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Random Variables associated with Combinatorial Problems

I Minimum length tour visiting each of n i.i.d. points in the
unit square. Travelling Saleman Problem

I Minimum length of edges so that there is a path between each
pair of n i.i.d. points in unit square. Minimum Spanning Tree

I Minimum number of capacity 1 bins into which we can pack n

i.i.d. reals in [0, 1].Bin Packing

I Minimum number of colours to be assigned to vertices of a
random graph Graph Colouring Gn,p so that no two adjacent
vertices get the same colour.

Concentration Prove probability of deviation from mean is small.
Are tail probabilities upper bounded by normal density of same
variance (“sub-Gaussian”?)
Study of such random variables started by Physicists -
Beardswood, Halton and Hammersley....(A more basic question we
don’t deal with: What is the expected value (in the limit?))
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The standard tools for proving concentration can deal with:

I Uniform density in the unit square for TSP, MWST, other
geometric problems – (essentially) Equivalently Poisson

I Homogeneous (all equal) edge probabilities in Random Graph
G (n, p).

I Gaussians for random vectors/projections

I i.i.d. uniform [0, 1] for longest increasing sub-sequence.....

But modern data seems to have

I Heavy Tails

I Inhomogeneity (not i.i.d.)

I Not fully independent ...
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A half-baked discussion of heavy-tails

Example: Communication/queeing Network: One extreme: n
independent users or jobs. Could allow each user/job to have
heavy-tailed processing time/number of packets, but still maintain
independence among users. Then, say, the number of arrivals in
any fixed period still has exponential (in n) tails.
Opposite extreme used in Algorithm Analysis : Worst-case :
“Adversary” arranges arrivals/processing times (but still subject to
global totals being right- eg. total of n jobs) so as to force the
worst-case on the algorithm.
A more general set-up: Multiple, say, still, O(n) adversaries. Each
controlling, say, a “cogent part” of the Network. Adversaries are
independent. Now we may not have exponential tails for “local
variables” (number of packets which must pass through an edge.)
Here: General Tool for these and also some more classical
examples.
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Höffding-Azuma

Höffding-Azuma inequality

I X1,X2, . . .Xn real random variables with
I E (Xi |X1,X2, . . .Xi−1) = 0 Martingale Differences
I |Xi | ≤ 1 ABSOLUTE BOUND

I Then,

Pr

(

|
n
∑

i=1

Xi | ≥ t

)

≤ exp

(

−ct2

n

)

.

Tails of
∑n

i=1 Xi are “at most” tails of Gaussian - N(0, n). If the
Xi were independent with variance 1 each,then Central Limit
Theorem gives us such a result (at least in the limit). H-A yields
similar result (but for constant c) even though Xi are not
(necessarily) independent.
But penalty: Assumption of absolute bound.
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Power-law and other heavy tails

But, even for the simple example, with i.i.d. Xi with

Pr(Xi = s) =
c

s10
for s = 1, 2, . . .

H-A says nothing about concentration of
∑

Xi .
Simple starting thought: In this example, 8 th moment of Xi exists
(9 th does not), so can we bound the 8 th moment of

∑

Xi?
What (minimal ?) conditions on Xi will allow us to conclude tails
of
∑

i Xi are sub-Gaussian as in H-A ?
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Theorem 1

I X1,X2, . . .Xn real r.v.’s. m ≤ n even positive integer.
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k ≤ 0

odd k < m.

Ravindran Kannan Two new probability inequalities and concentration results



Theorem 1

I X1,X2, . . .Xn real r.v.’s. m ≤ n even positive integer.

I Strong Negative Correlation EXi(X1 + X2 + . . .Xi−1)
k ≤ 0

odd k < m.
I (⇐= Martingale)

Ravindran Kannan Two new probability inequalities and concentration results



Theorem 1

I X1,X2, . . .Xn real r.v.’s. m ≤ n even positive integer.

I Strong Negative Correlation EXi(X1 + X2 + . . .Xi−1)
k ≤ 0

odd k < m.
I (⇐= Martingale)

I Bounds on Conditional Moments
E (X k

i |X1 + X2 + . . .Xi−1) ≤ k!
(

n
m

)(k/2)−1
, even k ≤ m.

Ravindran Kannan Two new probability inequalities and concentration results



Theorem 1

I X1,X2, . . .Xn real r.v.’s. m ≤ n even positive integer.

I Strong Negative Correlation EXi(X1 + X2 + . . .Xi−1)
k ≤ 0

odd k < m.
I (⇐= Martingale)

I Bounds on Conditional Moments
E (X k

i |X1 + X2 + . . .Xi−1) ≤ k!
(

n
m

)(k/2)−1
, even k ≤ m.

I (⇐= |Xi | ≤ 1.)

Ravindran Kannan Two new probability inequalities and concentration results



Theorem 1

I X1,X2, . . .Xn real r.v.’s. m ≤ n even positive integer.

I Strong Negative Correlation EXi(X1 + X2 + . . .Xi−1)
k ≤ 0

odd k < m.
I (⇐= Martingale)

I Bounds on Conditional Moments
E (X k

i |X1 + X2 + . . .Xi−1) ≤ k!
(

n
m

)(k/2)−1
, even k ≤ m.

I (⇐= |Xi | ≤ 1.)

I Conclusion E (
∑n

i=1 Xi)
m ≤ (100nm)m/2. ( ∼ tails of

N(0, n))

Ravindran Kannan Two new probability inequalities and concentration results



Theorem 1

I X1,X2, . . .Xn real r.v.’s. m ≤ n even positive integer.

I Strong Negative Correlation EXi(X1 + X2 + . . .Xi−1)
k ≤ 0

odd k < m.
I (⇐= Martingale)

I Bounds on Conditional Moments
E (X k

i |X1 + X2 + . . .Xi−1) ≤ k!
(

n
m

)(k/2)−1
, even k ≤ m.

I (⇐= |Xi | ≤ 1.)

I Conclusion E (
∑n

i=1 Xi)
m ≤ (100nm)m/2. ( ∼ tails of

N(0, n))

I H-A and Chernoff are very special cases.
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Theorem 1

I X1,X2, . . .Xn real r.v.’s. m ≤ n even positive integer.

I Strong Negative Correlation EXi(X1 + X2 + . . .Xi−1)
k ≤ 0

odd k < m.
I (⇐= Martingale)

I Bounds on Conditional Moments
E (X k

i |X1 + X2 + . . .Xi−1) ≤ k!
(

n
m

)(k/2)−1
, even k ≤ m.

I (⇐= |Xi | ≤ 1.)

I Conclusion E (
∑n

i=1 Xi)
m ≤ (100nm)m/2. ( ∼ tails of

N(0, n))

I H-A and Chernoff are very special cases.

I Adversary “sets” previous variables; later variables can be
integrated out.

I Hypothesis: Conditions on moments up to m th. Conclusion:
Same m !!
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Theorem 1 in Words

I Xi negatively correlated with any odd power of
X1 + X2 + . . .Xi−1. (For example, Xi = budget for period i

decreasing function of total budget for previous periods will
do, as seen from a mild version of FKG inequality.)

Ravindran Kannan Two new probability inequalities and concentration results



Theorem 1 in Words

I Xi negatively correlated with any odd power of
X1 + X2 + . . .Xi−1. (For example, Xi = budget for period i

decreasing function of total budget for previous periods will
do, as seen from a mild version of FKG inequality.)

I Much Weaker Condition than :

Ravindran Kannan Two new probability inequalities and concentration results



Theorem 1 in Words

I Xi negatively correlated with any odd power of
X1 + X2 + . . .Xi−1. (For example, Xi = budget for period i

decreasing function of total budget for previous periods will
do, as seen from a mild version of FKG inequality.)

I Much Weaker Condition than :

E (X k
i |X1 + X2 + . . .Xi−1 = a) ≤ 1for all a, k ≤ m even. (1)

(For any adversarial setting of previous variables, even
moments of Xi are bounded by 1. (1) in turn weaker than
|Xi | ≤ 1.
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Theorem 1 in Words

I Xi negatively correlated with any odd power of
X1 + X2 + . . .Xi−1. (For example, Xi = budget for period i

decreasing function of total budget for previous periods will
do, as seen from a mild version of FKG inequality.)

I Much Weaker Condition than :

E (X k
i |X1 + X2 + . . .Xi−1 = a) ≤ 1for all a, k ≤ m even. (1)

(For any adversarial setting of previous variables, even
moments of Xi are bounded by 1. (1) in turn weaker than
|Xi | ≤ 1.

I Conclusion
∑n

i=1 Xi has sub-Gaussian (N(0, n)) tails.
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I Proof of Theorem 1 : Computer Sciency - Dynamic
Programming like recursion.
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I Proof of Theorem 1 : Computer Sciency - Dynamic
Programming like recursion.

I Implies concentration for TSP, MWST, Johnson-Lindenstrauss
under more general distributions (heavier tails,
inhomogeneous) which is as strong as what was known for
only uniform distributions.

Ravindran Kannan Two new probability inequalities and concentration results



I Proof of Theorem 1 : Computer Sciency - Dynamic
Programming like recursion.

I Implies concentration for TSP, MWST, Johnson-Lindenstrauss
under more general distributions (heavier tails,
inhomogeneous) which is as strong as what was known for
only uniform distributions.

I Also concentration for chromatic number of “inhomogeneous”
random graphs (different edge probabilities)

Ravindran Kannan Two new probability inequalities and concentration results



I Proof of Theorem 1 : Computer Sciency - Dynamic
Programming like recursion.

I Implies concentration for TSP, MWST, Johnson-Lindenstrauss
under more general distributions (heavier tails,
inhomogeneous) which is as strong as what was known for
only uniform distributions.

I Also concentration for chromatic number of “inhomogeneous”
random graphs (different edge probabilities)

I Theorem 2 to come later is generally much stronger, more
complicated proof, but starting on the same lines as Theorem
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I Proof of Theorem 1 : Computer Sciency - Dynamic
Programming like recursion.

I Implies concentration for TSP, MWST, Johnson-Lindenstrauss
under more general distributions (heavier tails,
inhomogeneous) which is as strong as what was known for
only uniform distributions.

I Also concentration for chromatic number of “inhomogeneous”
random graphs (different edge probabilities)

I Theorem 2 to come later is generally much stronger, more
complicated proof, but starting on the same lines as Theorem
1.

I Using Theorem 2, will settle bin-packing by proving best
possible concentration.

I Other Applications ?
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Classical TSP

n iid, uniform points in the unit square. f length of TSP tour
through the points. One of the earliest problems in Probabilitistic
Analysis. Known Ef ∈ O(

√
n). First introduced and studied by

Hammersely and others.
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n iid, uniform points in the unit square. f length of TSP tour
through the points. One of the earliest problems in Probabilitistic
Analysis. Known Ef ∈ O(

√
n). First introduced and studied by

Hammersely and others.
After much effort, Rhee and Talagrand proved concentration of f
in O(1) size interval with Gaussian tails - ce−ct2 . Talagrand’s
inequality gave a simpler proof. Steele simplified the proof further.
Summary: TSP tour - mean θ(

√
n); sub-Gaussian tails with Var

O(1).
All proofs start with uniform is well approximated by Poisson
process :
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√
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Classical TSP

n iid, uniform points in the unit square. f length of TSP tour
through the points. One of the earliest problems in Probabilitistic
Analysis. Known Ef ∈ O(

√
n). First introduced and studied by

Hammersely and others.
After much effort, Rhee and Talagrand proved concentration of f
in O(1) size interval with Gaussian tails - ce−ct2 . Talagrand’s
inequality gave a simpler proof. Steele simplified the proof further.
Summary: TSP tour - mean θ(

√
n); sub-Gaussian tails with Var

O(1).
All proofs start with uniform is well approximated by Poisson
process :

I Divide unit square into n small squares (say), each of side
1/
√
n.

I Yi is a Poisson of intensity 1 (=Area of square times n) in the
i th square. So, E |Yi |k ≤ k!.
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Our Theorem

In words : Unit Square divided into n small squares, each of side
1/
√
n. Yi set of points in i th square. Yi independent. [Not i.i.d.,

internal correlations allowed.] With (roughly)

E |Yi |k < k2k , k even , k ≤ m

(instead of E |Yi |k ≤ kk for all k)
we again get sub-Gaussian with Var. O(1).
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Our Theorem

In words : Unit Square divided into n small squares, each of side
1/
√
n. Yi set of points in i th square. Yi independent. [Not i.i.d.,

internal correlations allowed.] With (roughly)

E |Yi |k < k2k , k even , k ≤ m

(instead of E |Yi |k ≤ kk for all k)
we again get sub-Gaussian with Var. O(1).
Theorem Let Y1,Y2, . . .Yn be independent sets of points
generated in each small square respectively such that for a fixed
constant c ∈ (0, 1), an even positive integer m ≤ n, and an ε > 0,
we have for 1 ≤ i ≤ n and 1 ≤ l ≤ m/2,

Pr(|Yi | = 0) ≤ c ; E |Yi |l ≤ (O(l))(2−ε)l .

Suppose f = f (Y1,Y2, . . .Yn) is the length of the shortest
Hamilton tour through Y1 ∪ Y2 ∪ . . .Yn. We have

E (f − Ef )m ≤ (cm)m/2
(

=⇒ e−ct2 ...
)

.

Points: Only finite number of moments of |Yi | assumed boundedRavindran Kannan Two new probability inequalities and concentration results



TSP-contd.
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Minimum conditions for O(1) variance, higher momemnts

Stepping back, traditional results do prove that variance of tour
length is O(1) for n uniform random points in the unit square.
Several such results - saying - variance is bounded even as the
number of points goes to infinity. Rough high level reason: to each
point, there are two other points within distance O(1/

√
n), so sum

of squared incremental costs is only O(1)... Much emperical
evidence (Applegate, Johnson) too.
But, we are making very strong assumptions - n i.i.d points...
Aditya Bhaskar, K. Mildest assumptions under which such results
can be proved ?
Suppose Yi are independent; E |Yi | = 1∀i and
Pr(|Yi | = 0) < c < 1. Then, the variance of the tour length is
O(1). Also if E |Yi |l ≤ l2l for l up to m/2, then E (f − Ef )m

bounded by moments of N(0, 1). Other geoemetric problems.
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Minimum weight spanning tree

Exactly Analogous Result. Complication : Not Monotonic. I.e., ∆i

not always positive.
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Chromatic Number χ of Inhomogeneous random Graphs

First, traditional Random Graph Gn,p:
The MAXIMUM change in the chromatic number on adding one
vertex (and all its edges) is 1. This + Höffding-Azuma easily
implies sub-Gaussian tails with variance O(n).

Prob (|χ− Eχ| ≥ t) ≤ e−ct2/n.

But now, add groups of 1/p vertices at a time. Internal to the
group, each vertex is adjacent to O(1) vertices (in expectation); if
so, O(1) new colors suffice. HIGH MOMENTS OF additional
number of colors can also be shown to be so bounded.... Implies

Prob (|χ− Eχ| ≥ t) ≤ e−ct2/(np).

For traditional G (n, p), much tighter concentration (±1 - Shamir,
Spencer; Bollobas; Frieze; Luczak; Alon, Krivelevich; Achlioptas,
Naor) known for almost surely.
Focus has been on tighter (almost sure) concentration, not
necessarily exponential tails.
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Different Model - G (n, capital P)

Random graph with edge probabilities P = {pij} - inhomogeneous.

Average edge probability p =
∑

ij pij

(n2)
. We prove:

Theorem For t ≤ n
√
p, Prob (|χ− Eχ| ≥ t) ≤ e−c∗t2/(n

√
p).

Question: Better results?
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Random Projections

Johnson-Lindenstrauss (JL) Theorem : For v u.a.r. unit n−vector.
k ≤ n. ε ∈ (0, 1).

Pr
(∣

∣

∣

∑k
i=1 v

2
i − k

n

∣

∣

∣ ≥ εk
n

)

≤ c1e
−c2kε

2
.

Proofs exploit uniform density or equivalently Gaussian. Here same
result for more general distributions (long-tailed, inhomogeneous).
Theorem Suppose Y = (Y1,Y2, . . .Yn) is a random vector picked
from a distribution such that (for a k ≤ n) (i)
E (Y 2

i |Y 2
1 + Y 2

2 + . . .Y 2
i−1) is a non-increasing function of

Y 2
1 + Y 2

2 + . . .Y 2
i−1 for i = 1, 2, . . . k and (ii) for even l ≤ k ,

E (Y l
i |Y 2

1 + Y 2
2 + . . .Y 2

i−1) ≤ (cl)l/2/nl/2. Then for any even
integer m ≤ k , we have

E
(

∑k
i=1(Y

2
i − EY 2

i )
)m

≤ (cmk)m/2/nm.

First use of Strong Negative Correlation instead of Martingale
condition
Again : Higher the k in Hypothesis, higher the k in conclusion.
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Longest Increasing Sequence (LIS)

Y1,Y2, . . .Yn i.i.d. uniform on [0, 1]. f (Y1,Y2, . . .Yn) = length of
the longest increasing sequence. Much study of f . Ef ≈

√
2n.

Concentration: In interval of length O(n1/3) : Frieze; Bollobás and
Brightwell. TalagrandInterval of length O(n1/4) by a simple proof.
Here, same. [By now better results are known, but using very
specialized (beautiful) techniques.]
∆i=increase in f caused by adding Yi to
Y1,Y2, . . .Yi−1,Yi+1, . . .Yn. 0 or 1.
While ∆i may be 1 in the worst-case (when we only get
concentration in interval of length O(

√
n)), one can simply show

that E∆i ≤ c
√

n−i+1
with adversarial choice of Y1,Y2, . . . ,Yi−1.

So, E (∆k
i |Y1,Y2, . . .Yi−1) ≤ 1

√

n−i+1
for all k ≥ 2.

Question Can this be improved - i.e., to O(n0.25−ε). Will be
interesting to do from general principles like here.
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Random Matrices

Open Question Upper bounds on eigen/singular values of random
matrices.
Wigner; Füredi, Komlos; Vu: A symmetric matrix with random
above-diagonal entries, each with mean 0, variance σ2 and
absolutely bounded by 1. Then largest eigen-value of A is whp O(
length of one row of A). Almost no correlation between rows.
For consumer-product OR document-term matrices, cannot
assume total independence of all entries. May however assume
rows (consumers, documents) are independent vector-valued
random variables.
Dasgupta, Hopcroft, Kannan, Mitra based on a Functional
Analysis results of Rudelson and Lust-Picard: If A has independent
vector-valued rows of mean 0, maximum variance σ2, length
O(

√
nσ), then maximum singular value of A is at most

O(
√
n ln nσ). Clustering applications.

Essentially Wigner with log factors. Can this be derived (without
all the Functional Analysis) using results here ?? Can this be
generalized / strengthened ? Tensor Analogs ??Ravindran Kannan Two new probability inequalities and concentration results



Question

TSP : what are the heaviest tails for which such concentration can
be proved ??
Question Do poly time algorithms work for these heavy-tailed
distributions ?
Question Other Geometric problems.
Question Configuration model for a random regular graph : A
random Matching. Edge probability is a decreasing function of
number of previous edges. Strong Negative Correlation (SNC)...
More generally : Degree Constraint graphs..
Question What is the chromatic number of G (n,P)? Is it within a
log factor of n(p + σ), where p, σ are mean, standard deviation of
pij .
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More Speculative

Heavy-tailed Queueing Theory Arrival and/or Service times may be
heavy-tailed rather than Poisson in many modern settings.
Queueing Theorists have already studied this, but generally in the
steady-state. In Networking and other applications, would be nice
to get confidence guarantees that always hold.
Contingency Tables Given m, n, a1, a2, . . . am, b1, b2, . . . bn consider
all m × n arrays with non-negative integer entries with row sums
a1, a2, . . . am respy and column sums b1, b2, . . . bn. Important
Statistics Problem : I have a particular table. Is it random ?
Diaconis and Efron have argued the correct precise question is :
what percentage of tables have some parameter greater than my
table ? Concentration results for some parameters (like the sum of
entries in a subset of positions) would be useful in this context.
Contingency Tables have some negative correlations. Row and
column sums being fixed should imply the greater some entries are
the lesser others are...
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Major Issue with Thm. 1: Typical Vs Worst-case

conditional moments

Bin-Packing Y1,Y2, . . .Yn ∈ [0, 1] i.i.d. (arbitrary distribution) –
“items”. f (Y1,Y2, . . .Yn) = Minimum number of capacity 1 bins
needed to pack the items.
∆i = increase in the number of bins when we add Yi alone to
Y1,Y2, . . .Yi−1,Yi+1, . . .Yn. Again pretend ∆i form a Martingale
difference sequence.
Best absolute bound : ∆i ≤ 1 only yields concentration in an
interval of length

√
n.

Want to deal with EY1 = µ << 1. Let Var(Y1) = σ2.
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Bin-Packing - contd.

If µ = EY1 << 1, then “typically” ∆i (the increase in number of
bins needed because of adding Yi) is not 1.... If we were filling the
bins one item at a time, there will be an overflow into the next bin
only µ th of the time !! Even then, not a whole new bin, but only
µ fraction of it is used up !!So, the variance of ∆i should only be
at most

σ2 + µµ2

where σ2 = var(Yi ) is for when we do not overflow into next bin
and (very roughly) µ2 is for when we do, but we do only with
probability µ.
Earlier best Concentration in an interval of length
O(

√
n(µ+ σ))- Rhee, Talagrand.

Here For discrete distributions : concentration (with sub-Gaussian
tails) in an interval - O(

√
n(σ + µ3/2). Also proof that this is best

possible for discrete distributions. One other important point
about Main thm: variance matters more than higher monents.
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Bin Packing Contd.

The actual proof uses a Linear Programming formulation with one
variable per “bin type”. The LP is used to prove that ∆i is not too
high. Its dual is used to show (by a more complicated argument)
that ∆i is not too low. Together, one gets a bound on variance...
Stochastic bin-Packing is well-studied in CS (Coffman; Kenyon,
Sinclair) because of applications. Of special interest in
Concentration because the number of bins should be close to the
sum of fractions, so the question had been : Is it as concentrated
as the sum of independents ?
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Different type of example - Polynomial r.v.
fs(G ) is the number of s cliques in a graph G . Much study of the
random variable f = f (Gn,p) for FIXED s : asymptotically normal
Rucinski . For p small, difficult to get concentration results (by
Azuma and even Talagrand) - because of small Ef . Kim and Vu;
Janson, Rucinski get good (sub-Gaussian) tail bounds on

Pr(f ≥ 2Ef ).

Kim and Vu More generally, concentration inequalities for random
variables which are POLYNOMIAL functions of independent
random variables. For this f , degree of polynomial is

(

s
2

)

. For fixed
s, many results giving best tail bounds for very large deviations –
O(Ef ). We get exponential tail bounds for s = 3, but for “small”
deviations of the order of S.D.
Also we get : first results for s almost upto O(log n). [One reason
for this large s: Max clique size in Gn,p with p constant is
O(log n).] log n degree too high for KV theorems.

Ravindran Kannan Two new probability inequalities and concentration results



Number of triangles in Gn,p

f (Y ) =
∑

k<j<i YijYjkYik .

Easy : Var f = O(n3p3 + n4p5).
Result Here : For deviations up to (np)7/4, sub-Gaussian Tails
(with correct variance - up to a constant.)
Remark : Beyond (np)9/4 tails are provably not sub-Gaussian.
Remark: The case of “large” p (p ≥ 1/

√
n) is easy and earlier

result of Kim, VU; Janson and Rucinski prove sub-Gaussian tails.
Here, the more difficult p ≤ 1/

√
n is also tackled.

Open: Sub-Gaussian Tails for number of copies of other graphs.
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Main Theorem

X1,X2, . . .Xn satisfy strong negative correlation. Typical
conditional moments : Lim. Worst-case conditional moments :
Mim and Probability of being “atypical” : δi .

E

(

n
∑

i=1

Xi

)p

≤ (cp)p/2





p/2
∑

m=1

p1−(1/m)

m2

(

n
∑

i=1

Li ,2m

)1/m




p/2

+ (36p)p+2

p/2
∑

m=1

1

n

n
∑

i=1

(nMi ,2m)
p/2mδ

1/m
i .

The p/2 is crucial to get sub-Gaussian bounds (obtained by setting
p to the optimal value). If δi = 0 and Li ,2m ≤ L2m, we get

(cp)p/2
[

nL2 +
√
npL

1/2
4 + n1/3p2/3L

1/3
6 + . . .

]p/2
≈ (cpnL2)

p/2,

if higher moments do not grow too fast. Loosely : sub-Gaussian
tails with variance nL2 as if Xi are independent.
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Martingale condition replaced by negative “correlation”

As a by-product (of the proof), main theorem replaces Martingale
condition E (Xi |X1,X2, . . .Xi−1) = 0 by a strong negative
correlation condition :

EXi (X1 + X2 + . . .Xi−1)
m ≤ 0 ,∀ odd m.

Examples : “Negatively associated” variables.

I Many “occupancy variables” - Xi number of balls in bin i .

I Uniform random y = (y1, y2, . . . yn) subject to |y | = 1.
Random projections. [Condition on Aggregates –
Degree-Constrained random graphs.]

I A randomized rounding scheme based on looking at pairs of
variables. (Srinivasan)

I (A vague example) Xi : Deficit spending in period i . Penalty
for over-spending in previous periods : Xi has mean
−α(X1 + X2 + . . .Xi−1), for some α > 0.

Ravindran Kannan Two new probability inequalities and concentration results



Other Questions

: Bound on the largest singular value of a random matrix.
Concentration of eigen-values of random matrices, Alon,
Krivelevich, Vu; functions of eigenvalues...
First-Passage Percolation (i.e., shortest path lengths in grid with
i.i.d. edge lengths) : Concentration for normal, other edge lengths..
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