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Budapest’s Question

Question
What can we say about the structure
of a dense H-free graph?

Sós’69

Andrásfai, Erdős, Sós’74

Erdős, Simonovits’73
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Dense H-free
graphs

VC-dimension

VC-dimension
and dense
graphs

Kneser and
Borsuk graphs

VC(2)-dimension

Final remarks

Density

Question
What can we say about the structure
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Density

Question
What can we say about the structure
of a dense H-free graph?

A graph G on n vertices is dense
if δ(G) ≥ an for some constant a > 0.
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The structure

Question
What can we say about the structure
of a dense H-free graph?

I. We can study the topological structure, i.e. ask if
every maximal dense graph is a blow-up of one of
just few graphs:
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A “topological” approach to the structure

Examples:

Each maximal triangle-free graph Gn with δ(Gn) > 2n/5
is bipartite.
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A “topological” approach to the structure

Examples:

Each maximal triangle-free graph Gn with δ(Gn) > 2n/5
is bipartite.

Each maximal triangle-free graph Gn with δ(Gn) > 3n/8
is a blow-up of either K2 or C5.
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The structure

Question
What can we say about the structure
of a dense H-free graph?

II. We can study the chromatic properties, i.e. ask
whether each dense H-free graph has a small chromatic
number.
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A “chromatic” approach to the structure

Examples:

For each triangle-free graph Gn with δ(Gn) > n/3
we have χ(Gn) ≤ 4.
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A “chromatic” approach to the structure

Examples:

For each triangle-free graph Gn with δ(Gn) > n/3
we have χ(Gn) ≤ 4.

Andrásfai, Erdős, Sós’74.
For each Kk -free graph Gn with δ(Gn) > 3k−7

3k−4n
we have χ(Gn) ≤ k − 1.
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Cluster points

Each maximal triangle-free graph Gn with δ(Gn) > 2n/5
is bipartite.

Each maximal triangle-free graph Gn with δ(Gn) > 3n/8
is a blow-up of either K2 or C5.
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Cluster points

Each maximal triangle-free graph Gn with δ(Gn) > 2n/5
is bipartite.

Each maximal triangle-free graph Gn with δ(Gn) > 3n/8
is a blow-up of either K2 or C5.
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ντ (H)

Definition
ντ (H) is the smallest a ≥ 0 for which the following holds:

for every ǫ > 0 there exists f (ǫ) such that each
maximal H-free graph G on n vertices with
δ(G) ≥ (a + ǫ)n is a blow-up of a graph with at
most f (ǫ) vertices.
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νχ(H)

Definition
νχ(H) is the smallest a ≥ 0 for which the following holds:

for every ǫ > 0 there exists h(ǫ) such that each
H-free graph G on n vertices with
δ(G) ≥ (a + ǫ)n we have χ(G) ≤ h(ǫ).
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A few results on ν

νχ(H) ≤ ντ (H).
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A few results on ν

νχ(H) ≤ ντ (H).

νχ(K3) = ντ (K3) = 1
3 .

Hajnal’69, Erdős, Simonovits’73, Thomassen’04,
Łuczak’06, Brandt, Thomassé’10
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A few results on ν

νχ(H) ≤ ντ (H).

νχ(K3) = ντ (K3) = 1
3 .

Hajnal’69, Erdős, Simonovits’73, Thomassen’04,
Łuczak’06, Brandt, Thomassé’10

νχ(Kk ) = ντ (Kk ) = 2k−5
2k−3 .
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νχ(C2k+1) = 0 for k ≥ 2.
Thomassen’08
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A few results on ν

νχ(H) ≤ ντ (H).

νχ(K3) = ντ (K3) = 1
3 .

Hajnal’69, Erdős, Simonovits’73, Thomassen’04,
Łuczak’06, Brandt, Thomassé’10

νχ(Kk ) = ντ (Kk ) = 2k−5
2k−3 .

νχ(C2k+1) = 0 for k ≥ 2.
Thomassen’08

ντ (H) > 0 provided χ(H) ≥ 3.
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A second thought on H-free graphs

Question
What can we say about the structure
of a dense H-free graph?
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A second thought on H-free graphs

Conjecture

Let G be a C2k+1-free graph with

δ(G) >
2n

2k + 3
.

Then G is bipartite.

Theorem Győri, Nikiforov, Schelp’03

The above is true for k = 1, 2, 3, 4, and false otherwise.



On the structure
of dense H-free

graphs

T. Łuczak
S. Thomass é
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A second thought on H-free graphs

Conjecture

Let G be a C2k+1-free graph with

δ(G) >
2n

2k + 3
.

Then G is bipartite.

Theorem Győri, Nikiforov, Schelp’03

The above is true for k = 1, 2, 3, 4, and false otherwise.
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Dense H-free
graphs

VC-dimension

VC-dimension
and dense
graphs

Kneser and
Borsuk graphs

VC(2)-dimension

Final remarks

A second thought on H-free graphs

Example:
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A second thought on H-free graphs

Conjecture

Let G be a C2k+1-hom-free graph with

δ(G) >
2n

2k + 3
.

Then G is bipartite.

Theorem
The above is true for every k .
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A second thought on H-free graphs

Conjecture

Let G be a C2k+1-hom-free graph with

δ(G) >
2n

2k + 3
.

Then G is bipartite.

Theorem
The above is true for every k .
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ν̃χ(H)

Definition
ν̃χ(H) is the smallest a ≥ 0 for which the following holds:

for every ǫ > 0 there exists f (ǫ) such that each
maximal H-hom-free graph G on n vertices with
δ(G) ≥ (a + ǫ)n is a blow-up of a graph with at
most f (ǫ) vertices.

Theorem Łuczak, Thomass é
For every H either

ν̃χ(H) = 0 ,

or
ν̃χ(H) ≥ 1/3 .
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Definition
ν̃χ(H) is the smallest a ≥ 0 for which the following holds:

for every ǫ > 0 there exists f (ǫ) such that each
maximal H-hom-free graph G on n vertices with
δ(G) ≥ (a + ǫ)n is a blow-up of a graph with at
most f (ǫ) vertices.

Theorem Łuczak, Thomass é
For every H either
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Vapnik- Červonenkis dimension

Definition
Let F be a family of subsets of V . We say that a set
X ⊆ V is shattered by F if for each Y ⊆ X there is an
F ∈ F such that Y = F ∩ X .
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Example:
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Dense H-free
graphs

VC-dimension

VC-dimension
and dense
graphs

Kneser and
Borsuk graphs

VC(2)-dimension

Final remarks
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Vapnik- Červonenkis dimension

Definition
The VC-dimension of a family of sets F , denoted by
dVC(F), is the maximum size of a set shattered by F .

Definition
The VC-dimension d(G) of a graph G = (V , E) is the
VC-dimension of the family of sets

{N(v) : v ∈ V} .
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Vapnik- Červonenkis dimension

Definition
The VC-dimension of a family of sets F , denoted by
dVC(F), is the maximum size of a set shattered by F .

Definition
The VC-dimension d(G) of a graph G = (V , E) is the
VC-dimension of the family of sets

{N(v) : v ∈ V} .
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Vapnik- Červonenkis dimension

Theorem Haussler, Welzl’87

If G is a graph with vertex set [n] = {1, 2, . . . , n}, minimum
degree at least an, a > 0, and VC-dimension d , then the
covering number τ(G) of G is bounded from above by

32d
a

ln
(2d

a

)

.
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Weakly induced bipartite graphs
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VC-dimension and νχ

Theorem Łuczak, Thomass é

Let us suppose that a triangle-free graph G with n
vertices and δ(G) ≥ an, where a > 0, contains no weakly
induced copy of some bipartite graph H.
Then, χ(G) ≤ f (H, a).
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VC-dimension and νχ

Theorem Łuczak, Thomass é

Let us suppose that a triangle-free graph G with n
vertices and δ(G) ≥ an, where a > 0, contains no weakly
induced copy of some bipartite graph H.
Then, χ(G) ≤ f (H, a).

Proof Let G be a graph with δ(G) ≥ an without weakly
induced copy of H. Find in G a bipartite subgraph G′

such that δ(G′) ≥ an/2.
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Proof (cont.)

We shall argue that d(G′) is bounded.
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We shall argue that d(G′) is bounded.
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We shall argue that d(G′) is bounded.
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Proof (cont.)

We shall argue that d(G′) is bounded.



On the structure
of dense H-free

graphs

T. Łuczak
S. Thomass é
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Proof (cont.)

Hence, d(G′) is bounded, and by Vapnik-Červonenkis
theorem,

τ(G) ≤ τ(G′) ≤ f (H, a) .
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Proof (cont.)

Hence, d(G′) is bounded, and by Vapnik-Červonenkis
theorem,

τ(G) ≤ τ(G′) ≤ f (H, a) .
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Proof (cont.)

Hence, d(G′) is bounded, and by Vapnik-Červonenkis
theorem,

τ(G) ≤ τ(G′) ≤ f (H, a) .

However, since G is triangle-free,

χ(G) ≤ 2τ(G) ≤ 2f (H, a) .
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VC-dimension and νχ

Theorem Łuczak, Thomass é

Let us suppose that a triangle-free graph G with n
vertices and δ(G) ≥ an, where a > 0, contains no weakly
induced copy of some bipartite graph H.
Then, χ(G) ≤ f (H, a).

Lemma Brandt’02
If G is triangle-free and δ(G) ≥ an for some a > 1/3, then
G contains no weakly induced copy of 4-cube Q4.

Theorem Thomassen’04
νχ(K3) ≤ 1/3.
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vertices and δ(G) ≥ an, where a > 0, contains no weakly
induced copy of some bipartite graph H.
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Lemma Brandt’02
If G is triangle-free and δ(G) ≥ an for some a > 1/3, then
G contains no weakly induced copy of 4-cube Q4.
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Let us suppose that a triangle-free graph G with n
vertices and δ(G) ≥ an, where a > 0, contains no weakly
induced copy of some bipartite graph H.
Then, χ(G) ≤ f (H, a).

Lemma Brandt’02
If G is triangle-free and δ(G) ≥ an for some a > 1/3, then
G contains no weakly induced copy of 4-cube Q4.

Theorem Thomassen’04
νχ(K3) ≤ 1/3.
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VC-dimension and νχ

Theorem Thomassen’04
νχ(K3) ≤ 1/3.

Theorem Łuczak, Thomass é

If G is a triangle-free graph G with n vertices and
δ(G) ≥ n/3 − C, then

χ(G) ≤ f (C) .
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Theorem Thomassen’04
νχ(K3) ≤ 1/3.

Theorem Łuczak, Thomass é

If G is a triangle-free graph G with n vertices and
δ(G) ≥ n/3 − C, then

χ(G) ≤ f (C) .
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Lower bounds: Hajnal’s construction

Theorem Thomassen’04
νχ(K3) ≤ 1/3.

Theorem
νχ(K3) = 1/3.

Fact Hajnal; Erd ős, Simonovits’73

There exist triangle-free graphs with density close to 1/3
and arbitrary large chromatic number.
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and arbitrary large chromatic number.
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Kneser graph KG(2m + k , m)

Definition
KG(2m + k , m) is a graph whose vertices are m-elements
subsets of {1, 2, . . . , 2m + k} and two of them are joined
by an edge if they are disjoint.

Theorem Lov ász’78

χ
(

KG(2m + k , m)
)

= k + 2 .
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Kneser graph KG(2m + k , m)

Definition
KG(2m + k , m) is a graph whose vertices are m-elements
subsets of {1, 2, . . . , 2m + k} and two of them are joined
by an edge if they are disjoint.

Remark Typically, m is large (tends to infinity) while k is a
large constant.

Theorem Lov ász’78

χ
(

KG(2m + k , m)
)

= k + 2 .
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Kneser graph KG(2m + k , m)

Definition
KG(2m + k , m) is a graph whose vertices are m-elements
subsets of {1, 2, . . . , 2m + k} and two of them are joined
by an edge if they are disjoint.

Remark Typically, m is large (tends to infinity) while k is a
large constant.

Theorem Lov ász’78

χ
(

KG(2m + k , m)
)

= k + 2 .
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Hajnal-Kneser graph F (2m + k , m, n)

Let n ≫ m ≫ k .
To build F (2m + k , m, n) take KG(2m + k , m) (upper
part), add a set of 2m + k vertices (lower part), join each
vertex of KG(2m + k , m) with vertices it represents.
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Hajnal-Kneser graph F (2m + k , m, n)

Let n ≫ m ≫ k .
To build F (2m + k , m, n) we take KG(2m + k , m) (upper
part), add a set of 2m + k vertices (lower part), join each
vertex of KG(2m + k , m) with vertices it represents.
Blow up the lower set to the size roughly 2n/3.
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Hajnal-Kneser graph F (2m + k , m, n)

Let n ≫ m ≫ k .
To build F (2m + k , m, n) we take KG(2m + k , m) (upper
part), add a set of 2m + k vertices (lower part), join each
vertex of KG(2m + k , m) with vertices it represents.
Blow up the lower set to the size roughly 2n/3.
Finally add an upper independent set of size roughly n/3
and connect its vertices with all the vertices of the lower
set.
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Hajnal-Kneser graph F (2m + k , m, n)

If n ≫ m ≫ k , then F (2m + k , m, n) has n vertices, the
minimum degree close to n/3, and an unbounded
chromatic number which is at least k + 2 (coming from
the small blue subgraph isomorphic to Kneser graph).
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Hajnal-Borsuk graph B(k , ℓ, n)

An analogous geometric construction (roughly speaking
one should use a kind of Borsuk graph instead of Kneser
graph) gives a similar looking graph B(k , ℓ, n), where
ℓ ≪ k ≪ n which again has n vertices, the minimum
degree close to n/3, and an unbounded chromatic
number which is at least k + 2 (coming from the upper
part).
But B(k , ℓ, n) has also the property that the upper part
contain no cycles shorter than ℓ and each odd cycle
shorter than ℓ has at least two vertices in the lower part.
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Hajnal-Borsuk graph B(k , ℓ, n)

B(k , ℓ, n) has also the property that the upper part
contain no cycles shorter than ℓ and each odd cycle
shorter than ℓ has at least two vertices in the lower part.
It means that the subgraph induced by the upper half
looks locally as a tree, which is a bipartite graph, and
each vertex of the lower part can be only adjacent to
vertices from one part of the bipartition.
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Hajnal-Borsuk graph B(k , ℓ, n)

B(k , ℓ, n) has also the property that the upper part
contain no cycles shorter than ℓ and each odd cycle
shorter than ℓ has at least two vertices in the lower part.
It means that the subgraph induced by the upper half
looks locally as a tree, which is a bipartite graph, and
each vertex of the lower part can be only adjacent to
vertices from one part of the bipartition.
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Back to the main theorem

Theorem Łuczak, Thomass é

For every H either ν̃χ(H) = 0, or ν̃χ(H) ≥ 1/3.
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Back to the main theorem

Theorem Łuczak, Thomass é

For every H either ν̃χ(H) = 0, or ν̃χ(H) ≥ 1/3.

If H cannot be homomorphically embedded in B(k , ℓ, n)
for some ℓ, then, clearly, ν̃χ(H) ≥ 1/3.
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Back to the main theorem

Theorem Łuczak, Thomass é

For every H either ν̃χ(H) = 0, or ν̃χ(H) ≥ 1/3.

If H cannot be homomorphically embedded in B(k , ℓ, n)
for some ℓ, then, clearly, ν̃χ(H) ≥ 1/3.

Hence, it is enough to show that if H is such that it can be
embedded into every B(k , ℓ, n), then each H-hom-free
graph G with δ(G) ≥ an has a bounded chromatic
number.
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Graphs with ν̃χ(H) = 0
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Dense H-free
graphs

VC-dimension

VC-dimension
and dense
graphs

Kneser and
Borsuk graphs

VC(2)-dimension

Final remarks

Graphs with ν̃χ(H) = 0



On the structure
of dense H-free

graphs

T. Łuczak
S. Thomass é
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Graphs with ν̃χ(H) = 0

Thus, it is enough to prove that ν̃χ(H) = 0 for graphs H of
the following type:
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Dense H-free
graphs

VC-dimension

VC-dimension
and dense
graphs

Kneser and
Borsuk graphs

VC(2)-dimension

Final remarks

Graphs with ν̃χ(H) = 0

More precisely, we need to show the following statement.

Theorem
If a graph G with δ(G) ≥ an, a > 0, contains no copies of

then its chromatic number is bounded by f (a).
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Generalized Vapnik- Červonenkis
dimension

Definition

Let F (2) be a family of pairs of subsets of V . We say that
a set of pairs {Ai , Bi}i∈I from F (2) is complete if for every
J ⊆ I

⋂

j∈J

Aj ∩
⋂

ℓ∈I\J

Bℓ 6= ∅ .

The VC(2)-dimension of a family F (2), denoted by
d (2)

VC

(

F (2)
)

, is the maximum size of a complete set of pairs
from F (2).
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Generalized Vapnik- Červonenkis
dimension

Theorem Łuczak, Thomass é

Let F (2) be a family of pairs of subsets of [n] such that
each subset has size at least an, a > 0, and G be a graph
whose edges are pairs from F (2). Then

χ(G) ≤ f
(

a, d (2)
VC

(

F (2)
))

for some (explicit) function f .
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Proof of Main Theorem

Theorem
If a graph G with δ(G) ≥ an, a > 0, contains no copies of

then its chromatic number is bounded by f (a).
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Proof of Main Theorem

Theorem
If a graph G with δ(G) ≥ an, a > 0, contains no copies of

then its chromatic number is bounded by f (a).

Proof Find a bipartition of G so that each vertex
has at least an/2 neighbours in the opposite set
of the bipartition.
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Proof of Main Theorem

Proof Find a bipartition of G so that each vertex
has at least an/2 neighbours in the opposite set
of the bipartition.
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Dense H-free
graphs

VC-dimension

VC-dimension
and dense
graphs

Kneser and
Borsuk graphs

VC(2)-dimension

Final remarks

Proof of Main Theorem



On the structure
of dense H-free

graphs

T. Łuczak
S. Thomass é
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Proof of Main Theorem

Consequently, by our result on d (2)
VC , the subgraph

induced by a lower part has a bounded chromatic
number.

Clearly, the same is true for the upper subgraph
as well and so the assertion follows.
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Alternative definition of VC2-dimension

Definition

Let F2 be a family of pairs of disjoint subsets of V .
We say that a set X ⊆ V is 2-shattered by F2 if for each
partitions X = Y ∪ Z there is an {F1, F2} ∈ F2 such that
Y = F1 ∩ X and Z = F2 ∩ X .
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Alternative definition of VC2-dimension

Example:
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Alternative definition of VC2-dimension

Definition

The VC(2)-dimension of the family of disjoint pairs of sets
F2, denoted by d (2)

VC (F2), is the maximum size of a set
2-shattered by F2.
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Alternative definition of VC2-dimension

But we may have Ai = Bi = [n]
for all pairs {Ai , Bi} from F2!
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Open problems

Problem 1
Does there exist η > 0 such that for every H
we have either νχ(H) = 0 or νχ(H) ≥ η.

Problem 2
Compute ντ (C2k+1).
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we have either νχ(H) = 0 or νχ(H) ≥ η.

Problem 2
Compute ντ (C2k+1).
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Open problems

Problem 1
Does there exist η > 0 such that for every H
we have either νχ(H) = 0 or νχ(H) ≥ η.

Problem 2
Compute ντ (C2k+1).

1/5 ≤ ντ (C5) ≤ 1/3.
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Open problems

Definition
νχ(k) is the smallest a ≥ 0 for which the following holds:

for every ǫ > 0 there exists f (ǫ) such that every
graph G on n vertices with δ(G) ≥ (a + ǫ)n such
that the neighbourhood of each vertex of G is
k-chromatic is at most f (ǫ)-chromatic.

Conjecture

νχ(2) = 1/2.
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Definition
νχ(k) is the smallest a ≥ 0 for which the following holds:

for every ǫ > 0 there exists f (ǫ) such that every
graph G on n vertices with δ(G) ≥ (a + ǫ)n such
that the neighbourhood of each vertex of G is
k-chromatic is at most f (ǫ)-chromatic.

νχ(1) = νχ(K3) = 1/3.

Conjecture

νχ(2) = 1/2.
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Dense H-free
graphs

VC-dimension

VC-dimension
and dense
graphs

Kneser and
Borsuk graphs

VC(2)-dimension

Final remarks

Open problems

Definition
νχ(k) is the smallest a ≥ 0 for which the following holds:

for every ǫ > 0 there exists f (ǫ) such that every
graph G on n vertices with δ(G) ≥ (a + ǫ)n such
that the neighbourhood of each vertex of G is
k-chromatic is at most f (ǫ)-chromatic.

νχ(1) = νχ(K3) = 1/3.

νχ(2) ≥ 1/2.

Conjecture

νχ(2) = 1/2.
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Open problems

Definition
νχ(k) is the smallest a ≥ 0 for which the following holds:

for every ǫ > 0 there exists f (ǫ) such that every
graph G on n vertices with δ(G) ≥ (a + ǫ)n such
that the neighbourhood of each vertex of G is
k-chromatic is at most f (ǫ)-chromatic.

νχ(1) = νχ(K3) = 1/3.

νχ(2) ≥ 1/2.

Conjecture

νχ(2) = 1/2.
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Thank you
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