List-Decodability of Random Linear Codes

Venkatesan Guruswami

Carnegie Mellon University

ICM 2010 Satellite Workshop Algebraic & Probabilistic Aspects of Combinatorics & Computing August 2010

Joint work with Johan Håstad (KTH) and Swastik Kopparty (MIT)

Question

Suppose we get to transmit n bits over a noisy channel. What is the best rate of information transmission if the channel flips $\approx p$ fraction of the bits?

Question

Suppose we get to transmit n bits over a noisy channel. What is the best rate of information transmission if the channel flips $\approx p$ fraction of the bits?

- (binary) code $C \subseteq \{0,1\}^n$
 - Transmit *codewords* of C
 - information rate $= R(C) = \frac{\log_2 |C|}{n}$ (info per codeword bit)
- (binary) linear code: C a subspace of \mathbb{F}_2^n .
- q-ary linear code: Subspace of \mathbb{F}_q^n .

Asymptotics: Fix R, p, let $n \to \infty$. Study *families* of codes.

Capacity of binary symmetric channel

If error $e \sim \text{Binom}(n,p)$, then $\exists C$ with rate 1 - h(p) - o(1) and $\text{Dec}: \{0,1\}^n \to C$ s.t. $\forall c \in C$

$$\Pr_e\left[\operatorname{Dec}(c+e) = c\right] \ge 1 - o(1) \ .$$

Asymptotics: Fix R, p, let $n \to \infty$. Study *families* of codes.

Capacity of binary symmetric channel

If error $e\sim {\rm Binom}(n,p),$ then $\exists C$ with rate 1-h(p)-o(1) and ${\rm Dec}:\{0,1\}^n\to C$ s.t. $\forall c\in C$

$$\Pr_e\left[\operatorname{Dec}(c+e) = c\right] \ge 1 - o(1) \ .$$

1-h(p) is optimal (capacity):

- Given c, we have $\approx \binom{n}{pn} \approx 2^{h(p)n}$ likely possibilities for y = c + e.
- So $|\text{Dec}^{-1}(c)| \approx 2^{h(p)n}$ for all codewords $c \in C$.
- So $|C| \leqslant 2^{(1-h(p)+o(1))n}$

What if $e \in \{0,1\}^n$ is arbitrary subject to $|e| \leq pn$, and we want Dec(c+e) = c for every such e (and $\forall c \in C$)?

Requires Hamming balls of radius pn around the codewords to be disjoint.

- $\bullet~ {\rm Restricts}~ R(C) \to 0 ~{\rm for}~ p \geqslant 1/4$
- For p < 1/4, best rate R_p unknown

$$1 - h(2p) \leq R_p \leq h\left(\frac{1}{2} - \sqrt{2p(1-2p)}\right) < 1 - h(p)$$
.

Relaxed goal: From c + e, the codeword c is determined up to ambiguity L (a large but fixed constant, independent of n)

Definition (List-decodability)

A code $C \subset \Sigma^n$ is (p, L)-list decodable if $\forall y \in \Sigma^n$, $|B(y, pn) \cap C| \leq L$. Equivalently, balls of radius pn around the codewords cover every point $\leq L$ times. ("almost-disjoint" packing) Relaxed goal: From c + e, the codeword c is determined up to ambiguity L (a large but fixed constant, independent of n)

Definition (List-decodability)

A code $C \subset \Sigma^n$ is (p, L)-list decodable if $\forall y \in \Sigma^n$, $|B(y, pn) \cap C| \leq L$. Equivalently, balls of radius pn around the codewords cover every point $\leq L$ times. ("almost-disjoint" packing)

Above is only a combinatorial notion.

• No guarantee that we can find $B(y, pn) \cap C$ efficiently.

- $R_L(p) =$ largest rate of binary (p, L)-list decodable code family.
- $R_L^{\text{lin}}(p) = \text{analogous quantity for binary linear codes.}$
- $R_{L,q}(p)$ and $R_{L,q}^{\text{lin}}(p)$ analogs for q-ary codes.

This talk

Understanding above quantities, specifically lower bounding $R_{L,q}^{lin}(p)$

• list-decodability of random linear codes

Focus on q = 2; our proof generalizes (with $h_q(\cdot)$ replacing $h(\cdot)$).

 $R_L(p) \leq 1 - h(p)$

- Pick y u.a.r. from $\{0,1\}^n$.
- $\mathbb{E}_{y}[|B(y, pn) \cap C|] = |C|\operatorname{Vol}(n, pn)/2^{n} \ge |C|2^{(h(p)-1-o(1))n}.$

 $R_L(p) \leq 1 - h(p)$

- Pick y u.a.r. from $\{0,1\}^n$.
- $\mathbb{E}_{y}[|B(y, pn) \cap C|] = |C| \operatorname{Vol}(n, pn)/2^{n} \ge |C| 2^{(h(p)-1-o(1))n}.$

Surprisingly (?)

$$\lim_{L \to \infty} \sup_{R_L(p)} = \lim_{L \to \infty} \sup_{R_L(p)} R_L^{\text{lin}}(p) = 1 - h(p) .$$
(Equals $1 - h_a(p)$ in *q*-ary case.)

Allowing for list decoding, we can (non-constructively) approach Shannon capacity even for worst-case errors.

Theorem (Zyablov and Pinsker'81, Elias'91)

For $p \in (0, 1/2)$, $R_L(p) \ge 1 - h(p) - 1/L$.

Theorem (Zyablov and Pinsker'81, Elias'91)

For $p \in (0, 1/2)$, $R_L(p) \ge 1 - h(p) - 1/L$.

Proof.

Random coding: Pick $M = 2^{(1-h(p)-1/L)n}$ codewords u.a.r. from $\{0,1\}^n$. Will show that resulting code C is (p,L)-list decodable w.h.p.

Theorem (Zyablov and Pinsker'81, Elias'91)

For $p \in (0, 1/2)$, $R_L(p) \ge 1 - h(p) - 1/L$.

Proof.

Random coding: Pick $M = 2^{(1-h(p)-1/L)n}$ codewords u.a.r. from $\{0,1\}^n$. Will show that resulting code C is (p,L)-list decodable w.h.p.

- Fix $y \in \{0,1\}^n$ and a subset S of L+1 codewords.
- Prob. that all codewords in S fall in B(y,pn) equals $\left(\frac{\mathrm{Vol}(n,pn)}{2^n}\right)^{L+1}\leqslant 2^{(h(p)-1)(L+1)n}$
- Union bound over $2^n y$'s and $\leqslant M^{L+1}$ subsets S shows that $\Pr[C \text{ is not } (p, L)\text{-list decodable}] \leqslant e^{-\Omega(n)}.$

A B A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Random linear code C: pick a random matrix $G \in \mathbb{F}_2^{n \times k}$; (k = Rn)Set $C = \{Gx \mid x \in \mathbb{F}_2^k\}$.

Random linear code C: pick a random matrix $G \in \mathbb{F}_2^{n \times k}$; (k = Rn)Set $C = \{Gx \mid x \in \mathbb{F}_2^k\}.$

• For a subset $\{x_1, x_2, \ldots, x_{L+1}\}$, the codewords Gx_1, \ldots, Gx_{L+1} are *not* in general independent.

Random linear code C: pick a random matrix $G \in \mathbb{F}_2^{n \times k}$; (k = Rn)Set $C = \{Gx \mid x \in \mathbb{F}_2^k\}.$

- For a subset $\{x_1, x_2, \ldots, x_{L+1}\}$, the codewords Gx_1, \ldots, Gx_{L+1} are *not* in general independent.
- Any (L+1)-sized set has a subset of $\geqslant \log_2(L+1)$ linearly independent vectors.

Images of these under random G are independent.

Random linear code C: pick a random matrix $G \in \mathbb{F}_2^{n \times k}$; (k = Rn)Set $C = \{Gx \mid x \in \mathbb{F}_2^k\}.$

- For a subset $\{x_1, x_2, \ldots, x_{L+1}\}$, the codewords Gx_1, \ldots, Gx_{L+1} are *not* in general independent.
- Any (L + 1)-sized set has a subset of $\ge \log_2(L + 1)$ linearly independent vectors. Images of these under random G are independent.
- Union bound over centers y and $\log_2(L+1)\text{-sized sets}$ of linearly independent elements in $\mathbb{F}_2^k.$
- Similar calculation, with $\log_2(L+1)$ replacing L

Theorem (Zyablov and Pinsker'81) For $p \in (0, 1/2)$, $R_L^{\text{lin}}(p) \ge 1 - h(p) - \frac{1}{\log_2(L+1)}$.

イロト イヨト イヨト イヨト

Stated in different notation:

- Random q-ary code of rate $1 h_q(p) \varepsilon$ is $(p, O(1/\varepsilon))$ -list decodable w.h.p.
- Random q-ary linear code of rate 1 h_q(p) ε is (p, q^{O(1/ε)})-list decodable w.h.p.

Motivation of this work

Is this exponential discrepancy in list size inherent, or an artifact of the proof technique?

Conjectured to be the latter [Elias'91]

Theorem

For every prime power q, $p \in (0, 1 - 1/q)$, and $\varepsilon > 0$, a random q-ary linear code of rate $1 - h_q(p) - \varepsilon$ is $(p, a_{p,q}/\varepsilon)$ -list decodable with $1 - \exp(-\Omega(n))$ probability.

Theorem (G., Håstad, Sudan, Zuckerman'02)

For every $p \in (0, 1/2)$ and $\varepsilon > 0$, there exists a binary linear code family of rate $1 - h(p) - \varepsilon$ that is $(p, 1/\varepsilon)$ -list decodable.

Theorem (G., Håstad, Sudan, Zuckerman'02)

For every $p \in (0, 1/2)$ and $\varepsilon > 0$, there exists a binary linear code family of rate $1 - h(p) - \varepsilon$ that is $(p, 1/\varepsilon)$ -list decodable.

Comments

- *Not* a high probability result. Existence proof via semi-random method.
- Applies only to *binary* linear codes.
- Conjectured that both restrictions can be removed.

Digression: Lower bound on list size

[Blinovsky'86] $R_L(p) < 1 - h(p)$ for every fixed L.

- Unbounded list size needed to approach capacity 1 h(p).
- Existence of (p,L)-list decodable code of rate $1-h(p)-\varepsilon$ implies $L \geqslant \Omega(\log(1/\varepsilon)).$

Digression: Lower bound on list size

[Blinovsky'86] $R_L(p) < 1 - h(p)$ for every fixed L.

- Unbounded list size needed to approach capacity 1 h(p).
- Existence of (p,L)-list decodable code of rate $1-h(p)-\varepsilon$ implies $L \geqslant \Omega(\log(1/\varepsilon)).$

Open question

Close (or shrink) the exponential gap between $\Omega(\log(1/\varepsilon))$ lower bound and $O(1/\varepsilon)$ upper bound.

Digression: Lower bound on list size

[Blinovsky'86] $R_L(p) < 1 - h(p)$ for every fixed L.

- Unbounded list size needed to approach capacity 1 h(p).
- Existence of (p,L)-list decodable code of rate $1-h(p)-\varepsilon$ implies $L \geqslant \Omega(\log(1/\varepsilon)).$

Open question

Close (or shrink) the exponential gap between $\Omega(\log(1/\varepsilon))$ lower bound and $O(1/\varepsilon)$ upper bound.

- My guess is $\Theta(1/\varepsilon)$ is closer to the truth.
- For random codes, ${\cal O}(1/\varepsilon)$ list size bound is tight.
 - [Rudra'09] W.h.p. a random rate $(1-h(p)-\varepsilon)$ code is not $(p,c_p/\varepsilon)\text{-list}$ decodable
 - [G.-Narayanan'10] Same holds for random linear codes

Rest of the talk

Proof of main theorem (for binary codes)

Theorem

For every $p \in (0, 1/2)$, and $\varepsilon > 0$, a random linear code $C \subseteq \mathbb{F}_2^n$ of rate $1 - h(p) - \varepsilon$ is $(p, a_p/\varepsilon)$ -list decodable with $1 - \exp(-\Omega(n))$ probability.

An (L + 1)-element set $\{x_1, x_2, \ldots, x_{L+1}\}$ has $\ell \ge \log_2(L + 1)$ linearly independent elements (say x_1, \ldots, x_ℓ). We used

$$\Pr[Gx_1, Gx_2, \dots, Gx_{L+1} \text{ all lie in } B(y, pn)]$$

$$\leq \Pr[Gx_1, Gx_2, \dots, Gx_{\ell} \text{ all lie in } B(y, pn)] = 2^{(h(p)-1)\ell n}$$

Wasteful; ignores all remaining events $Gx_i \in B(y, pn)$ for $i > \ell$.

٠

An (L + 1)-element set $\{x_1, x_2, \ldots, x_{L+1}\}$ has $\ell \ge \log_2(L + 1)$ linearly independent elements (say x_1, \ldots, x_ℓ). We used

$$\Pr[Gx_1, Gx_2, \dots, Gx_{L+1} \text{ all lie in } B(y, pn)]$$

$$\leq \Pr[Gx_1, Gx_2, \dots, Gx_{\ell} \text{ all lie in } B(y, pn)] = 2^{(h(p)-1)\ell n}$$

Wasteful; ignores all remaining events $Gx_i \in B(y, pn)$ for $i > \ell$.

Key issue: Correlation of linear spaces and Hamming balls

If we pick ℓ random vectors from $B(0, pn) \subset \mathbb{F}_2^n$, what is the probability that $\geq L$ vectors from their \mathbb{F}_2 -span lie in B(0, pn)? (Here $\ell \leq L \leq 2^{\ell}$.)

Let $R = 1 - h(p) - \varepsilon$ and $L = c_p/\varepsilon$. It suffices to prove for random C of dimension Rn:

$$\Pr_{C}[\exists y, |B(y, pn) \cap C| \ge L] \leqslant 2^{-n}$$
$$\Leftarrow \Pr_{C, y}[|B(y, pn) \cap C| \ge L] \leqslant 2^{-2n}$$

Let $R = 1 - h(p) - \varepsilon$ and $L = c_p/\varepsilon$. It suffices to prove for random C of dimension Rn:

$$\Pr_{C}[\exists y, |B(y, pn) \cap C| \ge L] \leqslant 2^{-n} \\ \Leftarrow \Pr_{C, y}[|B(y, pn) \cap C| \ge L] \leqslant 2^{-2n}$$

$$\iff \operatorname{Pr}_{C,y} \left[|B(0,pn) \cap (C+y)| \ge L \right] \leqslant 2^{-2n}$$

Let $R = 1 - h(p) - \varepsilon$ and $L = c_p/\varepsilon$. It suffices to prove for random C of dimension Rn:

$$\Pr_{C}[\exists y, |B(y, pn) \cap C| \ge L] \leqslant 2^{-n}$$
$$\Leftarrow \Pr_{C, y}[|B(y, pn) \cap C| \ge L] \leqslant 2^{-2n}$$

$$\begin{array}{lll} \Longleftrightarrow & \Pr_{C,y} \left[|B(0,pn) \cap (C+y)| \ge L \right] & \leqslant & 2^{-2n} \\ \Leftrightarrow & \Pr_{C,y} \left[|B(0,pn) \cap \operatorname{span}(C,y)| \ge L \right] & \leqslant & 2^{-2n} \\ & \Leftarrow & \Pr_{C^*} \left[|B(0,pn) \cap C^*| \ge L \right] & \leqslant & 2^{-2n} \end{array}$$

where C^* is a random linear code of dimension Rn + 1. Call it C.

$\Pr_{C}\left[|B(0,pn) \cap C| \ge L \right] \leq \sum_{W \in \binom{B(0,pn)}{L}} \Pr_{C}[W \subseteq C]$

A ∰ ▶ A ∃

$$\Pr_{C} \left[|B(0, pn) \cap C| \ge L \right] \leq \sum_{\substack{W \in \binom{B(0, pn)}{L}}} \Pr_{C}[W \subseteq C]$$
$$\leq \sum_{\ell = \log L}^{L} |\mathcal{F}_{\ell}| \left(\frac{2^{Rn}}{2^{n}}\right)^{\ell}$$

where

 $\mathcal{F}_{\ell} = \left\{ U \in {B(0,pn) \choose \ell} \mid U \text{ is linearly indep. \& } |\text{span}(U) \cap B(0,pn)| \ge L \right\}$

$$\begin{aligned} \Pr_{C} \left[|B(0,pn) \cap C| \ge L \right] &\leqslant \sum_{W \in \binom{B(0,pn)}{L}} \Pr_{C} [W \subseteq C] \\ &\leqslant \sum_{\ell = \log L}^{L} |\mathcal{F}_{\ell}| \left(\frac{2^{Rn}}{2^{n}}\right)^{\ell} = \sum_{\ell = \log L}^{L} \frac{|\mathcal{F}_{\ell}|}{2^{h(p)n\ell}} \ 2^{-\varepsilon n\ell} \end{aligned}$$

where

 $\mathcal{F}_{\ell} = \left\{ U \in {B(0,pn) \choose \ell} \mid U \text{ is linearly indep. \& } |\text{span}(U) \cap B(0,pn)| \ge L \right\}$

$$\begin{aligned} \Pr_{C} \Big[\ |B(0,pn) \cap C| \geqslant L \Big] &\leqslant \sum_{W \in \binom{B(0,pn)}{L}} \Pr_{C} [W \subseteq C] \\ &\leqslant \sum_{\ell = \log L}^{L} |\mathcal{F}_{\ell}| \Big(\frac{2^{Rn}}{2^{n}} \Big)^{\ell} = \sum_{\ell = \log L}^{L} \frac{|\mathcal{F}_{\ell}|}{2^{h(p)n\ell}} \ 2^{-\varepsilon n\ell} \end{aligned}$$

where

 $\mathcal{F}_{\ell} = \left\{ U \in {B(0,pn) \choose \ell} \ | \ U \text{ is linearly indep. \& } |\text{span}(U) \cap B(0,pn)| \geqslant L \right\}$

• For large $\ell \ge 10/\varepsilon$, the trivial bound $|\mathcal{F}_{\ell}| \le 2^{h(p)n\ell}$ suffices.

• For $\ell < 10/\varepsilon$, we have $L > A_p \cdot \ell$, and we prove $\frac{|\mathcal{F}_{\ell}|}{2^{h(p)n\ell}} \leqslant 2^{-5n}$.

Main technical theorem

For every $p \in (0, 1/2)$, there exists $A' = A_p < \infty$ such that for all ℓ , and sufficiently large n, if n-bit strings x_1, x_2, \ldots, x_ℓ are picked u.a.r and independently from B(0, pn),

 $\Pr\left[|\operatorname{span}(x_1,\ldots,x_\ell) \cap B(0,pn)| > A' \cdot \ell\right] \leq 2^{-5n} .$

Main technical theorem

For every $p \in (0, 1/2)$, there exists $A' = A_p < \infty$ such that for all ℓ , and sufficiently large n, if n-bit strings x_1, x_2, \ldots, x_ℓ are picked u.a.r and independently from B(0, pn),

 $\Pr\left[|\operatorname{span}(x_1,\ldots,x_\ell) \cap B(0,pn)| > A' \cdot \ell\right] \leq 2^{-5n} .$

Implies $|\mathcal{F}_{\ell}| \leq 2^{h(p)n\ell} \cdot 2^{-5n}$ for $L > A' \cdot \ell$.

Main technical theorem

For every $p \in (0, 1/2)$, there exists $A' = A_p < \infty$ such that for all ℓ , and sufficiently large n, if n-bit strings x_1, x_2, \ldots, x_ℓ are picked u.a.r and independently from B(0, pn),

 $\Pr\left[|\operatorname{span}(x_1,\ldots,x_\ell) \cap B(0,pn)| > A' \cdot \ell \right] \leq 2^{-5n} .$

Implies $|\mathcal{F}_{\ell}| \leq 2^{h(p)n\ell} \cdot 2^{-5n}$ for $L > A' \cdot \ell$.

- Fix $T \subseteq \mathbb{F}_2^{\ell} \setminus \{0, e_1, \dots, e_\ell\}$ of size $(A' 1)\ell = A \cdot \ell$.
- Upper bound probability that all vectors $(X_v)_{v\in T}$ lie in B(0, pn) (where $X_v = \sum_{i=1}^{\ell} v_i x_i$)
- Union bound over all choices of T (at most $2^{O(\ell^2)}$)

イロト 人間ト イヨト イヨト

An idealized case

Suppose T has many $(d = d_p$, think 10) vectors with *disjoint* support. Concretely, say $(X_v)_{v \in T}$ contains the linear combinations

$$x_1 + x_2, \qquad x_3 + x_4, \quad \cdots \quad x_{2d-1} + x_{2d}.$$

Suppose T has many $(d = d_p$, think 10) vectors with *disjoint* support. Concretely, say $(X_v)_{v \in T}$ contains the linear combinations

$$x_1 + x_2, \qquad x_3 + x_4, \quad \cdots \quad x_{2d-1} + x_{2d}.$$

The events that these belong to B(0,pn) are independent, and each occurs with probability $\leqslant 2^{-\delta_p n}$

• Each is essentially a random point in B(0, 2p(1-p)n)

Prob. that all of them lie in B(0, pn) is $\leq (2^{-\delta_p n})^d \leq 2^{-6n}$.

Suppose T has many $(d = d_p$, think 10) vectors with *disjoint* support. Concretely, say $(X_v)_{v \in T}$ contains the linear combinations

$$x_1 + x_2, \qquad x_3 + x_4, \quad \cdots \quad x_{2d-1} + x_{2d}.$$

The events that these belong to B(0,pn) are independent, and each occurs with probability $\leqslant 2^{-\delta_p n}$

• Each is essentially a random point in B(0, 2p(1-p)n)

Prob. that all of them lie in B(0, pn) is $\leq (2^{-\delta_p n})^d \leq 2^{-6n}$.

Can we always find many such disjoint vectors?

Hunting for independence

Can we always find many such disjoint vectors?

Hunting for independence

Can we always find many such disjoint vectors?

• Of course not! A family might not even have two disjoint sets

Can we always find many such disjoint vectors?

• Of course not! A family might not even have two disjoint sets

Disjointness is too strong and unnecessary.

"Ordered" disjointness or increasing chain is enough.

• Eg., $x_1 + x_2$, $x_1 + x_3 + x_4$, $x_2 + x_3 + x_4 + x_5 + x_6$, $x_1 + x_3 + x_5 + x_7 + x_8$, ... Can we always find many such disjoint vectors?

• Of course not! A family might not even have two disjoint sets

Disjointness is too strong and unnecessary.

"Ordered" disjointness or increasing chain is enough.

- Eg., $x_1 + x_2$, $x_1 + x_3 + x_4$, $x_2 + x_3 + x_4 + x_5 + x_6$, $x_1 + x_3 + x_5 + x_7 + x_8$, ...
- Prob. that each linear combination is in B(0, pn) conditioned on choice of x_i's that occur in previous combinations is also small. Why?

Can we always find many such disjoint vectors?

• Of course not! A family might not even have two disjoint sets

Disjointness is too strong and unnecessary.

"Ordered" disjointness or increasing chain is enough.

- Eg., $x_1 + x_2$, $x_1 + x_3 + x_4$, $x_2 + x_3 + x_4 + x_5 + x_6$, $x_1 + x_3 + x_5 + x_7 + x_8$, ...
- Prob. that each linear combination is in B(0, pn) conditioned on choice of x_i 's that occur in previous combinations is also small. Why?

Relaxed goal

In any family of $A \cdot \ell$ subsets of $\{1, 2, \ldots, \ell\}$, can we always find a 2-increasing chain of size 10, i.e., a sequence of 10 sets each of which has ≥ 2 fresh elements (that don't belong to previous sets in the sequence)?

Relaxed goal

In any family of $A \cdot \ell$ subsets of $\{1, 2, \ldots, \ell\}$, can we always find a sequence of 10 sets each of which has ≥ 2 elements that don't belong to previous sets in the sequence?

Relaxed goal

In any family of $A \cdot \ell$ subsets of $\{1, 2, \ldots, \ell\}$, can we always find a sequence of 10 sets each of which has ≥ 2 elements that don't belong to previous sets in the sequence?

Unfortunately no!

Relaxed goal

In any family of $A \cdot \ell$ subsets of $\{1, 2, \ldots, \ell\}$, can we always find a sequence of 10 sets each of which has ≥ 2 elements that don't belong to previous sets in the sequence?

Unfortunately no! Take the family to be all $\ell - 2$ element subsets.

2-increasing chains in hiding

So are these linear combinations $(X_v)_{v \in \mathbb{F}_{2}^{\ell}, |v| = \ell - 2}$ in fact bad?

So are these linear combinations $(X_v)_{v \in \mathbb{F}_2^{\ell}, |v| = \ell - 2}$ in fact bad?

• If all these lie in B(0, pn), then $(X_v)_{v \in \mathbb{F}_2^\ell, |v|=2}$ must all lie in B(w, pn) where $w = x_1 + x_2 + \cdots + x_\ell$.

So are these linear combinations $(X_v)_{v \in \mathbb{F}_2^{\ell}, |v| = \ell - 2}$ in fact bad?

- If all these lie in B(0, pn), then $(X_v)_{v \in \mathbb{F}_2^\ell, |v|=2}$ must all lie in B(w, pn) where $w = x_1 + x_2 + \cdots + x_\ell$.
- $\{v \in \mathbb{F}_2^{\ell} \mid |v| = 2\}$ has a long 2-increasing chain (in fact $\approx \ell/2$ disjoint vectors), but now the center w is not 0 but depends on x_i 's.

So are these linear combinations $(X_v)_{v \in \mathbb{F}_2^{\ell}, |v| = \ell - 2}$ in fact bad?

- If all these lie in B(0, pn), then $(X_v)_{v \in \mathbb{F}_2^\ell, |v|=2}$ must all lie in B(w, pn) where $w = x_1 + x_2 + \cdots + x_\ell$.
- $\{v \in \mathbb{F}_2^{\ell} \mid |v| = 2\}$ has a long 2-increasing chain (in fact $\approx \ell/2$ disjoint vectors), but now the center w is not 0 but depends on x_i 's.
- Turns out this is okay.

Lemma (Increasing chains are good for *every* center)

Let $C \subseteq \mathbb{F}_2^{\ell}$ be a 2-increasing chain of size d. Then the probability (over choice of x_1, \ldots, x_{ℓ} from B(0, pn)) that there exists $y \in \mathbb{F}_2^n$ such that all $(X_v)_{v \in C}$ belong to B(y, pn) is at most $2^n \cdot 2^{-\delta_p dn}$ (and thus $\leq 2^{-6n}$ if $d \geq d_p$).

・ロト ・ 同ト ・ ヨト ・ ヨ

Translating to find 2-increasing chain

Can *always* find a translate that has a long 2-increasing chain.

Theorem

For every subset $T \subseteq \mathbb{F}_2^{\ell}$ there exists a $z \in \mathbb{F}_2^{\ell}$ such that T + z contains a 2-increasing chain C of size $\Omega\left(\log \frac{|T|}{\ell}\right)$.

Corollary

We can get a 2-increasing chain in a translate of T of size d_p if $|T| \ge A_p \ell$.

Translating to find 2-increasing chain

Can always find a translate that has a long 2-increasing chain.

Theorem

For every subset $T \subseteq \mathbb{F}_2^{\ell}$ there exists a $z \in \mathbb{F}_2^{\ell}$ such that T + z contains a 2-increasing chain C of size $\Omega\left(\log \frac{|T|}{\ell}\right)$.

Corollary

We can get a 2-increasing chain in a translate of T of size d_p if $|T| \ge A_p \ell$.

$$(X_v)_{v \in T} \subset B(0, pn) \Rightarrow (X_v)_{v \in T+z} \subset B(X_z, pn) \Rightarrow (X_v)_{v \in \mathcal{C}} \subset B(X_z, pn)$$

and last event occurs with $\leqslant 2^{-\Omega(n)}$ probability.

So it remains to prove the above theorem.

Proof by induction

We'll find a translate with 2-increasing chain of size $\log_4 \frac{|T|}{\ell+1}$.

Lemma (Sauer-Shelah (-Perles-Vapnik-Chervonenkis))

If $T \subseteq \mathbb{F}_2^{\ell}$ has size $> \ell + 1$, then there exist $1 \leq i_1 < i_2 \leq \ell$ such that $\{(u_{i_1}, u_{i_2}) \mid u \in T\} = \{0, 1\}^2$.

If $|T| \leq \ell + 1$, there is nothing to prove. Otherwise, apply above lemma and let $\{i_1, i_2\} = \{1, 2\}$.

- All 4 possibilities occur in first two positions of strings in T. Let (0,0) be most frequent.
- Let $T' = \{ v \in \mathbb{F}_2^{\ell-2} \mid (0,0,v) \in T \}$. Note $|T'| \ge |T|/4$.

Proof by induction

We'll find a translate with 2-increasing chain of size $\log_4 \frac{|T|}{\ell+1}$.

Lemma (Sauer-Shelah (-Perles-Vapnik-Chervonenkis))

If $T \subseteq \mathbb{F}_2^{\ell}$ has size $> \ell + 1$, then there exist $1 \leq i_1 < i_2 \leq \ell$ such that $\{(u_{i_1}, u_{i_2}) \mid u \in T\} = \{0, 1\}^2$.

If $|T| \leq \ell + 1$, there is nothing to prove. Otherwise, apply above lemma and let $\{i_1, i_2\} = \{1, 2\}$.

- All 4 possibilities occur in first two positions of strings in *T*. Let (0,0) be most frequent.
- Let $T' = \{ v \in \mathbb{F}_2^{\ell-2} \mid (0,0,v) \in T \}$. Note $|T'| \ge |T|/4$.
- Get 2-increasing chain \mathcal{C}' in T' + z' by induction.
- Let $C = \{(0,0,u) \mid u \in C'\}$ and z = (0,0,z').

Proof by induction

We'll find a translate with 2-increasing chain of size $\log_4 \frac{|T|}{\ell+1}$.

Lemma (Sauer-Shelah (-Perles-Vapnik-Chervonenkis))

If $T \subseteq \mathbb{F}_2^{\ell}$ has size $> \ell + 1$, then there exist $1 \leq i_1 < i_2 \leq \ell$ such that $\{(u_{i_1}, u_{i_2}) \mid u \in T\} = \{0, 1\}^2$.

If $|T| \leq \ell + 1$, there is nothing to prove. Otherwise, apply above lemma and let $\{i_1, i_2\} = \{1, 2\}$.

- All 4 possibilities occur in first two positions of strings in *T*. Let (0,0) be most frequent.
- Let $T' = \{ v \in \mathbb{F}_2^{\ell-2} \mid (0,0,v) \in T \}$. Note $|T'| \ge |T|/4$.
- Get 2-increasing chain \mathcal{C}' in T' + z' by induction.
- Let $\mathcal{C}=\{(0,0,u)\mid u\in\mathcal{C}'\}$ and z=(0,0,z').
- Let $w \in T$ be such that $(w_1, w_2) = (1, 1)$.
- C followed by w + z is a 2-increasing chain in T + z.

- *q*-ary case similar, with a slightly non-standard generalization of Sauer-Shelah lemma.
- Random linear codes are nearly as good as random codes w.r.t convergence to "capacity" as function of list size.
- Technical core of the proof: A strong upper bound on probability that *l* random vectors have many elements from their span lie in a Hamming ball.
- Best possible list-size for rate $1 h(p) \varepsilon$? Big gap between $\log(1/\varepsilon)$ lower bound and $1/\varepsilon$ upper bound.