T. Łuczak S. Thomassé

Dense *H*-free graphs

VC-dimension

VC-dimension and dense graphs

Kneser and Borsuk graphs *VC*<sup>(2)</sup>-dimension

**Final remarks** 

# On the structure of dense *H*-free graphs

Tomasz Łuczak, Stéphan Thomassé

ICM 2010 Satellite Conference on Algebraic and Probabilistic Aspects of Combinatorics and Computing Indian Institute of Science, Aug. 30th 2010, Bangalore

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQで

T. Łuczak S. Thomassé

## Dense *H*-free graphs

#### VC-dimension

VC-dimension and dense graphs

Kneser and Borsuk graphs VC<sup>(2)</sup>-dimension

**Final remarks** 

# **Budapest's Question**

## Question

What can we say about the structure of a dense *H*-free graph?

▲□▶▲□▶▲□▶▲□▶ □ のQ@

T. Łuczak S. Thomassé

Dense *H*-free graphs

VC-dimension

VC-dimension and dense graphs

Kneser and Borsuk graphs VC<sup>(2)</sup>-dimension

Final remarks

# **Budapest's Question**

### Question

What can we say about the structure of a dense *H*-free graph?

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q (~

Sós'69

Andrásfai, Erdős, Sós'74

Erdős, Simonovits'73

> T. Łuczak S. Thomassé

Dense *H*-free graphs

VC-dimension

VC-dimension and dense graphs

Kneser and Borsuk graphs

 $VC^{(2)}$ -dimension

**Final remarks** 

# Density

### Question

What can we say about the structure of a dense *H*-free graph?

(日)

> T. Łuczak S. Thomassé

Dense *H*-free graphs

VC-dimension

VC-dimension and dense graphs

Kneser and Borsuk graphs VC<sup>(2)</sup>-dimension

Final remarks

# Density

### Question

What can we say about the structure of a dense *H*-free graph?

A graph *G* on *n* vertices is dense if  $\delta(G) \ge an$  for some constant a > 0.

> T. Łuczak S. Thomassé

Dense *H*-free graphs

VC-dimension

VC-dimension and dense graphs

Kneser and Borsuk graphs

VC<sup>(2)</sup>-dimension

Final remarks

## The structure

## Question

What can we say about the structure of a dense *H*-free graph?

(日)

T. Łuczak S. Thomassé

Dense *H*-free graphs

VC-dimension

VC-dimension and dense graphs

Kneser and Borsuk graphs VC<sup>(2)</sup>-dimension

Final remarks

## The structure

## Question

What can we say about the structure of a dense *H*-free graph?

I. We can study the topological structure, i.e. ask if every maximal dense graph is a blow-up of one of just few graphs:



T. Łuczak S. Thomassé

Dense *H*-free graphs

VC-dimension

VC-dimension and dense graphs

Kneser and Borsuk graphs VC<sup>(2)</sup>-dimension Final remarks

# A "topological" approach to the structure

## **Examples:**

Each maximal triangle-free graph  $G_n$  with  $\delta(G_n) > 2n/5$  is bipartite.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

T. Łuczak S. Thomassé

Dense *H*-free graphs

VC-dimension

VC-dimension and dense graphs

Kneser and Borsuk graphs VC<sup>(2)</sup>-dimension Final remarks

# A "topological" approach to the structure

## **Examples:**

Each maximal triangle-free graph  $G_n$  with  $\delta(G_n) > 2n/5$  is bipartite.

Each maximal triangle-free graph  $G_n$  with  $\delta(G_n) > 3n/8$  is a blow-up of either  $K_2$  or  $C_5$ .

> T. Łuczak S. Thomassé

Dense *H*-free graphs

VC-dimension

VC-dimension and dense graphs

Kneser and Borsuk graphs VC<sup>(2)</sup>-dimension Final remarks

## The structure

Question

What can we say about the structure of a dense *H*-free graph?

II. We can study the chromatic properties, i.e. ask whether each dense *H*-free graph has a small chromatic number.

T. Łuczak S. Thomassé

Dense *H*-free graphs

#### VC-dimension

VC-dimension and dense graphs

Kneser and Borsuk graphs *VC*<sup>(2)</sup>-dimension

**Final remarks** 

# A "chromatic" approach to the structure

### **Examples:**

For each triangle-free graph  $G_n$  with  $\delta(G_n) > n/3$  we have  $\chi(G_n) \le 4$ .

▲□▶▲□▶▲□▶▲□▶ □ のQ@

T. Łuczak S. Thomassé

Dense *H*-free graphs

VC-dimension

VC-dimension and dense graphs

Kneser and Borsuk graphs VC<sup>(2)</sup>-dimension Final remarks A "chromatic" approach to the structure

### Examples:

For each triangle-free graph  $G_n$  with  $\delta(G_n) > n/3$  we have  $\chi(G_n) \le 4$ .

## Andrásfai, Erdős, Sós'74.

For each  $K_k$ -free graph  $G_n$  with  $\delta(G_n) > \frac{3k-7}{3k-4}n$ we have  $\chi(G_n) \le k-1$ .

> T. Łuczak S. Thomassé

## Dense *H*-free graphs

#### VC-dimension

VC-dimension and dense graphs

Kneser and Borsuk graphs *VC*<sup>(2)</sup>-dimension

**Final remarks** 

# **Cluster points**

Each maximal triangle-free graph  $G_n$  with  $\delta(G_n) > 2n/5$  is bipartite.

Each maximal triangle-free graph  $G_n$  with  $\delta(G_n) > 3n/8$  is a blow-up of either  $K_2$  or  $C_5$ .

▲□▶▲□▶▲□▶▲□▶ □ のQ@

 $\frac{1}{2}, \frac{2}{5}, \frac{3}{8},$ 

> T. Łuczak S. Thomassé

## Dense *H*-free graphs

#### VC-dimension

VC-dimension and dense graphs

Kneser and Borsuk graphs *VC*<sup>(2)</sup>-dimension

**Final remarks** 

# **Cluster points**

Each maximal triangle-free graph  $G_n$  with  $\delta(G_n) > 2n/5$  is bipartite.

Each maximal triangle-free graph  $G_n$  with  $\delta(G_n) > 3n/8$  is a blow-up of either  $K_2$  or  $C_5$ .

$$\frac{1}{2}, \frac{2}{5}, \frac{3}{8}, \frac{4}{11}, \frac{5}{14}, \dots \frac{1}{3}$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

T. Łuczak S. Thomassé

Dense *H*-free graphs

VC-dimension

VC-dimension and dense graphs

Kneser and Borsuk graphs

 $VC^{(2)}$ -dimension

**Final remarks** 

 $\nu_{\tau}(H)$ 

### Definition

 $\nu_{\tau}(H)$  is the smallest  $a \ge 0$  for which the following holds:

for every  $\epsilon > 0$  there exists  $f(\epsilon)$  such that each maximal H-free graph G on n vertices with  $\delta(G) \ge (a + \epsilon)n$  is a blow-up of a graph with at most  $f(\epsilon)$  vertices.

T. Łuczak S. Thomassé

Dense *H*-free graphs

VC-dimension

VC-dimension and dense graphs

Kneser and Borsuk graphs VC<sup>(2)</sup>-dimension

**Final remarks** 

 $\nu_{\chi}(H)$ 

### Definition

 $\nu_{\chi}(H)$  is the smallest  $a \ge 0$  for which the following holds:

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q (~

for every  $\epsilon > 0$  there exists  $h(\epsilon)$  such that each *H*-free graph *G* on *n* vertices with  $\delta(G) \ge (a + \epsilon)n$  we have  $\chi(G) \le h(\epsilon)$ .

T. Łuczak S. Thomassé

Dense *H*-free graphs

VC-dimension

VC-dimension and dense graphs

Kneser and Borsuk graphs *VC*<sup>(2)</sup>-dimension

**Final remarks** 

## A few results on $\nu$

 $\nu_{\chi}(H) \leq \nu_{\tau}(H).$ 

> T. Łuczak S. Thomassé

Dense *H*-free graphs

VC-dimension

VC-dimension and dense graphs

Kneser and Borsuk graphs VC<sup>(2)</sup>-dimension Final remarks

## A few results on $\nu$

$$u_{\chi}(H) \leq \nu_{\tau}(H).$$

 $\nu_{\chi}(K_3) = \nu_{\tau}(K_3) = \frac{1}{3}.$ Hajnal'69, Erdős, Simonovits'73, Thomassen'04, Łuczak'06, Brandt, Thomassé'10

> T. Łuczak S. Thomassé

Dense *H*-free graphs

VC-dimension

VC-dimension and dense graphs

Kneser and Borsuk graphs  $VC^{(2)}$ -dimension Final remarks

## A few results on $\nu$

$$u_{\chi}(H) \leq \nu_{\tau}(H).$$

 $\nu_{\chi}(K_3) = \nu_{\tau}(K_3) = \frac{1}{3}.$ Hajnal'69, Erdős, Simonovits'73, Thomassen'04, Łuczak'06, Brandt, Thomassé'10

(ロ) (同) (三) (三) (三) (三) (○) (○)

$$\nu_{\chi}(\mathbf{K}_k) = \nu_{\tau}(\mathbf{K}_k) = \frac{2k-5}{2k-3}$$

> T. Łuczak S. Thomassé

Dense *H*-free graphs

VC-dimension

VC-dimension and dense graphs

Kneser and Borsuk graphs VC<sup>(2)</sup>-dimension Final remarks

## A few results on $\nu$

$$u_{\chi}(H) \leq \nu_{\tau}(H).$$

 $\nu_{\chi}(K_3) = \nu_{\tau}(K_3) = \frac{1}{3}.$ Hajnal'69, Erdős, Simonovits'73, Thomassen'04, Łuczak'06, Brandt, Thomassé'10

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q (~

$$\nu_{\chi}(\mathbf{K}_k) = \nu_{\tau}(\mathbf{K}_k) = \frac{2k-5}{2k-3}$$

 $u_{\chi}(C_{2k+1}) = 0 \text{ for } k \ge 2.$ Thomassen'08

> T. Łuczak S. Thomassé

Dense *H*-free graphs

VC-dimension

VC-dimension and dense graphs

Kneser and Borsuk graphs VC<sup>(2)</sup>-dimension Final remarks

## A few results on $\nu$

$$u_{\chi}(H) \leq \nu_{\tau}(H).$$

 $\nu_{\chi}(K_3) = \nu_{\tau}(K_3) = \frac{1}{3}.$ Hajnal'69, Erdős, Simonovits'73, Thomassen'04, Łuczak'06, Brandt, Thomassé'10

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q (~

$$\nu_{\chi}(\mathbf{K}_k) = \nu_{\tau}(\mathbf{K}_k) = \frac{2k-5}{2k-3}$$

 $u_{\chi}(C_{2k+1}) = 0 \text{ for } k \ge 2.$ Thomassen'08

 $\nu_{\tau}(H) > 0$  provided  $\chi(H) \geq 3$ .

T. Łuczak S. Thomassé

Dense *H*-free graphs

VC-dimension

VC-dimension and dense graphs

Kneser and Borsuk graphs  $VC^{(2)}$ -dimension Final remarks

# A second thought on *H*-free graphs

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q (~

### Question

What can we say about the structure of a dense *H*-free graph?

T. Łuczak S. Thomassé

Dense *H*-free graphs

VC-dimension

VC-dimension and dense graphs

Kneser and Borsuk graphs

 $VC^{(2)}$ -dimension

**Final remarks** 

# A second thought on *H*-free graphs

Conjecture

Let *G* be a  $C_{2k+1}$ -free graph with

$$\delta(\mathbf{G}) > rac{2n}{2k+3}$$

Then G is bipartite.

Theorem Győri, Nikiforov, Schelp'03

The above is true for k = 1, 2, 3, 4, and false otherwise.

T. Łuczak S. Thomassé

Dense *H*-free graphs

VC-dimension

VC-dimension and dense graphs

Kneser and Borsuk graphs

 $VC^{(2)}$ -dimension

**Final remarks** 

# A second thought on *H*-free graphs

Conjecture

Let *G* be a  $C_{2k+1}$ -free graph with

$$\delta(\mathbf{G}) > \frac{2n}{2k+3}$$

Then G is bipartite.

## Theorem Győri, Nikiforov, Schelp'03

The above is true for k = 1, 2, 3, 4, and false otherwise.

T. Łuczak S. Thomassé

Dense *H*-free graphs

VC-dimension

VC-dimension and dense graphs

Kneser and Borsuk graphs VC<sup>(2)</sup>-dimensio

**Final remarks** 

# A second thought on *H*-free graphs

Example:



◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

T. Łuczak S. Thomassé

Dense *H*-free graphs

VC-dimension

VC-dimension and dense graphs

Kneser and Borsuk graphs

 $VC^{(2)}$ -dimension

Final remarks

# A second thought on *H*-free graphs

Conjecture

Let G be a  $C_{2k+1}$ -hom-free graph with

$$\delta(G) > \frac{2n}{2k+3}$$

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q (~

Then G is bipartite.

Theorem

The above is true for every *k*.

T. Łuczak S. Thomassé

Dense *H*-free graphs

VC-dimension

VC-dimension and dense graphs

Kneser and Borsuk graphs

 $VC^{(2)}$ -dimension

**Final remarks** 

# A second thought on *H*-free graphs

Conjecture

Let G be a  $C_{2k+1}$ -hom-free graph with

$$\delta(G) > \frac{2n}{2k+3}$$

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q (~

Then G is bipartite.

Theorem

The above is true for every k.

T. Łuczak S. Thomassé

Dense *H*-free graphs

VC-dimension

VC-dimension and dense graphs

Kneser and Borsuk graphs VC<sup>(2)</sup>-dimension

Final remarks

 $\tilde{\nu}_{\chi}(H)$ 

## Definition

## $\tilde{\nu}_{\chi}(H)$ is the smallest $a \ge 0$ for which the following holds:

for every  $\epsilon > 0$  there exists  $f(\epsilon)$  such that each maximal H-hom-free graph G on n vertices with  $\delta(G) \ge (a + \epsilon)n$  is a blow-up of a graph with at most  $f(\epsilon)$  vertices.

#### Theorem Luczak, Thomassé

For every H either

$$\tilde{\nu}_{\chi}(H)=0\,,$$

or

$$ilde{
u}_{\chi}(H) \geq 1/3$$
 .

T. Łuczak S. Thomassé

Dense *H*-free graphs

VC-dimension

VC-dimension and dense graphs

Kneser and Borsuk graphs

 $VC^{(2)}$ -dimension

Final remarks

 $\tilde{\nu}_{\chi}(H)$ 

## Definition

## $\tilde{\nu}_{\chi}(H)$ is the smallest $a \ge 0$ for which the following holds:

for every  $\epsilon > 0$  there exists  $f(\epsilon)$  such that each maximal H-hom-free graph G on n vertices with  $\delta(G) \ge (a + \epsilon)n$  is a blow-up of a graph with at most  $f(\epsilon)$  vertices.

### Theorem Łuczak, Thomassé

For every H either

$$\tilde{\nu}_{\chi}(H) = 0$$
,

or

$$ilde{
u}_{\chi}(H) \geq 1/3$$
 .

(日) (日) (日) (日) (日) (日) (日) (日)

T. Łuczak S. Thomassé

Dense *H*-free graphs

#### VC-dimension

VC-dimension and dense graphs

Kneser and Borsuk graphs VC<sup>(2)</sup>-dimension

**Final remarks** 

# Vapnik-Červonenkis dimension

### Definition

Let  $\mathcal{F}$  be a family of subsets of V. We say that a set  $X \subseteq V$  is shattered by  $\mathcal{F}$  if for each  $Y \subseteq X$  there is an  $F \in \mathcal{F}$  such that  $Y = F \cap X$ .

T. Łuczak S. Thomassé

Dense *H*-free graphs

#### VC-dimension

VC-dimension and dense graphs

Kneser and Borsuk graphs *VC*<sup>(2)</sup>-dimension

**Final remarks** 

# Vapnik-Červonenkis dimension

## **Example:**



▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

> T. Łuczak S. Thomassé

Dense *H*-free graphs

#### VC-dimension

VC-dimension and dense graphs

Kneser and Borsuk graphs VC<sup>(2)</sup>-dimension

**Final remarks** 

# Vapnik-Červonenkis dimension

**Example:** 



▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

T. Łuczak S. Thomassé

Dense *H*-free graphs

#### VC-dimension

VC-dimension and dense graphs

Kneser and Borsuk graphs *VC*<sup>(2)</sup>-dimension

**Final remarks** 

# Vapnik-Červonenkis dimension

## **Example:**



T. Łuczak S. Thomassé

Dense *H*-free graphs

#### VC-dimension

VC-dimension and dense graphs

Kneser and Borsuk graphs VC<sup>(2)</sup>-dimension

**Final remarks** 

# Vapnik-Červonenkis dimension

**Example:** 



> T. Łuczak S. Thomassé

Dense *H*-free graphs

#### VC-dimension

VC-dimension and dense graphs

Kneser and Borsuk graphs VC<sup>(2)</sup>-dimension

**Final remarks** 

# Vapnik-Červonenkis dimension

**Example:** 



T. Łuczak S. Thomassé

Dense *H*-free graphs

#### VC-dimension

VC-dimension and dense graphs

Kneser and Borsuk graphs VC<sup>(2)</sup>-dimension

**Final remarks** 

# Vapnik-Červonenkis dimension

**Example:** 


> T. Łuczak S. Thomassé

Dense *H*-free graphs

#### VC-dimension

VC-dimension and dense graphs

Kneser and Borsuk graphs *VC*<sup>(2)</sup>-dimension

**Final remarks** 

# Vapnik-Červonenkis dimension

## **Example:**



◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

T. Łuczak S. Thomassé

Dense *H*-free graphs

#### VC-dimension

VC-dimension and dense graphs

Kneser and Borsuk graphs VC<sup>(2)</sup>-dimension Final remarks

# Vapnik-Červonenkis dimension

### Definition

The VC-dimension of a family of sets  $\mathcal{F}$ , denoted by  $d_{VC}(\mathcal{F})$ , is the maximum size of a set shattered by  $\mathcal{F}$ .

### Definition

The VC-dimension d(G) of a graph G = (V, E) is the VC-dimension of the family of sets

 $\{N(v): v \in V\}.$ 

(日) (日) (日) (日) (日) (日) (日) (日)

T. Łuczak S. Thomassé

Dense *H*-free graphs

#### VC-dimension

VC-dimension and dense graphs

Kneser and Borsuk graphs

 $VC^{(2)}$ -dimension

**Final remarks** 

# Vapnik-Červonenkis dimension

### Definition

The VC-dimension of a family of sets  $\mathcal{F}$ , denoted by  $d_{VC}(\mathcal{F})$ , is the maximum size of a set shattered by  $\mathcal{F}$ .

### Definition

The VC-dimension d(G) of a graph G = (V, E) is the VC-dimension of the family of sets

 $\{N(v): v \in V\}.$ 

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQで

T. Łuczak S. Thomassé

Dense *H*-free graphs

#### VC-dimension

VC-dimension and dense graphs

Kneser and Borsuk graphs VC<sup>(2)</sup>-dimension Final remarks

# Vapnik-Červonenkis dimension

### **Theorem Haussler, Welzl'87**

If *G* is a graph with vertex set  $[n] = \{1, 2, ..., n\}$ , minimum degree at least *an*, *a* > 0, and VC-dimension *d*, then the covering number  $\tau(G)$  of *G* is bounded from above by

$$\frac{32d}{a}\ln\left(\frac{2d}{a}\right)$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQで

T. Łuczak S. Thomassé

Dense *H*-free graphs

VC-dimension

VC-dimension and dense graphs

Kneser and Borsuk graphs VC<sup>(2)</sup>-dimension Final remarks

## Weakly induced bipartite graphs



◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

T. Łuczak S. Thomassé

Dense *H*-free graphs

VC-dimension

VC-dimension and dense graphs

Kneser and Borsuk graphs VC<sup>(2)</sup>-dimension Final remarks

## Weakly induced bipartite graphs



◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

T. Łuczak S. Thomassé

Dense *H*-free graphs

VC-dimension

VC-dimension and dense graphs

Kneser and Borsuk graphs VC<sup>(2)</sup>-dimension Final remarks

## Weakly induced bipartite graphs



◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

> T. Łuczak S. Thomassé

Dense *H*-free graphs

VC-dimension

VC-dimension and dense graphs

Kneser and Borsuk graphs VC<sup>(2)</sup>-dimension Final remarks

## VC-dimension and $\nu_{\chi}$

### Theorem Łuczak, Thomassé

Let us suppose that a triangle-free graph *G* with *n* vertices and  $\delta(G) \ge an$ , where a > 0, contains no weakly induced copy of some bipartite graph *H*. Then,  $\chi(G) \le f(H, a)$ .

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q (~

> T. Łuczak S. Thomassé

Dense *H*-free graphs

VC-dimension

VC-dimension and dense graphs

Kneser and Borsuk graphs VC<sup>(2)</sup>-dimension Final remarks

## VC-dimension and $\nu_{\chi}$

### Theorem Łuczak, Thomassé

Let us suppose that a triangle-free graph *G* with *n* vertices and  $\delta(G) \ge an$ , where a > 0, contains no weakly induced copy of some bipartite graph *H*. Then,  $\chi(G) \le f(H, a)$ .

**Proof** Let *G* be a graph with  $\delta(G) \ge an$  without weakly induced copy of *H*. Find in *G* a bipartite subgraph *G'* such that  $\delta(G') \ge an/2$ .

(ロ) (同) (三) (三) (三) (三) (○) (○)

T. Łuczak S. Thomassé

Dense *H*-free graphs

VC-dimension

VC-dimension and dense graphs

Kneser and Borsuk graphs  $VC^{(2)}$ -dimension

**Final remarks** 

# Proof (cont.)

We shall argue that d(G') is bounded.

<日 > < 同 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

T. Łuczak S. Thomassé

Dense *H*-free graphs

VC-dimension

VC-dimension and dense graphs

Kneser and Borsuk graphs VC<sup>(2)</sup>-dimension Final remarks Proof (cont.)

We shall argue that d(G') is bounded.



T. Łuczak S. Thomassé

Dense *H*-free graphs

VC-dimension

VC-dimension and dense graphs

Kneser and Borsuk graphs VC<sup>(2)</sup>-dimension Final remarks Proof (cont.)

We shall argue that d(G') is bounded.



T. Łuczak S. Thomassé

Dense *H*-free graphs

VC-dimension

VC-dimension and dense graphs

Kneser and Borsuk graphs VC<sup>(2)</sup>-dimension Final remarks Proof (cont.)

We shall argue that d(G') is bounded.



▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

T. Łuczak S. Thomassé

Dense *H*-free graphs

VC-dimension

VC-dimension and dense graphs

Kneser and Borsuk graphs *VC*<sup>(2)</sup>-dimension

**Final remarks** 

## Proof (cont.)

Hence, d(G') is bounded, and by Vapnik-Červonenkis theorem,

 $\tau(\mathbf{G}) \leq \tau(\mathbf{G}') \leq f(\mathbf{H}, \mathbf{a})$ .

<日 > < 同 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

> T. Łuczak S. Thomassé

Dense *H*-free graphs

VC-dimension

VC-dimension and dense graphs

Kneser and Borsuk graphs VC<sup>(2)</sup>-dimension Final remarks **Proof (cont.)** 

Hence, d(G') is bounded, and by Vapnik-Červonenkis theorem,

$$au(\mathbf{G}) \leq au(\mathbf{G}') \leq f(\mathbf{H}, \mathbf{a})$$
.



(日)

> T. Łuczak S. Thomassé

Dense *H*-free graphs

VC-dimension

VC-dimension and dense graphs

Kneser and Borsuk graphs VC<sup>(2)</sup>-dimension Final remarks

## Proof (cont.)

Hence, d(G') is bounded, and by Vapnik-Červonenkis theorem,

$$au(\mathbf{G}) \leq au(\mathbf{G}') \leq f(\mathbf{H}, \mathbf{a})$$
.



However, since *G* is triangle-free,

 $\chi(G) \leq 2\tau(G) \leq 2f(H,a)$ .  $\Box$ 

(ロ) (同) (三) (三) (三) (三) (○) (○)

> T. Łuczak S. Thomassé

Dense *H*-free graphs

VC-dimension

VC-dimension and dense graphs

Kneser and Borsuk graphs  $VC^{(2)}$ -dimension

Final remarks

## VC-dimension and $\nu_{\chi}$

### Theorem Łuczak, Thomassé

Let us suppose that a triangle-free graph *G* with *n* vertices and  $\delta(G) \ge an$ , where a > 0, contains no weakly induced copy of some bipartite graph *H*. Then,  $\chi(G) \le f(H, a)$ .

### Lemma Brandt'0

If G is triangle-free and  $\delta(G) \ge an$  for some a > 1/3, then G contains no weakly induced copy of 4-cube  $Q_4$ .

(日) (日) (日) (日) (日) (日) (日) (日)

### Theorem Th

 $u_{\chi}(K_3) \leq 1/3.$ 

> T. Łuczak S. Thomassé

Dense *H*-free graphs

VC-dimension

VC-dimension and dense graphs

Kneser and Borsuk graphs VC<sup>(2)</sup>-dimension

**Final remarks** 

## VC-dimension and $\nu_{\chi}$

### Theorem Łuczak, Thomassé

Let us suppose that a triangle-free graph *G* with *n* vertices and  $\delta(G) \ge an$ , where a > 0, contains no weakly induced copy of some bipartite graph *H*. Then,  $\chi(G) \le f(H, a)$ .

### Lemma Brandt'02

If *G* is triangle-free and  $\delta(G) \ge an$  for some a > 1/3, then *G* contains no weakly induced copy of 4-cube  $Q_4$ .

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQで

Theorem 🛾

 $u_{\chi}(K_3) \leq 1/3.$ 

> T. Łuczak S. Thomassé

Dense *H*-free graphs

VC-dimension

VC-dimension and dense graphs

Kneser and Borsuk graphs VC<sup>(2)</sup>-dimension

**Final remarks** 

## VC-dimension and $\nu_{\chi}$

### Theorem Łuczak, Thomassé

Let us suppose that a triangle-free graph *G* with *n* vertices and  $\delta(G) \ge an$ , where a > 0, contains no weakly induced copy of some bipartite graph *H*. Then,  $\chi(G) \le f(H, a)$ .

### Lemma Brandt'02

If *G* is triangle-free and  $\delta(G) \ge an$  for some a > 1/3, then *G* contains no weakly induced copy of 4-cube  $Q_4$ .

### **Theorem Thomassen'04**

 $u_{\chi}(K_3) \leq 1/3.$ 

> T. Łuczak S. Thomassé

Dense *H*-free graphs

VC-dimension

VC-dimension and dense graphs

Kneser and Borsuk graphs VC<sup>(2)</sup>-dimension Final remarks

## VC-dimension and $\nu_{\chi}$

## Theorem Thomassen'04

 $u_{\chi}(K_3) \leq 1/3.$ 

### Theorem Luczak, Thomass

If *G* is a triangle-free graph *G* with *n* vertices and  $\delta(G) \ge n/3 - C$ , then

 $\chi(\boldsymbol{G}) \leq f(\boldsymbol{C})$ .

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q (~

> T. Łuczak S. Thomassé

Dense *H*-free graphs

VC-dimension

VC-dimension and dense graphs

Kneser and Borsuk graphs *VC*<sup>(2)</sup>-dimension

**Final remarks** 

## VC-dimension and $\nu_{\chi}$

### Theorem Thomassen'04

 $u_{\chi}(K_3) \leq 1/3.$ 

### Theorem Łuczak, Thomassé

If *G* is a triangle-free graph *G* with *n* vertices and  $\delta(G) \ge n/3 - C$ , then

 $\chi(G) \leq f(C)$ .

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q (~

> T. Łuczak S. Thomassé

Dense *H*-free graphs

VC-dimension

VC-dimension and dense graphs

#### Kneser and Borsuk graphs

VC<sup>(2)</sup>-dimension

## Lower bounds: Hajnal's construction

## Theorem Thomassen'04

 $u_{\chi}(K_3) \leq 1/3.$ 

### Theorem

 $u_{\chi}(K_3) = 1/3.$ 

### act Hajnal; Erdős, Simonovits'73

There exist triangle-free graphs with density close to 1/3 and arbitrary large chromatic number.

(日) (日) (日) (日) (日) (日) (日) (日)

> T. Łuczak S. Thomassé

Dense *H*-free graphs

VC-dimension

VC-dimension and dense graphs

#### Kneser and Borsuk graphs

VC<sup>(2)</sup>-dimension Final remarks

## Lower bounds: Hajnal's construction

## Theorem Thomassen'04

 $u_{\chi}(K_3) \leq 1/3.$ 

### Theorem

$$u_{\chi}(K_3) = 1/3$$

### ict Hajnal; Erdős, Simonovits'7

There exist triangle-free graphs with density close to 1/3 and arbitrary large chromatic number.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

> T. Łuczak S. Thomassé

Dense *H*-free graphs

VC-dimension

VC-dimension and dense graphs

Kneser and Borsuk graphs

VC<sup>(2)</sup>-dimension

Lower bounds: Hajnal's construction

## **Theorem Thomassen'04**

 $u_{\chi}(K_3) \leq 1/3.$ 

### Theorem

$$u_{\chi}(K_3) = 1/3.$$

## Fact Hajnal; Erdős, Simonovits'73

There exist triangle-free graphs with density close to 1/3 and arbitrary large chromatic number.

T. Łuczak S. Thomassé

Dense *H*-free graphs

VC-dimension

VC-dimension and dense graphs

Kneser and Borsuk graphs

 $VC^{(2)}$ -dimension

Final remarks

# Kneser graph KG(2m+k, m)

### Definition

KG(2m + k, m) is a graph whose vertices are *m*-elements subsets of  $\{1, 2, ..., 2m + k\}$  and two of them are joined by an edge if they are disjoint.

### Theorem Lovász 78

```
\chi(\mathbf{KG}(2\mathbf{m}+\mathbf{k},\mathbf{m}))=\mathbf{k}+2.
```

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQで

T. Łuczak S. Thomassé

Dense *H*-free graphs

VC-dimension

VC-dimension and dense graphs

Kneser and Borsuk graphs

 $VC^{(2)}$ -dimension

Final remarks

# Kneser graph KG(2m+k, m)

### Definition

KG(2m + k, m) is a graph whose vertices are *m*-elements subsets of  $\{1, 2, ..., 2m + k\}$  and two of them are joined by an edge if they are disjoint.

**Remark** Typically, m is large (tends to infinity) while k is a large constant.

### Theorem Lova

$$\chi\big(\mathbf{KG}(\mathbf{2m}+\mathbf{k},\mathbf{m})\big)=\mathbf{k}+\mathbf{2}\,.$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQで

T. Łuczak S. Thomassé

Dense *H*-free graphs

VC-dimension

VC-dimension and dense graphs

Kneser and Borsuk graphs

 $VC^{(2)}$ -dimension

Final remarks

# Kneser graph KG(2m+k, m)

### Definition

KG(2m + k, m) is a graph whose vertices are *m*-elements subsets of  $\{1, 2, ..., 2m + k\}$  and two of them are joined by an edge if they are disjoint.

**Remark** Typically, m is large (tends to infinity) while k is a large constant.

### **Theorem Lovász'78**

$$\chi(\mathbf{KG}(\mathbf{2m}+\mathbf{k},\mathbf{m}))=\mathbf{k}+\mathbf{2}.$$

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q (~

T. Łuczak S. Thomassé

Dense *H*-free graphs

VC-dimension

VC-dimension and dense graphs

Kneser and Borsuk graphs

 $VC^{(2)}$ -dimension

Final remarks

## Hajnal-Kneser graph F(2m + k, m, n)

Let  $n \gg m \gg k$ . To build F(2m + k, m, n) take KG(2m + k, m) (upper part), add a set of 2m + k vertices (lower part), join each vertex of KG(2m + k, m) with vertices it represents.



T. Łuczak S. Thomassé

Dense *H*-free graphs

VC-dimension

VC-dimension and dense graphs

Kneser and Borsuk graphs

 $VC^{(2)}$ -dimension

Final remarks

## Hajnal-Kneser graph F(2m + k, m, n)

Let  $n \gg m \gg k$ . To build F(2m + k, m, n) we take KG(2m + k, m) (upper part), add a set of 2m + k vertices (lower part), join each vertex of KG(2m + k, m) with vertices it represents. Blow up the lower set to the size roughly 2n/3.



◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q (~

> T. Łuczak S. Thomassé

Dense *H*-free graphs

VC-dimension

VC-dimension and dense graphs

Kneser and Borsuk graphs

VC<sup>(2)</sup>-dimension

Final remarks

## Hajnal-Kneser graph F(2m + k, m, n)

Let  $n \gg m \gg k$ .

To build F(2m + k, m, n) we take KG(2m + k, m) (upper part), add a set of 2m + k vertices (lower part), join each vertex of KG(2m + k, m) with vertices it represents. Blow up the lower set to the size roughly 2n/3. Finally add an upper independent set of size roughly n/3and connect its vertices with all the vertices of the lower set.



T. Łuczak S. Thomassé

Dense *H*-free graphs

VC-dimension

VC-dimension and dense graphs

Kneser and Borsuk graphs

 $VC^{(2)}$ -dimension

Final remarks

## Hajnal-Kneser graph F(2m + k, m, n)

If  $n \gg m \gg k$ , then F(2m + k, m, n) has *n* vertices, the minimum degree close to n/3, and an unbounded chromatic number which is at least k + 2 (coming from the small blue subgraph isomorphic to Kneser graph).



◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQで

> T. Łuczak S. Thomassé

Dense *H*-free graphs

VC-dimension

VC-dimension and dense graphs

Kneser and Borsuk graphs

 $VC^{(2)}$ -dimension

Final remarks

## Hajnal-Borsuk graph $B(k, \ell, n)$

An analogous geometric construction (roughly speaking one should use a kind of Borsuk graph instead of Kneser graph) gives a similar looking graph  $B(k, \ell, n)$ , where  $\ell \ll k \ll n$  which again has *n* vertices, the minimum degree close to n/3, and an unbounded chromatic number which is at least k + 2 (coming from the upper part).

But  $B(k, \ell, n)$  has also the property that the upper part contain no cycles shorter than  $\ell$  and each odd cycle shorter than  $\ell$  has at least two vertices in the lower part.



> T. Łuczak S. Thomassé

Dense *H*-free graphs

VC-dimension

VC-dimension and dense graphs

Kneser and Borsuk graphs

 $VC^{(2)}$ -dimension

Final remarks

## Hajnal-Borsuk graph $B(k, \ell, n)$

 $B(k, \ell, n)$  has also the property that the upper part contain no cycles shorter than  $\ell$  and each odd cycle shorter than  $\ell$  has at least two vertices in the lower part. It means that the subgraph induced by the upper half looks locally as a tree, which is a bipartite graph, and each vertex of the lower part can be only adjacent to vertices from one part of the bipartition.



> T. Łuczak S. Thomassé

Dense *H*-free graphs

VC-dimension

VC-dimension and dense graphs

Kneser and Borsuk graphs

 $VC^{(2)}$ -dimension

Final remarks

## Hajnal-Borsuk graph $B(k, \ell, n)$

 $B(k, \ell, n)$  has also the property that the upper part contain no cycles shorter than  $\ell$  and each odd cycle shorter than  $\ell$  has at least two vertices in the lower part. It means that the subgraph induced by the upper half looks locally as a tree, which is a bipartite graph, and each vertex of the lower part can be only adjacent to vertices from one part of the bipartition.



T. Łuczak S. Thomassé

Dense *H*-free graphs

VC-dimension

VC-dimension and dense graphs

Kneser and Borsuk graphs

 $VC^{(2)}$ -dimension

**Final remarks** 

## Back to the main theorem

## Theorem Łuczak, Thomassé

For every *H* either  $\tilde{\nu}_{\chi}(H) = 0$ , or  $\tilde{\nu}_{\chi}(H) \ge 1/3$ .

(日)

T. Łuczak S. Thomassé

Dense *H*-free graphs

VC-dimension

VC-dimension and dense graphs

#### Kneser and Borsuk graphs

 $VC^{(2)}$ -dimension

**Final remarks** 

## Back to the main theorem

## Theorem Łuczak, Thomassé

For every *H* either  $\tilde{\nu}_{\chi}(H) = 0$ , or  $\tilde{\nu}_{\chi}(H) \ge 1/3$ .

If *H* cannot be homomorphically embedded in  $B(k, \ell, n)$  for some  $\ell$ , then, clearly,  $\tilde{\nu}_{\chi}(H) \ge 1/3$ .

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q (~
T. Łuczak S. Thomassé

Dense *H*-free graphs

VC-dimension

VC-dimension and dense graphs

#### Kneser and Borsuk graphs

 $VC^{(2)}$ -dimension

Final remarks

### Back to the main theorem

#### Theorem Łuczak, Thomassé

For every *H* either  $\tilde{\nu}_{\chi}(H) = 0$ , or  $\tilde{\nu}_{\chi}(H) \ge 1/3$ .

If *H* cannot be homomorphically embedded in  $B(k, \ell, n)$  for some  $\ell$ , then, clearly,  $\tilde{\nu}_{\chi}(H) \ge 1/3$ .

Hence, it is enough to show that if *H* is such that it can be embedded into every  $B(k, \ell, n)$ , then each *H*-hom-free graph *G* with  $\delta(G) \ge an$  has a bounded chromatic number.

<日 > < 同 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

T. Łuczak S. Thomassé

Dense *H*-free graphs

VC-dimension

VC-dimension and dense graphs

Kneser and Borsuk graphs

 $VC^{(2)}$ -dimension

**Final remarks** 

### Graphs with $\tilde{\nu}_{\chi}(H) = 0$



T. Łuczak S. Thomassé

Dense *H*-free graphs

VC-dimension

VC-dimension and dense graphs

Kneser and Borsuk graphs

 $VC^{(2)}$ -dimension

**Final remarks** 

### Graphs with $\tilde{\nu}_{\chi}(H) = 0$



T. Łuczak S. Thomassé

Dense *H*-free graphs

VC-dimension

VC-dimension and dense graphs

Kneser and Borsuk graphs

 $VC^{(2)}$ -dimension

**Final remarks** 

### Graphs with $\tilde{\nu}_{\chi}(H) = 0$



T. Łuczak S. Thomassé

Dense *H*-free graphs

VC-dimension

VC-dimension and dense graphs

Kneser and Borsuk graphs

 $VC^{(2)}$ -dimension

**Final remarks** 

### Graphs with $\tilde{\nu}_{\chi}(H) = 0$

Thus, it is enough to prove that  $\tilde{\nu}_{\chi}(H) = 0$  for graphs *H* of the following type:



▲□▶▲□▶▲□▶▲□▶ □ のQ@

T. Łuczak S. Thomassé

Dense *H*-free graphs

VC-dimension

VC-dimension and dense graphs

Kneser and Borsuk graphs

 $VC^{(2)}$ -dimension

Final remarks

### Graphs with $\tilde{\nu}_{\chi}(H) = 0$

More precisely, we need to show the following statement.

#### Theorem

If a graph *G* with  $\delta(G) \ge an$ , a > 0, contains no copies of



<日 > < 同 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

then its chromatic number is bounded by f(a).

T. Łuczak S. Thomassé

Dense *H*-free graphs

VC-dimension

VC-dimension and dense graphs

Kneser and Borsuk graphs VC<sup>(2)</sup>-dimension

**Final remarks** 

# Generalized Vapnik-Červonenkis dimension

#### Definition

Let  $\mathcal{F}^{(2)}$  be a family of pairs of subsets of *V*. We say that a set of pairs  $\{A_i, B_i\}_{i \in I}$  from  $\mathcal{F}^{(2)}$  is complete if for every  $J \subseteq I$ 

$$\bigcap_{j\in J}A_j\cap\bigcap_{\ell\in I\setminus J}B_\ell\neq\emptyset.$$

The  $VC^{(2)}$ -dimension of a family  $\mathcal{F}^{(2)}$ , denoted by  $d_{VC}^{(2)}(\mathcal{F}^{(2)})$ , is the maximum size of a complete set of pairs from  $\mathcal{F}^{(2)}$ .

(ロ) (同) (三) (三) (三) (三) (○) (○)

T. Łuczak S. Thomassé

Dense *H*-free graphs

VC-dimension

VC-dimension and dense graphs

Kneser and Borsuk graphs VC<sup>(2)</sup>-dimension

Final remarks

# Generalized Vapnik-Červonenkis dimension

#### Theorem Łuczak, Thomassé

Let  $\mathcal{F}^{(2)}$  be a family of pairs of subsets of [n] such that each subset has size at least *an*, a > 0, and *G* be a graph whose edges are pairs from  $\mathcal{F}^{(2)}$ . Then

$$\chi(\boldsymbol{G}) \leq f(\boldsymbol{a}, \boldsymbol{d}_{VC}^{(2)}(\mathcal{F}^{(2)}))$$

(日) (日) (日) (日) (日) (日) (日) (日)

for some (explicit) function f.

T. Łuczak S. Thomassé

Dense *H*-free graphs

VC-dimension

VC-dimension and dense graphs

Kneser and Borsuk graphs

 $VC^{(2)}$ -dimension

**Final remarks** 

### **Proof of Main Theorem**

#### Theorem

If a graph *G* with  $\delta(G) \ge an$ , a > 0, contains no copies of



▲□▶▲□▶▲□▶▲□▶ □ のQ@

then its chromatic number is bounded by f(a).

T. Łuczak S. Thomassé

Dense *H*-free graphs

VC-dimension

VC-dimension and dense graphs

Kneser and Borsuk graphs

 $VC^{(2)}$ -dimension

Final remarks

### **Proof of Main Theorem**

#### Theorem

If a graph *G* with  $\delta(G) \ge an$ , a > 0, contains no copies of



◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q (~

then its chromatic number is bounded by f(a).

**Proof** Find a bipartition of *G* so that each vertex has at least an/2 neighbours in the opposite set of the bipartition.

T. Łuczak S. Thomassé

Dense *H*-free graphs

VC-dimension

VC-dimension and dense graphs

Kneser and Borsuk graphs

VC<sup>(2)</sup>-dimension

Final remarks

### **Proof of Main Theorem**

**Proof** Find a bipartition of *G* so that each vertex has at least an/2 neighbours in the opposite set of the bipartition.



▲□▶▲□▶▲□▶▲□▶ □ のQ@

T. Łuczak S. Thomassé

Dense *H*-free graphs

VC-dimension

VC-dimension and dense graphs

Kneser and Borsuk graphs

VC<sup>(2)</sup>-dimension

**Final remarks** 

### **Proof of Main Theorem**



T. Łuczak S. Thomassé

Dense *H*-free graphs

VC-dimension

VC-dimension and dense graphs

Kneser and Borsuk graphs

VC<sup>(2)</sup>-dimension

**Final remarks** 

### **Proof of Main Theorem**



T. Łuczak S. Thomassé

Dense *H*-free graphs

VC-dimension

VC-dimension and dense graphs

Kneser and Borsuk graphs

```
VC<sup>(2)</sup>-dimension
```

**Final remarks** 

#### **Proof of Main Theorem**



T. Łuczak S. Thomassé

Dense *H*-free graphs

VC-dimension

VC-dimension and dense graphs

Kneser and Borsuk graphs

VC<sup>(2)</sup>-dimension

**Final remarks** 

### **Proof of Main Theorem**



T. Łuczak S. Thomassé

Dense *H*-free graphs

VC-dimension

VC-dimension and dense graphs

Kneser and Borsuk graphs

VC<sup>(2)</sup>-dimension

**Final remarks** 

### **Proof of Main Theorem**



T. Łuczak S. Thomassé

Dense *H*-free graphs

VC-dimension

VC-dimension and dense graphs

Kneser and Borsuk graphs

VC<sup>(2)</sup>-dimension

**Final remarks** 

### **Proof of Main Theorem**



T. Łuczak S. Thomassé

Dense *H*-free graphs

VC-dimension

VC-dimension and dense graphs

Kneser and Borsuk graphs

VC<sup>(2)</sup>-dimension

**Final remarks** 

### **Proof of Main Theorem**



T. Łuczak S. Thomassé

Dense *H*-free graphs

VC-dimension

VC-dimension and dense graphs

Kneser and Borsuk graphs VC<sup>(2)</sup>-dimension

**Final remarks** 

#### **Proof of Main Theorem**

Consequently, by our result on  $d_{VC}^{(2)}$ , the subgraph induced by a lower part has a bounded chromatic number.

Clearly, the same is true for the upper subgraph as well and so the assertion follows.

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q (~

T. Łuczak S. Thomassé

Dense *H*-free graphs

VC-dimension

VC-dimension and dense graphs

Kneser and Borsuk graphs

 $VC^{(2)}$ -dimension

**Final remarks** 

### Alternative definition of VC<sup>2</sup>-dimension

#### Definition

Let  $\mathcal{F}^2$  be a family of pairs of disjoint subsets of *V*. We say that a set  $X \subseteq V$  is 2-shattered by  $\mathcal{F}^2$  if for each partitions  $X = Y \cup Z$  there is an  $\{F_1, F_2\} \in \mathcal{F}^2$  such that  $Y = F_1 \cap X$  and  $Z = F_2 \cap X$ .

(ロ) (同) (三) (三) (三) (三) (○) (○)

> T. Łuczak S. Thomassé

Dense *H*-free graphs

VC-dimension

VC-dimension and dense graphs

Kneser and Borsuk graphs

VC<sup>(2)</sup>-dimension

**Final remarks** 

### Alternative definition of VC<sup>2</sup>-dimension

**Example:** 



> T. Łuczak S. Thomassé

Dense *H*-free graphs

VC-dimension

VC-dimension and dense graphs

Kneser and Borsuk graphs

 $VC^{(2)}$ -dimension

**Final remarks** 

### Alternative definition of VC<sup>2</sup>-dimension

**Example:** 



> T. Łuczak S. Thomassé

Dense *H*-free graphs

VC-dimension

VC-dimension and dense graphs

Kneser and Borsuk graphs

 $VC^{(2)}$ -dimension

**Final remarks** 

### Alternative definition of VC<sup>2</sup>-dimension

**Example:** 



T. Łuczak S. Thomassé

Dense *H*-free graphs

VC-dimension

VC-dimension and dense graphs

Kneser and Borsuk graphs

 $VC^{(2)}$ -dimension

**Final remarks** 

### Alternative definition of VC<sup>2</sup>-dimension

#### Definition

The  $VC^{(2)}$ -dimension of the family of disjoint pairs of sets  $\mathcal{F}^2$ , denoted by  $d_{VC}^{(2)}(\mathcal{F}^2)$ , is the maximum size of a set 2-shattered by  $\mathcal{F}^2$ .

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

T. Łuczak S. Thomassé

Dense *H*-free graphs

VC-dimension

VC-dimension and dense graphs

Kneser and Borsuk graphs

 $VC^{(2)}$ -dimension

**Final remarks** 

### Alternative definition of VC<sup>2</sup>-dimension

## But we may have $A_i = B_i = [n]$ for all pairs $\{A_i, B_i\}$ from $\mathcal{F}^2$ !

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q (~

T. Łuczak S. Thomassé

Dense *H*-free graphs

VC-dimension

VC-dimension and dense graphs

Kneser and Borsuk graphs

 $VC^{(2)}$ -dimension

**Final remarks** 

#### **Open problems**

#### Problem 1

Does there exist  $\eta > 0$  such that for every H we have either  $\nu_{\chi}(H) = 0$  or  $\nu_{\chi}(H) \ge \eta$ .

<日 > < 同 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

#### **Problem 2**

Compute  $\nu_{\tau}(C_{2k+1})$ .

T. Łuczak S. Thomassé

Dense *H*-free graphs

VC-dimension

VC-dimension and dense graphs

Kneser and Borsuk graphs

VC<sup>(2)</sup>-dimension

**Final remarks** 

#### **Open problems**

#### Problem 1

Does there exist  $\eta > 0$  such that for every H we have either  $\nu_{\chi}(H) = 0$  or  $\nu_{\chi}(H) \ge \eta$ .

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q (~

#### Problem 2

Compute  $\nu_{\tau}(C_{2k+1})$ .

> T. Łuczak S. Thomassé

Dense *H*-free graphs

VC-dimension

VC-dimension and dense graphs

Kneser and Borsuk graphs

VC<sup>(2)</sup>-dimension

**Final remarks** 

#### **Open problems**

#### Problem 1

Does there exist  $\eta > 0$  such that for every H we have either  $\nu_{\chi}(H) = 0$  or  $\nu_{\chi}(H) \ge \eta$ .

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q (~

#### Problem 2

Compute  $\nu_{\tau}(C_{2k+1})$ .

 $1/5 \le \nu_{\tau}(C_5) \le 1/3.$ 

T. Łuczak S. Thomassé

Dense *H*-free graphs

VC-dimension

VC-dimension and dense graphs

Kneser and Borsuk graphs

 $VC^{(2)}$ -dimension

**Final remarks** 

#### **Open problems**

#### Definition

 $\nu_{\chi}(k)$  is the smallest  $a \ge 0$  for which the following holds:

for every  $\epsilon > 0$  there exists  $f(\epsilon)$  such that every graph G on n vertices with  $\delta(G) \ge (a + \epsilon)n$  such that the neighbourhood of each vertex of G is k-chromatic is at most  $f(\epsilon)$ -chromatic.

Conjecture

 $u_{\chi}(2) = 1/2.$ 

> T. Łuczak S. Thomassé

Dense *H*-free graphs

VC-dimension

VC-dimension and dense graphs

Kneser and Borsuk graphs

 $VC^{(2)}$ -dimension

**Final remarks** 

#### **Open problems**

#### Definition

 $\nu_{\chi}(k)$  is the smallest  $a \ge 0$  for which the following holds:

for every  $\epsilon > 0$  there exists  $f(\epsilon)$  such that every graph G on n vertices with  $\delta(G) \ge (a + \epsilon)n$  such that the neighbourhood of each vertex of G is k-chromatic is at most  $f(\epsilon)$ -chromatic.

<日 > < 同 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

$$u_{\chi}(1) = \nu_{\chi}(K_3) = 1/3.$$

Conjecture

T. Łuczak S. Thomassé

Dense *H*-free graphs

VC-dimension

VC-dimension and dense graphs

Kneser and Borsuk graphs

 $VC^{(2)}$ -dimension

**Final remarks** 

#### **Open problems**

#### Definition

 $\nu_{\chi}(k)$  is the smallest  $a \ge 0$  for which the following holds:

for every  $\epsilon > 0$  there exists  $f(\epsilon)$  such that every graph G on n vertices with  $\delta(G) \ge (a + \epsilon)n$  such that the neighbourhood of each vertex of G is k-chromatic is at most  $f(\epsilon)$ -chromatic.

<日 > < 同 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

$$u_{\chi}(1) = \nu_{\chi}(K_3) = 1/3.$$
  
 $u_{\chi}(2) \ge 1/2.$ 

Conjecture

 $\nu_{\chi}(2) = 1/2.$ 

T. Łuczak S. Thomassé

Dense *H*-free graphs

VC-dimension

VC-dimension and dense graphs

Kneser and Borsuk graphs

 $VC^{(2)}$ -dimension

**Final remarks** 

#### **Open problems**

#### Definition

 $\nu_{\chi}(k)$  is the smallest  $a \ge 0$  for which the following holds:

for every  $\epsilon > 0$  there exists  $f(\epsilon)$  such that every graph G on n vertices with  $\delta(G) \ge (a + \epsilon)n$  such that the neighbourhood of each vertex of G is k-chromatic is at most  $f(\epsilon)$ -chromatic.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQで

$$u_{\chi}(1) = 
u_{\chi}(K_3) = 1/3.$$
  
 $u_{\chi}(2) \ge 1/2.$ 

#### Conjecture

 $u_{\chi}(2) = 1/2.$ 

T. Łuczak S. Thomassé

Dense *H*-free graphs

VC-dimension

VC-dimension and dense graphs

Kneser and Borsuk graphs

VC<sup>(2)</sup>-dimension

**Final remarks** 

Thank you