009) Improvements for different ranges of k, r ;
connections to extremal graph theory
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Independent Sets in Hypergraphs

Let k ≥ 2 be fixed, n→∞

Fact (Turán’s theorem) Let H be a k-uniform hypergraph with
average degree d . Then

α(H) > ck
n

d1/(k−1)
.

Proof. Pick vertices randomly; delete a vertex for each edge
among picked vertices.

Sharp. Let H = K k
n , then d =

(n−1
k−1

)
= Θ(nk−1), d

1
k−1 = Θ(n) and

α(H) = k − 1 = Θ(1)
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What if H is locally sparse?

2−cycle

3−cycle

�� ��

�� ��

�	


��

��

4−cycle

girth g – no cycle of length less than g

simple or linear – girth 3 or no 2-cycle
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Theorem (Komlós-Pintz-Szemerédi k = 3,
Ajtai-Komlós-Pintz-Spencer-Szemerédi k ≥ 3 1982)

Let k ≥ 3 be fixed. Let H be a k-uniform hypergraph with girth at
least 5 and (average) maximum degree ∆. Then

α(H) > ck
n

∆1/(k−1)
(log ∆)1/(k−1).

Conjecture (Spencer 1990), Theorem (Duke-Lefmann-Rödl 1995)

Same conclusion holds as long as H is simple.
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Theorem (Komlós-Pintz-Szemerédi k = 3,
Ajtai-Komlós-Pintz-Spencer-Szemerédi k ≥ 3 1982)

Let k ≥ 3 be fixed. Let H be a k-uniform hypergraph with girth at
least 5 and (average) maximum degree ∆. Then

α(H) > ck
n

∆1/(k−1)
(log ∆)1/(k−1).

I T (n) >
c log n

n2

I |S | > c(n log n)1/3 (Improved by Ruzsa)

I M(n, k , r) > cn
kr

2(r−1) (log n)
1

k−1 .
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Graph Coloring

∆ = ∆(G ) = max degree of G

Greedy Algorithm: χ(G ) ≤ ∆ + 1

Brook’s Theorem: χ(G ) ≤ ∆ unless G = K∆+1 or G = C2r+1

What if G is triangle-free?

Borodin-Kostochka: χ(G ) ≤ 2

3
(∆ + 2)

What about independence number?

Ajtai-Komlós-Szemerédi, Shearer: α(G ) > c
n

∆
log ∆
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Ajtai-Komlós-Szemerédi, Shearer: α(G ) > c
n

∆
log ∆

Dhruv Mubayi Coloring Simple Hypergraphs



Question (Vizing 1968): What is the best possible bound on the
chromatic number of a triangle-free graph G in terms of its
maximum degree?

Random graphs show that there exist triangle-free graphs G with

χ(G ) > c
∆

log ∆

Kim (1995): If girth(G ) ≥ 5, then χ(G ) < c
∆

log ∆

Johansson (1997): If G is triangle-free, then

χ(G ) < c
∆

log ∆
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New Result

Theorem (Frieze-M) Let k ≥ 3 be fixed. Then there exists c = ck

such that every k-uniform simple H with maximum degree ∆ has

χ(H) < c

(
∆

log ∆

) 1
k−1

.

I The proof is independent of K-P-S and A-K-P-S-S (and
D-L-R) so it gives a new proof of those results

I The result is sharp apart from the constant c
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Semi-Random or “Nibble” Method

I A-K-S, K-P-S and A-K-P-S-S (1980-82) were perhaps the first
papers using this approach

I Rödl’s proof (1985) of the Erdős-Hanani conjecture on
asymptotically good designs

I Frankl-Rödl (1985) result on hypergraph matchings

I Pippenger-Spencer (1989) result of hypergraph edge-coloring

I Kahn (1990s) proved many results, list coloring using different
approach to P-S

I Kim (1995) graphs of girth five

I Johansson (1997) additional new ideas for triangle-free graphs

I Vu (2000+) extended Johansson’s ideas to more general
situations
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asymptotically good designs
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I Kim (1995) graphs of girth five

I Johansson (1997) additional new ideas for triangle-free graphs

I Vu (2000+) extended Johansson’s ideas to more general
situations
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More Tools

Concentration Inequalities

I Hoeffding/Chernoff

I Talagrand

I Local Lemma

I Kim-Vu polynomial concentration takes care of dependencies

Example of Kim-Vu: Let G = G (n, p), p = 1√
n

.

Fix a vertex x in G

T (x) is the number of triangles containing x

Then µ = E (T (x)) =
(n−1

2

)
p3 but triangle are not independent.

Still

P(|T (x)− µ| > δµ) < e−cδµ
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The Algorithm (k = 3)

I C = [q] – set of colors

I Ut – set of currently uncolored vertices

I Ht = H[Ut ] – subgraph of H induced by Ut

I W t = V \ Ut – set of currently colored vertices

I Ht
2 – colored graph

I pt
u ∈ [0, 1]C , u ∈ Ut – vector of probabilities of colors

I p0
u = (1/q, . . . , 1/q) – initial color vector
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For u ∈ U, c ∈ [q], tentatively activate c at u with probability

Θ · pu(c).

A color is lost at u if either

I there is an edge uu1u2 such that c is tentatively activated at
u1 and u2, or

I x has been colored with c and c has been tentatively
activated at v

In this case pu(c) = 0 for all further iterations

Assign a permanent color to u if some color c is tentatively
activated at u and is not lost

Parameters pu are updated in a (complicated) way to maintain
certain properties of Ht = H[U]
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Parameters (k = 3)

During the process, we must choose update values to maintain the
values of certain parameters:

I
∑

c pu(c) ∼ 1

I euvw =
∑

c pu(c)pv (c)pw (c)� log ∆
∆

I deg(v) ≤
(

1− 1
log ∆

)t
∆ ∼ e−t/ log ∆∆

I Also, entropy is controlled; key new idea of Johansson; don’t
need martingales, Hoeffding suffices

Continue till t = log ∆ log log ∆ and then apply Local Lemma.
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What next?

Independence number of locally sparse Graphs

Let G contain no K4

I Ajtai-Erdős-Komlós-Szemerédi (1981)

α(G ) > c
n

∆
log log ∆

I Shearer (1995)

α(G ) > c
n

∆

log ∆

log log ∆

I Major Open Conjecture (Erdős et. al.)

α(G ) > c
n

∆
log ∆
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More Optimism

Conjecture (Frieze-M)
Let F be a fixed k-uniform hypergraph. Then there exists c = cF

such that every F -free k-uniform hypergraph H with maximum
degree ∆ satisfies

χ(H) < c

(
∆

log ∆

) 1
k−1

.

Weaker Conjecture: χ(H) = o(∆
1

k−1 )

Algorithms??

Convert our proof to a deterministic polynomial time algorithm
that yields a coloring with c(∆/ log ∆)1/(k−1) colors

Moser-Tardos results yield a randomized algorithm
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Another Geometric Application

Problem (Erdős 1977)
Do n2 points in the plane always contain 2n − 2 points which do
not determine a right angle?

If true, then sharp (take [n]× [n] and use Problem at the
beginning)

Lower bounds on the number of points

I Erdős (1977) Ω(n2/3)

I Elekes (2009) Ω

(
n√

log n

)
I Gyárfás-M Ω(n) if Frieze-M Conjecture holds for k = 3 and

F = K 3
9
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Thank You
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