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Question

Suppose we get to transmit n bits over a noisy channel.
What is the best rate of information transmission if the channel flips ≈ p
fraction of the bits?

(binary) code C ⊆ {0, 1}n
Transmit codewords of C
information rate = R(C) = log2 |C|

n (info per codeword bit)

(binary) linear code: C a subspace of Fn2 .

q-ary linear code: Subspace of Fnq .
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Shannon’s theorem

Asymptotics: Fix R, p, let n→∞. Study families of codes.

Capacity of binary symmetric channel

If error e ∼ Binom(n, p), then ∃C with rate 1− h(p)− o(1) and
Dec : {0, 1}n → C s.t. ∀c ∈ C

Pre
[
Dec(c + e) = c

]
> 1− o(1) .

1− h(p) is optimal (capacity):

Given c, we have ≈
(
n
pn

)
≈ 2h(p)n likely possibilities for y = c + e.

So |Dec−1(c)| ≈ 2h(p)n for all codewords c ∈ C.

So |C| 6 2(1−h(p)+o(1))n
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Worst-case errors

What if e ∈ {0, 1}n is arbitrary subject to |e| 6 pn,
and we want Dec(c + e) = c for every such e (and ∀c ∈ C)?

Requires Hamming balls of radius pn around the codewords to be disjoint.

Restricts R(C)→ 0 for p > 1/4
For p < 1/4, best rate Rp unknown

1− h(2p) 6 Rp 6 h
(1

2
−
√

2p(1− 2p)
)

< 1− h(p) .
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List decoding

Relaxed goal: From c + e, the codeword c is determined up to ambiguity L
(a large but fixed constant, independent of n)

Definition (List-decodability)

A code C ⊂ Σn is (p, L)-list decodable if ∀y ∈ Σn, |B(y, pn) ∩ C| 6 L.
Equivalently, balls of radius pn around the codewords cover every point
6 L times. (“almost-disjoint” packing)

Above is only a combinatorial notion.

No guarantee that we can find B(y, pn) ∩ C efficiently.
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Combinatorics of list decoding

RL(p) = largest rate of binary (p, L)-list decodable code family.

Rlin
L (p) = analogous quantity for binary linear codes.

RL,q(p) and Rlin
L,q(p) analogs for q-ary codes.

This talk

Understanding above quantities, specifically lower bounding Rlin
L,q(p)

list-decodability of random linear codes

Focus on q = 2; our proof generalizes (with hq(·) replacing h(·)).

Venkatesan Guruswami (CMU) List-Decodability of Linear Codes August 2010 6 / 25



Shannon capacity still a limit

RL(p) 6 1− h(p)
Pick y u.a.r. from {0, 1}n.

Ey[|B(y, pn) ∩ C|] = |C|Vol(n, pn)/2n > |C|2(h(p)−1−o(1))n.

Surprisingly (?)

lim sup
L→∞

RL(p) = lim sup
L→∞

Rlin
L (p) = 1− h(p) .

(Equals 1− hq(p) in q-ary case.)

Allowing for list decoding, we can (non-constructively) approach Shannon
capacity even for worst-case errors.
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Existence of list-decodable codes

Theorem (Zyablov and Pinsker’81, Elias’91)

For p ∈ (0, 1/2), RL(p) > 1− h(p)− 1/L.

Proof.

Random coding: Pick M = 2(1−h(p)−1/L)n codewords u.a.r. from {0, 1}n.
Will show that resulting code C is (p, L)-list decodable w.h.p.

Fix y ∈ {0, 1}n and a subset S of L + 1 codewords.

Prob. that all codewords in S fall in B(y, pn) equals(
Vol(n,pn)

2n

)L+1
6 2(h(p)−1)(L+1)n

Union bound over 2n y’s and 6ML+1 subsets S shows that
Pr[C is not (p, L)-list decodable] 6 e−Ω(n).
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What about linear codes?

Random linear code C: pick a random matrix G ∈ Fn×k2 ; (k = Rn)
Set C = {Gx | x ∈ Fk2}.

For a subset {x1, x2, . . . , xL+1}, the codewords Gx1, . . . , GxL+1 are
not in general independent.

Any (L + 1)-sized set has a subset of > log2(L + 1) linearly
independent vectors.
Images of these under random G are independent.

Union bound over centers y and log2(L + 1)-sized sets of linearly
independent elements in Fk2.

Similar calculation, with log2(L + 1) replacing L

Theorem (Zyablov and Pinsker’81)

For p ∈ (0, 1/2), Rlin
L (p) > 1− h(p)− 1

log2(L+1) .
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Linear vs. non-linear

Stated in different notation:

1 Random q-ary code of rate 1− hq(p)− ε is (p, O(1/ε))-list decodable
w.h.p.

2 Random q-ary linear code of rate 1− hq(p)− ε is (p, qO(1/ε))-list
decodable w.h.p.

Motivation of this work

Is this exponential discrepancy in list size inherent,
or an artifact of the proof technique?

Conjectured to be the latter [Elias’91]
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Main Result

Theorem

For every prime power q, p ∈ (0, 1− 1/q), and ε > 0,
a random q-ary linear code of rate 1− hq(p)− ε
is (p, ap,q/ε)-list decodable with 1− exp(−Ω(n)) probability.
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A previous result

Theorem (G., Håstad, Sudan, Zuckerman’02)

For every p ∈ (0, 1/2) and ε > 0, there exists a binary linear code family of
rate 1− h(p)− ε that is (p, 1/ε)-list decodable.

Comments

Not a high probability result. Existence proof via semi-random
method.

Applies only to binary linear codes.

Conjectured that both restrictions can be removed.
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Digression: Lower bound on list size

[Blinovsky’86] RL(p) < 1− h(p) for every fixed L.

Unbounded list size needed to approach capacity 1− h(p).

Existence of (p, L)-list decodable code of rate 1− h(p)− ε implies
L > Ω(log(1/ε)).

Open question

Close (or shrink) the exponential gap between Ω(log(1/ε)) lower bound
and O(1/ε) upper bound.

My guess is Θ(1/ε) is closer to the truth.

For random codes, O(1/ε) list size bound is tight.

[Rudra’09] W.h.p. a random rate (1− h(p)− ε) code is not
(p, cp/ε)-list decodable

[G.-Narayanan’10] Same holds for random linear codes
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Rest of the talk

Proof of main theorem (for binary codes)

Theorem

For every p ∈ (0, 1/2), and ε > 0, a random linear code C ⊆ Fn2 of rate
1− h(p)− ε is (p, ap/ε)-list decodable with 1− exp(−Ω(n)) probability.
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Shortcoming of earlier proof

An (L + 1)-element set {x1, x2, . . . , xL+1} has ` > log2(L + 1) linearly
independent elements (say x1, . . . , x`).
We used

Pr[Gx1, Gx2, . . . , GxL+1 all lie in B(y, pn)]

6 Pr[Gx1, Gx2, . . . , Gx` all lie in B(y, pn)] = 2(h(p)−1)`n .

Wasteful; ignores all remaining events Gxi ∈ B(y, pn) for i > `.

Key issue: Correlation of linear spaces and Hamming balls

If we pick ` random vectors from B(0, pn) ⊂ Fn2 , what is the probability
that > L vectors from their F2-span lie in B(0, pn)? (Here ` 6 L 6 2`.)
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Moving center to origin

Let R = 1− h(p)− ε and L = cp/ε.
It suffices to prove for random C of dimension Rn:

PrC
[
∃y, |B(y, pn) ∩ C| > L

]
6 2−n

⇐= PrC,y
[
|B(y, pn) ∩ C| > L

]
6 2−2n

⇐⇒ PrC,y
[
|B(0, pn) ∩ (C + y)| > L

]
6 2−2n

⇐= PrC,y
[
|B(0, pn) ∩ span(C, y)| > L

]
6 2−2n

⇐= PrC∗
[
|B(0, pn) ∩ C∗| > L

]
6 2−2n

where C∗ is a random linear code of dimension Rn + 1. Call it C.
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Breaking down by rank

PrC
[
|B(0, pn) ∩ C| > L

]
6

∑
W∈(B(0,pn)

L )

PrC [W ⊆ C]

6
L∑

`=logL

|F`|
(2Rn

2n
)`

=
L∑

`=logL

|F`|
2h(p)n`

2−εn`

where

F` =
{

U ∈
(B(0,pn)

`

)
| U is linearly indep. & |span(U) ∩B(0, pn)| > L

}

For large ` > 10/ε, the trivial bound |F`| 6 2h(p)n` suffices.

For ` < 10/ε, we have L > Ap · `, and we prove |F`|
2h(p)n` 6 2−5n.
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Balls vs. Subspaces

Main technical theorem

For every p ∈ (0, 1/2), there exists A′ = Ap <∞ such that for all `, and
sufficiently large n, if n-bit strings x1, x2, . . . , x` are picked u.a.r and
independently from B(0, pn),

Pr
[
|span(x1, . . . , x`) ∩B(0, pn)| > A′ · `

]
6 2−5n .

Implies |F`| 6 2h(p)n` · 2−5n for L > A′ · `.

Fix T ⊆ F`2 \ {0, e1, . . . , e`} of size (A′ − 1)` = A · `.

Upper bound probability that all vectors (Xv)v∈T lie in B(0, pn)
(where Xv =

∑`
i=1 vixi)

Union bound over all choices of T (at most 2O(`2))
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independently from B(0, pn),

Pr
[
|span(x1, . . . , x`) ∩B(0, pn)| > A′ · `

]
6 2−5n .

Implies |F`| 6 2h(p)n` · 2−5n for L > A′ · `.

Fix T ⊆ F`2 \ {0, e1, . . . , e`} of size (A′ − 1)` = A · `.

Upper bound probability that all vectors (Xv)v∈T lie in B(0, pn)
(where Xv =

∑`
i=1 vixi)

Union bound over all choices of T (at most 2O(`2))
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An idealized case

Suppose T has many (d = dp, think 10) vectors with disjoint support.

Concretely, say (Xv)v∈T contains the linear combinations

x1 + x2, x3 + x4, · · · x2d−1 + x2d .

The events that these belong to B(0, pn) are independent, and each
occurs with probability 6 2−δpn

Each is essentially a random point in B(0, 2p(1− p)n)

Prob. that all of them lie in B(0, pn) is 6
(
2−δpn

)d
6 2−6n.

Can we always find many such disjoint vectors?
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Hunting for independence

Can we always find many such disjoint vectors?

Of course not! A family might not even have two disjoint sets

Disjointness is too strong and unnecessary.

“Ordered” disjointness or increasing chain is enough.

Eg., x1 + x2, x1 + x3 + x4, x2 + x3 + x4 + x5 + x6,
x1 + x3 + x5 + x7 + x8, · · ·
Prob. that each linear combination is in B(0, pn) conditioned on
choice of xi’s that occur in previous combinations is also small. Why?

Relaxed goal

In any family of A · ` subsets of {1, 2, . . . , `}, can we always find a
2-increasing chain of size 10, i.e., a sequence of 10 sets each of which has
> 2 fresh elements (that don’t belong to previous sets in the sequence)?
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After increasing chains

Relaxed goal

In any family of A · ` subsets of {1, 2, . . . , `}, can we always find a
sequence of 10 sets each of which has > 2 elements that don’t belong to
previous sets in the sequence?

Unfortunately no! Take the family to be all `− 2 element subsets.
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2-increasing chains in hiding

So are these linear combinations (Xv)v∈F`
2,|v|=`−2 in fact bad?

If all these lie in B(0, pn), then (Xv)v∈F`
2,|v|=2 must all lie in

B(w, pn) where w = x1 + x2 + · · ·+ x`.

{v ∈ F`2 | |v| = 2} has a long 2-increasing chain (in fact ≈ `/2
disjoint vectors), but now the center w is not 0 but depends on xi’s.

Turns out this is okay.

Lemma (Increasing chains are good for every center)

Let C ⊆ F`2 be a 2-increasing chain of size d.
Then the probability (over choice of x1, . . . , x` from B(0, pn)) that there
exists y ∈ Fn2 such that all (Xv)v∈C belong to B(y, pn) is at most
2n · 2−δpdn (and thus 6 2−6n if d > dp).

Venkatesan Guruswami (CMU) List-Decodability of Linear Codes August 2010 22 / 25



2-increasing chains in hiding

So are these linear combinations (Xv)v∈F`
2,|v|=`−2 in fact bad?

If all these lie in B(0, pn), then (Xv)v∈F`
2,|v|=2 must all lie in

B(w, pn) where w = x1 + x2 + · · ·+ x`.

{v ∈ F`2 | |v| = 2} has a long 2-increasing chain (in fact ≈ `/2
disjoint vectors), but now the center w is not 0 but depends on xi’s.

Turns out this is okay.

Lemma (Increasing chains are good for every center)

Let C ⊆ F`2 be a 2-increasing chain of size d.
Then the probability (over choice of x1, . . . , x` from B(0, pn)) that there
exists y ∈ Fn2 such that all (Xv)v∈C belong to B(y, pn) is at most
2n · 2−δpdn (and thus 6 2−6n if d > dp).

Venkatesan Guruswami (CMU) List-Decodability of Linear Codes August 2010 22 / 25



2-increasing chains in hiding

So are these linear combinations (Xv)v∈F`
2,|v|=`−2 in fact bad?

If all these lie in B(0, pn), then (Xv)v∈F`
2,|v|=2 must all lie in

B(w, pn) where w = x1 + x2 + · · ·+ x`.

{v ∈ F`2 | |v| = 2} has a long 2-increasing chain (in fact ≈ `/2
disjoint vectors), but now the center w is not 0 but depends on xi’s.

Turns out this is okay.

Lemma (Increasing chains are good for every center)

Let C ⊆ F`2 be a 2-increasing chain of size d.
Then the probability (over choice of x1, . . . , x` from B(0, pn)) that there
exists y ∈ Fn2 such that all (Xv)v∈C belong to B(y, pn) is at most
2n · 2−δpdn (and thus 6 2−6n if d > dp).

Venkatesan Guruswami (CMU) List-Decodability of Linear Codes August 2010 22 / 25



2-increasing chains in hiding

So are these linear combinations (Xv)v∈F`
2,|v|=`−2 in fact bad?

If all these lie in B(0, pn), then (Xv)v∈F`
2,|v|=2 must all lie in

B(w, pn) where w = x1 + x2 + · · ·+ x`.

{v ∈ F`2 | |v| = 2} has a long 2-increasing chain (in fact ≈ `/2
disjoint vectors), but now the center w is not 0 but depends on xi’s.

Turns out this is okay.

Lemma (Increasing chains are good for every center)

Let C ⊆ F`2 be a 2-increasing chain of size d.
Then the probability (over choice of x1, . . . , x` from B(0, pn)) that there
exists y ∈ Fn2 such that all (Xv)v∈C belong to B(y, pn) is at most
2n · 2−δpdn (and thus 6 2−6n if d > dp).

Venkatesan Guruswami (CMU) List-Decodability of Linear Codes August 2010 22 / 25



Translating to find 2-increasing chain

Can always find a translate that has a long 2-increasing chain.

Theorem

For every subset T ⊆ F`2 there exists a z ∈ F`2 such that T + z contains a

2-increasing chain C of size Ω
(

log |T |`
)
.

Corollary

We can get a 2-increasing chain in a translate of T of size dp if |T | > Ap`.

(Xv)v∈T ⊂ B(0, pn)⇒ (Xv)v∈T+z ⊂ B(Xz, pn)⇒ (Xv)v∈C ⊂ B(Xz, pn)

and last event occurs with 6 2−Ω(n) probability.

So it remains to prove the above theorem.
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Proof by induction

We’ll find a translate with 2-increasing chain of size log4
|T |
`+1 .

Lemma (Sauer-Shelah (-Perles-Vapnik-Chervonenkis))

If T ⊆ F`2 has size > ` + 1, then there exist 1 6 i1 < i2 6 ` such that
{(ui1 , ui2) | u ∈ T} = {0, 1}2.

If |T | 6 ` + 1, there is nothing to prove. Otherwise, apply above lemma
and let {i1, i2} = {1, 2}.

All 4 possibilities occur in first two positions of strings in T .
Let (0, 0) be most frequent.

Let T ′ = {v ∈ F`−2
2 | (0, 0, v) ∈ T}. Note |T ′| > |T |/4.

Get 2-increasing chain C′ in T ′ + z′ by induction.

Let C = {(0, 0, u) | u ∈ C′} and z = (0, 0, z′).

Let w ∈ T be such that (w1, w2) = (1, 1).

C followed by w + z is a 2-increasing chain in T + z. �
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Concluding remarks

q-ary case similar, with a slightly non-standard generalization of
Sauer-Shelah lemma.

Random linear codes are nearly as good as random codes w.r.t
convergence to “capacity” as function of list size.

Technical core of the proof: A strong upper bound on probability that
` random vectors have many elements from their span lie in a
Hamming ball.

Best possible list-size for rate 1− h(p)− ε? Big gap between
log(1/ε) lower bound and 1/ε upper bound.
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