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The Gap-Hamming-Distance Problem

Input: Alice gets x ∈ {0, 1}n, Bob gets y ∈ {0, 1}n.

Output:

• ghd(x, y) = 1 if ∆(x, y) > n
2 +
√

n

• ghd(x, y) = 0 if ∆(x, y) < n
2 −
√

n

Want: randomized, constant error protocol

Cost: Worst case number of bits communicated

1
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n = 12; ∆(x, y) = 3 ∈ [6−
√

12, 6 +
√

12]

Amit Chakrabarti 2



Optimal Lower Bound for GHD Aug 2010

Data Stream Lower Bounds

Data streams: two broad application scenarios

• Networks: Busy router, packets whizzing by

– Web traffic statistics

– Intrusion detection

• Databases: Huge DB, linear scan cheaper than random access

– Query optimisation: join size estimation

– Log analysis
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Data Stream Lower Bounds

Data streams: two broad application scenarios

• Networks: Busy router, packets whizzing by

– Web traffic statistics

– Intrusion detection

• Databases: Huge DB, linear scan cheaper than random access

– Query optimisation: join size estimation

– Log analysis

• DB setting: Multiple passes meaningful

GHD Motivation: Obtain pass/space tradeoffs for some basic data stream

problems [Indyk-Woodruff’03], [Woodruff’04], [C.-Cormode-McGregor’07]
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Data Stream Model

• Formally: input stream = n tokens, each token ∈ [m]

– Assume log m = Θ(log n)

• Compute some function of stream, using

– Small space, s≪ m, n ... ideally, s = O(log n)

– Small number of passes, p
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Data Stream Model

• Formally: input stream = n tokens, each token ∈ [m]

– Assume log m = Θ(log n)

• Compute some function of stream, using

– Small space, s≪ m, n ... ideally, s = O(log n)

– Small number of passes, p

• Give ε-approx:

Pr
[∣∣∣

output

answer
− 1

∣∣∣ ≤ ε
]
≥ 2

3
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Problems of Interest

• Distinct elements

• Frequency moments

• Empirical entropy
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Problems of Interest

• Distinct elements , F0

• Frequency moments , Fk =
∑m

i=1 freq(i)k

• Empirical entropy , H =
∑m

i=1(freq(i)/m)·log(m/freq(i))
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• Frequency moments , Fk =
∑m

i=1 freq(i)k

• Empirical entropy , H =
∑m

i=1(freq(i)/m)·log(m/freq(i))

• Key question: Want ε-approx; then s = ??

– Upper bounds: O(ε−2 polylog(m, n)), using 1 pass

– Showing R(ghd) = Ω(nc) would imply s = Ω(ε−2c)
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Problems of Interest

• Distinct elements , F0

• Frequency moments , Fk =
∑m

i=1 freq(i)k

• Empirical entropy , H =
∑m

i=1(freq(i)/m)·log(m/freq(i))

• Key question: Want ε-approx; then s = ??

– Upper bounds: O(ε−2 polylog(m, n)), using 1 pass

– Showing R(ghd) = Ω(nc) would imply s = Ω(ε−2c)

– Showing R2p−1
max (ghd) = Ω(nc) would imply the same

for p-pass algorithms

– In particular, R→(ghd) −→ 1-pass algorithms
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Problems of Interest

• Distinct elements , F0

• Frequency moments , Fk =
∑m

i=1 freq(i)k

• Empirical entropy , H =
∑m

i=1(freq(i)/m)·log(m/freq(i))

• Key question: Want ε-approx; then s = ??

– Upper bounds: O(ε−2 polylog(m, n)), using 1 pass

– Showing R(ghd) = Ω(nc) would imply s = Ω(ε−2c)

– Showing R2p−1
max (ghd) = Ω(nc) would imply the same

for p-pass algorithms

– In particular, R→(ghd) −→ 1-pass algorithms

– Dependence of s on n: [A-M-S’96]; [C.-Khot-Sun’03]; [Gronemeier’09]
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Method: Reduce from Communication Complexity

32 17 1 25 31 5 6 27 16 21 24 13129 18414 22 11 29 2 7 3 23 30 8 20 19 1510 28 26

p-pass streaming algorithm =⇒ Θ(p)-round communication protocol

messages = memory contents of streaming algorithm
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Communication vs Data Stream
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Communication vs Data Stream
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The Reductions

E.g., Distinct Elements (Other problems: similar)
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Alice: x 7−→ σ = 〈(1, x1), (2, x2), . . . , (n, xn)〉
Bob: y 7−→ τ = 〈(1, y1), (2, y2), . . . , (n, yn)〉

Notice: F0(σ ◦ τ) = n + ∆(x, y) =





< 3n
2 −
√

n, or

> 3n
2 +
√

n.
Set ε = 1√

n
.
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History
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History

FOCS 2003: R→(not-quite-ghd) = “Ω(n)” [Indyk-Woodruff]

Messy problem; gave Ω(ε−2) streaming bound for limited ε
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FOCS 2003: R→(not-quite-ghd) = “Ω(n)” [Indyk-Woodruff]

Messy problem; gave Ω(ε−2) streaming bound for limited ε

SODA 2004: R→(ghd) = Ω(n) [Woodruff]
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GVIN 2005: Simplification of proof [Jayram-Kumar-Sivakumar]

Nice geometric intuition + reduction from index
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Messy problem; gave Ω(ε−2) streaming bound for limited ε

SODA 2004: R→(ghd) = Ω(n) [Woodruff]

Very intricate combinatorial proof

GVIN 2005: Simplification of proof [Jayram-Kumar-Sivakumar]

Nice geometric intuition + reduction from index

CCC 2009: Rk
max(ghd) = n/2O(k2) [Brody-C.’09]

Round elimination, combinatorial proof

Plus, direct combinatorial 1-round proof

Amit Chakrabarti 8-d



Optimal Lower Bound for GHD Aug 2010

History

FOCS 2003: R→(not-quite-ghd) = “Ω(n)” [Indyk-Woodruff]

Messy problem; gave Ω(ε−2) streaming bound for limited ε

SODA 2004: R→(ghd) = Ω(n) [Woodruff]

Very intricate combinatorial proof

GVIN 2005: Simplification of proof [Jayram-Kumar-Sivakumar]

Nice geometric intuition + reduction from index

CCC 2009: Rk
max(ghd) = n/2O(k2) [Brody-C.’09]

Round elimination, combinatorial proof

Plus, direct combinatorial 1-round proof

ICDT 2009: D→
unif(ghd) = Ω(n) [Woodruff]
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History

FOCS 2003: R→(not-quite-ghd) = “Ω(n)” [Indyk-Woodruff]

Messy problem; gave Ω(ε−2) streaming bound for limited ε

SODA 2004: R→(ghd) = Ω(n) [Woodruff]

Very intricate combinatorial proof

GVIN 2005: Simplification of proof [Jayram-Kumar-Sivakumar]

Nice geometric intuition + reduction from index

CCC 2009: Rk
max(ghd) = n/2O(k2) [Brody-C.’09]

Round elimination, combinatorial proof

Plus, direct combinatorial 1-round proof

ICDT 2009: D→
unif(ghd) = Ω(n) [Woodruff]

RND 2010: Rk
max(ghd) = Ω̃(n/k2) [Brody-C.-Regev-Vidick-deWolf]

Better round elimination, geometric proof
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Main Theorem

And now, we show:

R(ghd) = Ω(n)
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GHD Revisited

For x, y ∈ {0, 1}n, define

bias(x, y) =
n/2−∆(x, y)√

n

Then,

ghd(x, y) =





0 , if bias(x, y) > 1 ,

1 , if bias(x, y) < −1 ,

⋆ , otherwise.

Alternative view (useful later): map b ∈ {0, 1} 7−→ (−1)b/
√

n

This maps x ∈ {0, 1}n into x̃ ∈ S
n−1 (unit sphere in R

n)

bias(x, y) = 〈x̃, ỹ〉 ·
√

n/2
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The Rectangle Property

Let U = {0, 1}n × {0, 1}n (input universe for Alice + Bob)

Take P deterministic protocol, communicating ≤ c bits

Then P partitions U into ≤ 2c combinatorial rectangles
(sets A×B, where A, B ⊆ {0, 1}n)

Bob
A

lic
e

If P computes f : U → {0, 1}, then f−1(1) = R1 ∪R2 ∪ · · · ∪R2c
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The Rectangle Property

Let U = {0, 1}n × {0, 1}n (input universe for Alice + Bob)

Take P deterministic protocol, communicating ≤ c bits

Then P partitions U into ≤ 2c combinatorial rectangles
(sets A×B, where A, B ⊆ {0, 1}n)

Bob
A

lic
e

If P computes f : U → {0, 1}, then f−1(0) = R1 ∪R2 ∪ · · · ∪R2c
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Discrepancy and Corruption

We had: f−1(1) = R1 ∪R2 ∪ · · · ∪R2c

If P is a correct protocol, matrix of f contains 0-rectangle of size ≥ 22n−c

Basic method for lower bounding D(f):
Show that f does not contain large 0-rectangle

To lower bound R(f), apply Yao’s minimax principle
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Discrepancy
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Discrepancy and Corruption

We had: f−1(1) = R1 ∪R2 ∪ · · · ∪R2c

If P is a correct protocol, matrix of f contains 0-rectangle of size ≥ 22n−c

Basic method for lower bounding D(f):
Show that f does not contain large 0-rectangle

To lower bound R(f), apply Yao’s minimax principle

Corr tionupDiscrepancy
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The Trouble with Corruption for GHD

There exist very large “uncorrupted” rectangles!

Consider:

A = B = {0100
√

nx : x ∈ {0, 1}n−100
√

n}

Then, A×B has size 22n−200
√

n and is essentially a 0-rectangle!
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The Trouble with Corruption for GHD

There exist very large “uncorrupted” rectangles!

Consider:

A = B = {0100
√

nx : x ∈ {0, 1}n−100
√

n}

Then, A×B has size 22n−200
√

n and is essentially a 0-rectangle!

Pr
(x,y)∈RA×B

[ghd(x, y) = 0] = Pr
(x,y)∈RA×B

[bias(x, y) > 1] = 1− 2−Ω(n)

Need a new technique?
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The Corruption Method: A Closer Look

Pick distribs µ0, µ1 on f−1(0), f−1(1)

Argue that for all large rectangles R, we have

µ1(R) ≥ α µ0(R)

Sum this over all 0-rectangles R; if protocol P is good for µ0, µ1:

µ1

(
{P outputs 0}

)
≥ α · µ0

(
{P outputs 0}

)
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µ1(R) ≥ α µ0(R)

Sum this over all 0-rectangles R; if protocol P is good for µ0, µ1:

µ1

(
{P outputs 0}

)
≥ α · µ0

(
{P outputs 0}

)
≥ α(1− ε)
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The Corruption Method: A Closer Look

Pick distribs µ0, µ1 on f−1(0), f−1(1)

Argue that for all large rectangles R, we have

µ1(R) ≥ α µ0(R)

Sum this over all 0-rectangles R; if protocol P is good for µ0, µ1:

ε ≥ µ1

(
{P outputs 0}

)
≥ α · µ0

(
{P outputs 0}

)
≥ α(1− ε)
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Jokers

Pick distribs µ0, µ1 on f−1(0), f−1(1), and another distrib µ⋆

Argue that for all large rectangles R, we have

µ1(R) + β µ⋆(R) ≥ α µ0(R) (α > β)

Sum this over all 0-rectangles R; if protocol P is good for µ0, µ1:

µ1(P0) + β µ⋆(P0) ≥ α µ0(P0) ≥ α(1− ε)
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Jokers

Pick distribs µ0, µ1 on f−1(0), f−1(1), and another distrib µ⋆

Argue that for all large rectangles R, we have

µ1(R) + β µ⋆(R) ≥ α µ0(R) (α > β)

Sum this over all 0-rectangles R; if protocol P is good for µ0, µ1:

ε + β ≥ µ1(P0) + β µ⋆(P0) ≥ α µ0(P0) ≥ α(1− ε)
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The Distributions: Zeroes, Ones, Jokers

Consider slightly “shifted” version (doesn’t really change anything)

ghd
′(x, y) =





0 , if bias(x, y) > −4 ,

1 , if bias(x, y) < −6 ,

⋆ , otherwise.
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Consider slightly “shifted” version (doesn’t really change anything)

ghd
′(x, y) =





0 , if bias(x, y) > −4 ,

1 , if bias(x, y) < −6 ,

⋆ , otherwise.

Let

µ0 = Uniform on {(x, y) : bias(x, y) = 0}
µ1 = Uniform on {(x, y) : bias(x, y) = −10}
µ⋆ = Uniform on {(x, y) : bias(x, y) = 10}
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The Distributions: Zeroes, Ones, Jokers

Consider slightly “shifted” version (doesn’t really change anything)

ghd
′(x, y) =





0 , if bias(x, y) > −4 ,

1 , if bias(x, y) < −6 ,

⋆ , otherwise.

Let

µ0 = Uniform on {(x, y) : bias(x, y) = 0}
µ1 = Uniform on {(x, y) : bias(x, y) = −10}
µ⋆ = Uniform on {(x, y) : bias(x, y) = 10}

The Key Inequality: For rectangles R of size ≥ 22n−0.01n

1
2 (µ1(R) + µ⋆(R)) ≥ 0.9µ0(R)
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Interpretation: An Anti-Concentration Inequality

µ0 = Uniform on {(x, y) : bias(x, y) = 0}
µ1 = Uniform on {(x, y) : bias(x, y) = −10}
µ⋆ = Uniform on {(x, y) : bias(x, y) = 10}

Key Inequality: |R| ≥ 21.99n =⇒ 1
2 (µ1(R) + µ⋆(R)) ≥ 0.9µ0(R)

Distrib of biases in large rectangle can’t be too concentrated around zero
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2 (µ1(R) + µ⋆(R)) ≥ 0.9µ0(R)

Distrib of biases in large rectangle can’t be too concentrated around zero

Rectangularity crucial:

S = {(x, y) ∈ U : bias(x, y) = 0} has |S| ≈ 22n/
√

n

Largeness crucial:

A = {x ∈ {0, 1}n/2, |x| = n/4}; R = (0n/2 ·A)× (A·0n/2)
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Interpretation: An Anti-Concentration Inequality

µ0 = Uniform on {(x, y) : bias(x, y) = 0}
µ1 = Uniform on {(x, y) : bias(x, y) = −10}
µ⋆ = Uniform on {(x, y) : bias(x, y) = 10}

Key Inequality: |R| ≥ 21.99n =⇒ 1
2 (µ1(R) + µ⋆(R)) ≥ 0.9µ0(R)

Distrib of biases in large rectangle can’t be too concentrated around zero

Rectangularity crucial:

S = {(x, y) ∈ U : bias(x, y) = 0} has |S| ≈ 22n/
√

n

Largeness crucial:

A = {x ∈ {0, 1}n/2, |x| = n/4}; R = (0n/2 ·A)× (A·0n/2)

then ∀(x, y) ∈ R : bias(x, y) = 0 and |R| ≈ 2n/
√

n
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Sleight of Hand?

Did we pull a new (joker) distribution out of a hat?

Do these jokers have any “meaning”?
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Sleight of Hand?

Did we pull a new (joker) distribution out of a hat?

Do these jokers have any “meaning”?

• Yes! What we did here can be understood more deeply by studying a

linear program (and its dual)

• Careful study of this type of generalization: “smooth rectangle bound”

and “partition bound”

[Klauck’10] [Jain-Klauck’10]
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The Inequality: A Gaussian Version

Original inequality: |R| ≥ 21.99n =⇒ 1
2 (µ1(R) + µ⋆(R)) ≥ 0.9µ0(R)

Apply map from {0, 1}n to unit sphere S
n−1

Let γ = n-dimensional Gaussian distrib

Analogous inequality:

γ(A), γ(B) ≥ 2−n/100, x← A, y ← B =⇒
distrib of 〈x, y〉/√n is “spread out” like N(0, 1)
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The Inequality: A Gaussian Version

Original inequality: |R| ≥ 21.99n =⇒ 1
2 (µ1(R) + µ⋆(R)) ≥ 0.9µ0(R)

Apply map from {0, 1}n to unit sphere S
n−1

Let γ = n-dimensional Gaussian distrib

Analogous inequality:

γ(A), γ(B) ≥ 2−n/100, x← A, y ← B =⇒
distrib of 〈x, y〉/√n is “spread out” like N(0, 1)

[Can’t just fix a direction x ∈ A: what if proj(B, x) sharply concentrated?]

Amit Chakrabarti 19-a



Optimal Lower Bound for GHD Aug 2010

The Inequality: A Gaussian Version

Original inequality: |R| ≥ 21.99n =⇒ 1
2 (µ1(R) + µ⋆(R)) ≥ 0.9µ0(R)

Apply map from {0, 1}n to unit sphere S
n−1

Let γ = n-dimensional Gaussian distrib

Analogous inequality:

γ(A), γ(B) ≥ 2−n/100, x← A, y ← B =⇒
distrib of 〈x, y〉/√n is “spread out” like N(0, 1)

[Can’t just fix a direction x ∈ A: what if proj(B, x) sharply concentrated?]

A Stronger Statement

γ(B) ≥ 2−n/100 =⇒ projection of B on all but 2−n/50 of directions

distributed like N(0, 1) + Z (i.e., mixture of normals with variance 1)
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Proof Overview

Large set A

Large set of bad dirs ⊇ many orthogonal bad dirs
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Finding Orthogonal Bad Directions

Want to show that A doesn’t have many bad directions

We’ll show: if it does, then ∃ many nearly orthogonal bad directions
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Finding Orthogonal Bad Directions

Want to show that A doesn’t have many bad directions

We’ll show: if it does, then ∃ many nearly orthogonal bad directions

A lemma from Raz: [Raz’99]

Any set A′ ⊆ S
n−1 of at least 2−n/50 directions contains

a set of 1
10 -near-orthogonal vectors x1, . . . , xn/2, i.e.,

‖ proj(xi, span(x1, . . . , xi−1)) ‖ ≤ 1/10

Proof via isoperimetric inequality
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Can’t Have Orthogonal Bad Directions

Lemma 1: Suppose B ⊆ R
n is s.t. γ(B) ≥ 2−n/100. Let y ← B. Let

directions x1, . . . , xn/2 be orthogonal. Then all of 〈y, x1〉, . . . , 〈y, xn/2〉
cannot be sharply concentrated.

Precise statement: At least one (in fact, most) projection 〈y, xk〉 is close

to N(0, 1) (even when conditioned on 〈y, x1〉, . . . , 〈y, xk−1〉)
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Can’t Have Orthogonal Bad Directions

Lemma 1: Suppose B ⊆ R
n is s.t. γ(B) ≥ 2−n/100. Let y ← B. Let

directions x1, . . . , xn/2 be orthogonal. Then all of 〈y, x1〉, . . . , 〈y, xn/2〉
cannot be sharply concentrated.

Precise statement: At least one (in fact, most) projection 〈y, xk〉 is close

to N(0, 1) (even when conditioned on 〈y, x1〉, . . . , 〈y, xk−1〉)

Proof Idea: Complete to orthonormal basis: {x1, . . . , xn}
Then y is determined by 〈y, x1〉, . . . , 〈y, xn〉. Wave hands as follows:

0.99n ≤ H(y) ≤ H(〈y, x1〉, . . . , 〈y, xn〉)
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Then y is determined by 〈y, x1〉, . . . , 〈y, xn〉. Wave hands as follows:

0.99n ≤ H(y) ≤ H(〈y, x1〉, . . . , 〈y, xn〉)

=
∑n/2

k=1 H(〈y, xk〉 | 〈y, x1〉, . . . , 〈y, xk−1〉)
+

∑n
k=n/2+1 H(〈y, xk〉 | 〈y, x1〉, . . . , 〈y, xk−1〉)
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Can’t Have Orthogonal Bad Directions

Lemma 1: Suppose B ⊆ R
n is s.t. γ(B) ≥ 2−n/100. Let y ← B. Let

directions x1, . . . , xn/2 be orthogonal. Then all of 〈y, x1〉, . . . , 〈y, xn/2〉
cannot be sharply concentrated.

Precise statement: At least one (in fact, most) projection 〈y, xk〉 is close

to N(0, 1) (even when conditioned on 〈y, x1〉, . . . , 〈y, xk−1〉)

Proof Idea: Complete to orthonormal basis: {x1, . . . , xn}
Then y is determined by 〈y, x1〉, . . . , 〈y, xn〉. Wave hands as follows:

0.99n ≤ H(y) ≤ H(〈y, x1〉, . . . , 〈y, xn〉)

=
∑n/2

k=1 H(〈y, xk〉 | 〈y, x1〉, . . . , 〈y, xk−1〉)
+

∑n
k=n/2+1 H(〈y, xk〉 | 〈y, x1〉, . . . , 〈y, xk−1〉)

≤ ∑n/2
k=1 0.7 +

∑n
k=n/2+1 1 = 0.85n
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Finishing the Proof

Theorem: γ(B) ≥ 2−n/100 =⇒ projection of B on all but 2−n/50 of

directions distributed like N(0, 1) + Z

Proof Sketch:

• Let A′ = {bad directions}; suppose to the contrary that its measure is

≥ 2−n/50

• Get near-orthogonal bad dirs x1, . . . , xn/2 ∈ A′ by Raz’s Lemma

• If these vectors were orthogonal, by Lemma 1, ∃ k s.t. 〈B, xk〉 is close

to N(0, 1). So xk is not bad. Contradiction.
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Finishing the Proof

Theorem: γ(B) ≥ 2−n/100 =⇒ projection of B on all but 2−n/50 of

directions distributed like N(0, 1) + Z

Proof Sketch:

• Let A′ = {bad directions}; suppose to the contrary that its measure is

≥ 2−n/50

• Get near-orthogonal bad dirs x1, . . . , xn/2 ∈ A′ by Raz’s Lemma

• If these vectors were orthogonal, by Lemma 1, ∃ k s.t. 〈B, xk〉 is close

to N(0, 1). So xk is not bad. Contradiction.

• Since they are only 1
10 -near-orthogonal, we instead get that 〈B, xk〉 is

distributed like N(0, 1) + Z. Still a contradiction.
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Conclusions

• Settled communication complexity of ghd, proving a long-conjectured

Ω(n) bound

• As a result, understood multi-pass space complexity of a number of

data stream problems, including frequency moments
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Conclusions

• Settled communication complexity of ghd, proving a long-conjectured

Ω(n) bound

• As a result, understood multi-pass space complexity of a number of

data stream problems, including frequency moments

Open Problem

Apply the “jokers” idea (more generally, the smooth rectangle bound) to

other interesting communication and query complexity problems.
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