An Optimal Lower Bound for the Gap-Hamming-Distance Problem

Amit Chakrabarti

DARTMOUTH COLLEGE

Joint work with Oded Regev, Tel Aviv University

ICM Satellite Conference, Bangalore, Aug 2010

The Gap-Hamming-Distance Problem

Input: Alice gets $x \in \{0,1\}^n$, Bob gets $y \in \{0,1\}^n$.

Output:

- $\operatorname{GHD}(x,y) = 1$ if $\Delta(x,y) > \frac{n}{2} + \sqrt{n}$
- $\operatorname{GHD}(x,y) = 0$ if $\Delta(x,y) < \frac{n}{2} \sqrt{n}$

Want: randomized, constant error protocol

Cost: Worst case number of bits communicated

Data Stream Lower Bounds

Data streams: two broad application scenarios

- Networks: Busy router, packets whizzing by
 - Web traffic statistics
 - Intrusion detection
- **Databases:** Huge DB, linear scan cheaper than random access
 - Query optimisation: join size estimation
 - Log analysis

Data Stream Lower Bounds

Data streams: two broad application scenarios

- Networks: Busy router, packets whizzing by
 - Web traffic statistics
 - Intrusion detection
- **Databases:** Huge DB, linear scan cheaper than random access
 - Query optimisation: join size estimation
 - Log analysis
- DB setting: Multiple passes meaningful

GHD Motivation: Obtain pass/space tradeoffs for some basic data stream problems [Indyk-Woodruff'03], [Woodruff'04], [C.-Cormode-McGregor'07]

Data Stream Model

- Formally: input stream = n tokens, each token $\in [m]$
 - Assume $\log m = \Theta(\log n)$
- Compute some function of stream, using
 - Small space, $s \ll m, n$... ideally, $s = O(\log n)$
 - Small number of passes, p

Data Stream Model

- Formally: input stream = n tokens, each token $\in [m]$
 - Assume $\log m = \Theta(\log n)$
- Compute some function of stream, using
 - Small space, $s \ll m, n$... ideally, $s = O(\log n)$
 - Small number of passes, p
- Give *\varepsilon*-approx:

$$\Pr\left[\left|\frac{\mathsf{output}}{\mathsf{answer}} - 1\right| \le \varepsilon\right] \ge \frac{2}{3}$$

- Distinct elements
- Frequency moments
- Empirical entropy

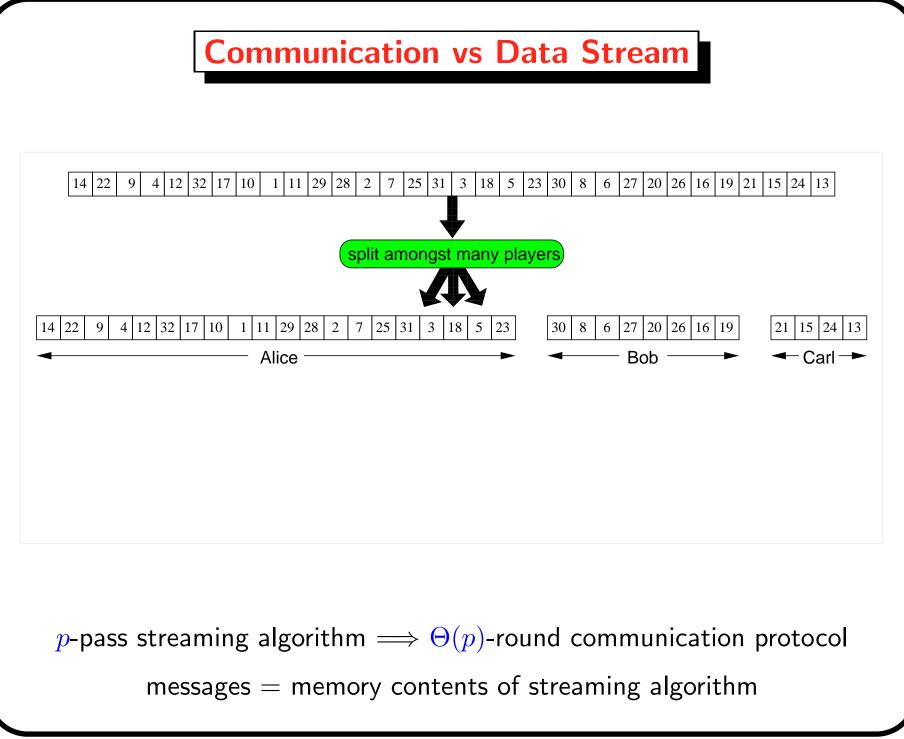
- Distinct elements , F_0
- Frequency moments , $F_k = \sum_{i=1}^m \operatorname{freq}(i)^k$
- Empirical entropy, $H = \sum_{i=1}^{m} (\operatorname{freq}(i)/m) \cdot \log(m/\operatorname{freq}(i))$

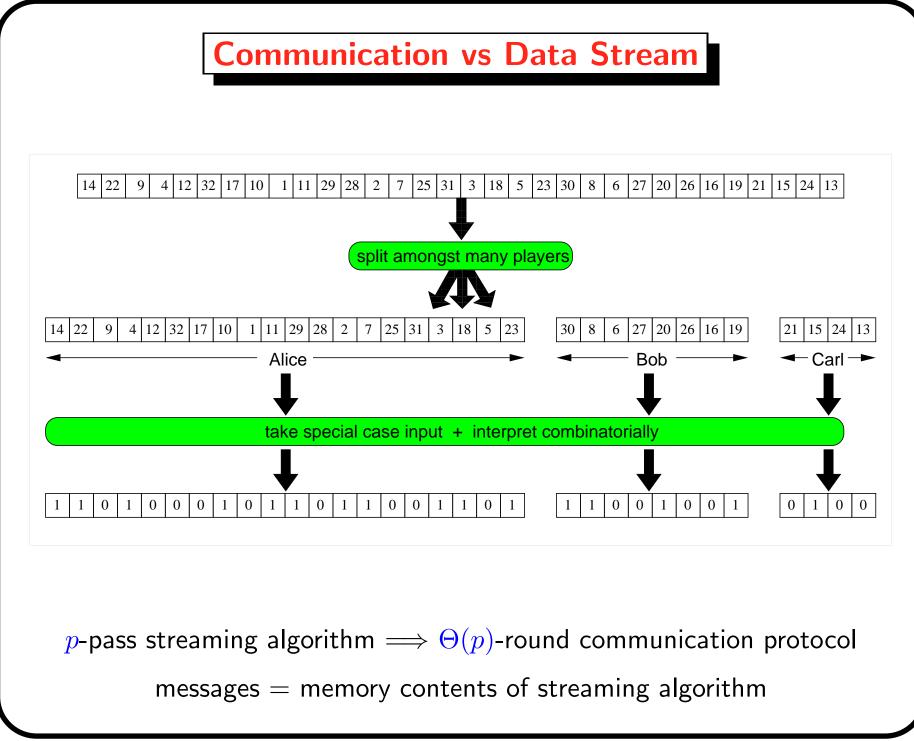
- $\bullet\,$ Distinct elements , $\,$ $\,$ F_0
- Frequency moments , $F_k = \sum_{i=1}^m \operatorname{freq}(i)^k$
- Empirical entropy , $H = \sum_{i=1}^{m} (\operatorname{freq}(i)/m) \cdot \log(m/\operatorname{freq}(i))$
- Key question: Want ε -approx; then s = ??
 - Upper bounds: $O(\varepsilon^{-2} \operatorname{polylog}(m, n))$, using 1 pass
 - Showing $R(GHD) = \Omega(n^c)$ would imply $s = \Omega(\varepsilon^{-2c})$

- $\bullet\,$ Distinct elements , $\,$ $\,$ F_0
- Frequency moments , $F_k = \sum_{i=1}^m \operatorname{freq}(i)^k$
- Empirical entropy , $H = \sum_{i=1}^{m} (\operatorname{freq}(i)/m) \cdot \log(m/\operatorname{freq}(i))$
- Key question: Want ε -approx; then s = ??
 - Upper bounds: $O(\varepsilon^{-2} \operatorname{polylog}(m, n))$, using 1 pass
 - Showing $R(GHD) = \Omega(n^c)$ would imply $s = \Omega(\varepsilon^{-2c})$
 - Showing $R_{max}^{2p-1}(GHD) = \Omega(n^c)$ would imply the same for *p*-pass algorithms
 - In particular, $\mathbf{R}^{\rightarrow}(\mathbf{GHD}) \longrightarrow 1$ -pass algorithms

- $\bullet\,$ Distinct elements , $\,$ $\,$ F_0
- Frequency moments , $F_k = \sum_{i=1}^m \operatorname{freq}(i)^k$
- Empirical entropy , $H = \sum_{i=1}^{m} (\operatorname{freq}(i)/m) \cdot \log(m/\operatorname{freq}(i))$
- Key question: Want ε -approx; then s = ??
 - Upper bounds: $O(\varepsilon^{-2} \operatorname{polylog}(m, n))$, using 1 pass
 - Showing $R(GHD) = \Omega(n^c)$ would imply $s = \Omega(\varepsilon^{-2c})$
 - Showing $R_{max}^{2p-1}(GHD) = \Omega(n^c)$ would imply the same for *p*-pass algorithms
 - In particular, $\mathbf{R}^{\rightarrow}(\mathbf{GHD}) \longrightarrow 1$ -pass algorithms
 - Dependence of *s* on *n*: [A-M-S'96]; [C.-Khot-Sun'03]; [Gronemeier'09]

Method: Reduce from Communication Complexity 14 22 4 12 32 17 10 1 11 29 28 2 7 25 31 3 18 5 23 30 8 6 27 20 26 16 19 21 15 24 13 9





The Reductions

E.g., Distinct Elements (Other problems: similar)

Alice:
$$x \mapsto \sigma = \langle (1, x_1), (2, x_2), \dots, (n, x_n) \rangle$$

Bob: $y \mapsto \tau = \langle (1, y_1), (2, y_2), \dots, (n, y_n) \rangle$
Notice: $F_0(\sigma \circ \tau) = n + \Delta(x, y) = \begin{cases} < \frac{3n}{2} - \sqrt{n}, \text{ or} \\ > \frac{3n}{2} + \sqrt{n}. \end{cases}$ Set $\varepsilon = \frac{1}{\sqrt{n}}$.

FOCS 2003: \mathbb{R}^{\rightarrow} (not-quite-GHD) = " $\Omega(n)$ "[Indyk-Woodruff]Messy problem; gave $\Omega(\varepsilon^{-2})$ streaming bound for limited ε

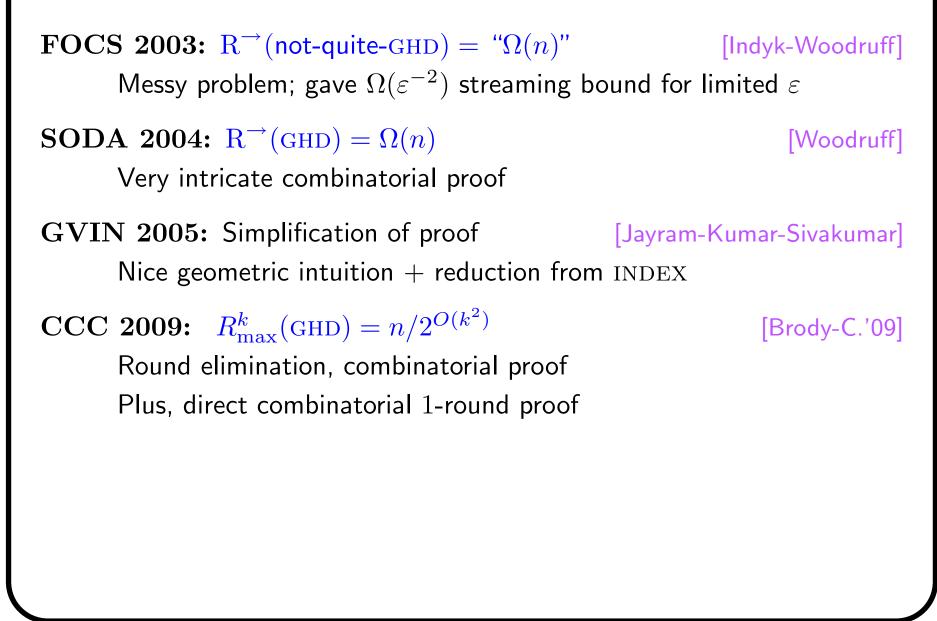
[Woodruff]

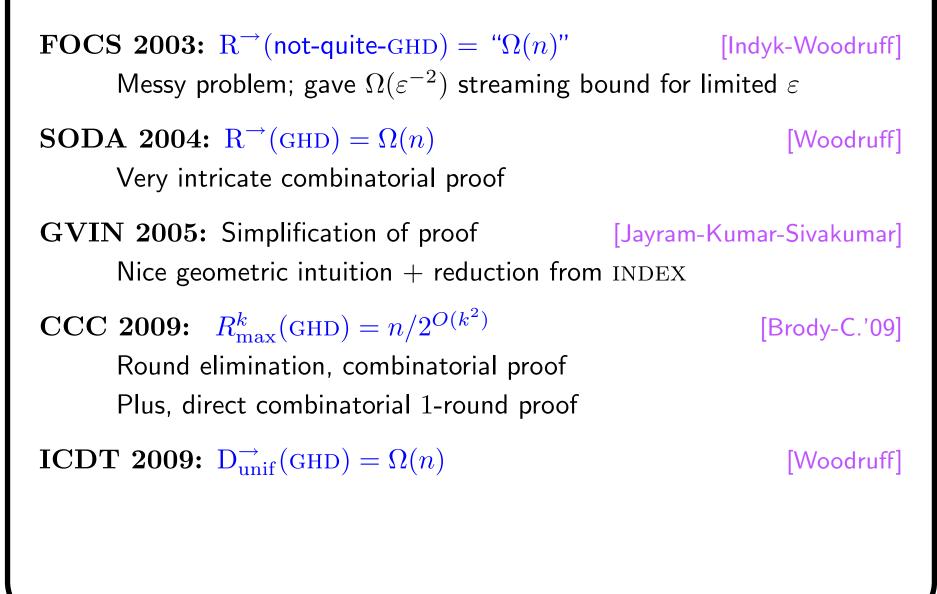
FOCS 2003: \mathbb{R}^{\rightarrow} (not-quite-GHD) = " $\Omega(n)$ "[Indyk-Woodruff]Messy problem; gave $\Omega(\varepsilon^{-2})$ streaming bound for limited ε

SODA 2004: $\mathbb{R}^{\rightarrow}(\text{GHD}) = \Omega(n)$

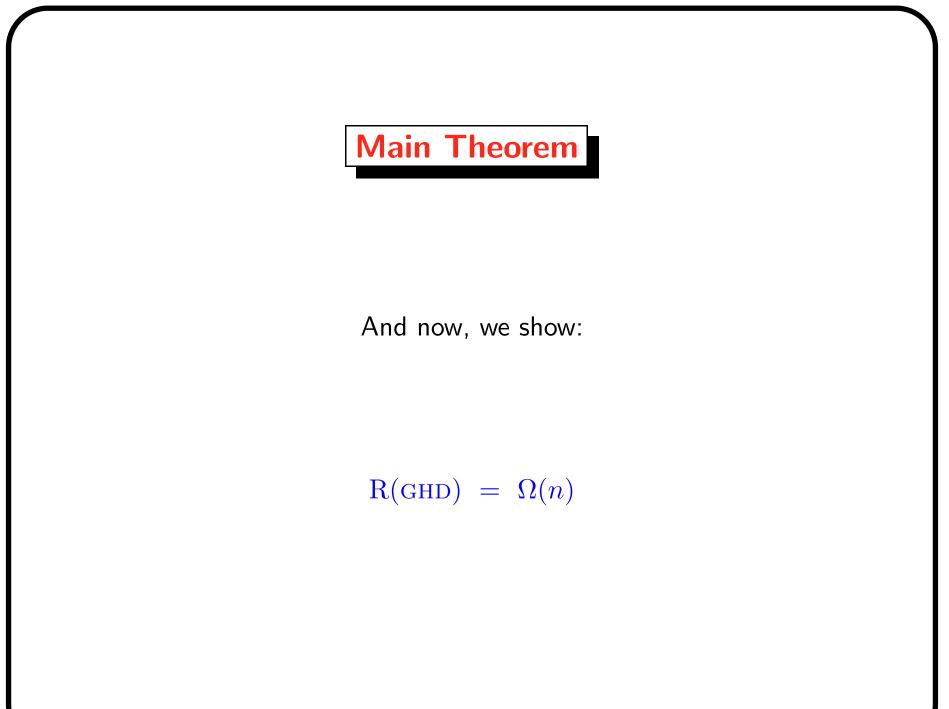
Very intricate combinatorial proof

FOCS 2003: \mathbb{R}^{\rightarrow} (not-quite-GHD) = " $\Omega(n)$ " [Indyk-Woodruff] Messy problem; gave $\Omega(\varepsilon^{-2})$ streaming bound for limited ε SODA 2004: $\mathbb{R}^{\rightarrow}(\text{GHD}) = \Omega(n)$ [Woodruff] Very intricate combinatorial proof GVIN 2005: Simplification of proof [Jayram-Kumar-Sivakumar] Nice geometric intuition + reduction from INDEX





FOCS 2003:
$$\mathbb{R}^{\rightarrow}$$
 (not-quite-GHD) = " $\Omega(n)$ " [Indyk-Woodruff]
Messy problem; gave $\Omega(\varepsilon^{-2})$ streaming bound for limited ε
SODA 2004: \mathbb{R}^{\rightarrow} (GHD) = $\Omega(n)$ [Woodruff]
Very intricate combinatorial proof
GVIN 2005: Simplification of proof [Jayram-Kumar-Sivakumar]
Nice geometric intuition + reduction from INDEX
CCC 2009: $\mathbb{R}_{\max}^{k}(GHD) = n/2^{O(k^{2})}$ [Brody-C.'09]
Round elimination, combinatorial proof
Plus, direct combinatorial 1-round proof
ICDT 2009: $\mathbb{D}_{\text{unif}}^{\rightarrow}(GHD) = \Omega(n)$ [Woodruff]
RND 2010: $\mathbb{R}_{\max}^{k}(GHD) = \widetilde{\Omega}(n/k^{2})$ [Brody-C.-Regev-Vidick-deWolf]
Better round elimination, geometric proof



GHD Revisited

For $x, y \in \{0, 1\}^n$, define

bias
$$(x, y) = \frac{n/2 - \Delta(x, y)}{\sqrt{n}}$$

Then,

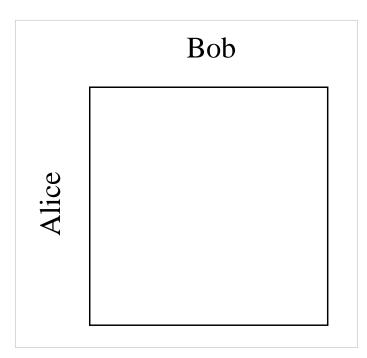
$$GHD(x,y) = \begin{cases} 0, & \text{if } \text{bias}(x,y) > 1, \\ 1, & \text{if } \text{bias}(x,y) < -1, \\ \star, & \text{otherwise.} \end{cases}$$

Alternative view (useful later): map $b \in \{0, 1\} \mapsto (-1)^b / \sqrt{n}$ This maps $x \in \{0, 1\}^n$ into $\tilde{x} \in \mathbb{S}^{n-1}$ (unit sphere in \mathbb{R}^n)

 $bias(x,y) = \langle \widetilde{x}, \widetilde{y} \rangle \cdot \sqrt{n}/2$

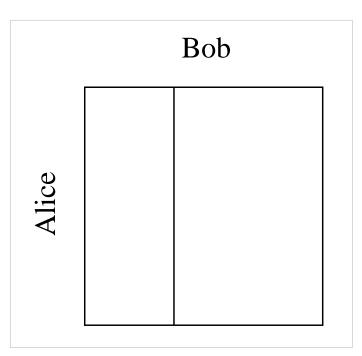
Let $U = \{0,1\}^n \times \{0,1\}^n$ (input universe for Alice + Bob)

Take P deterministic protocol, communicating $\leq c$ bits



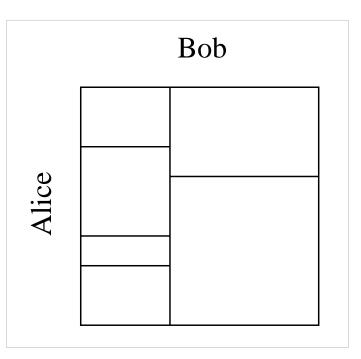
Let $U = \{0,1\}^n \times \{0,1\}^n$ (input universe for Alice + Bob)

Take P deterministic protocol, communicating $\leq c$ bits



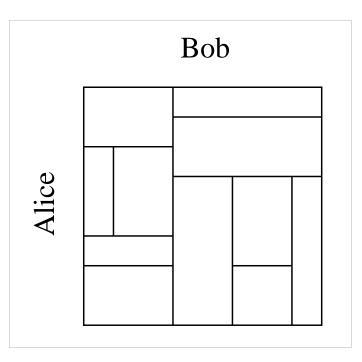
Let $U = \{0,1\}^n \times \{0,1\}^n$ (input universe for Alice + Bob)

Take P deterministic protocol, communicating $\leq c$ bits



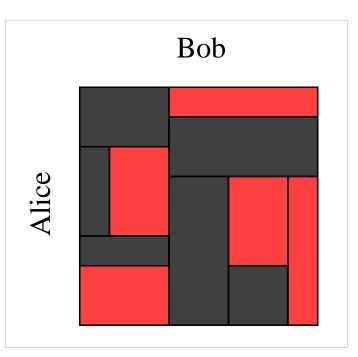
Let $U = \{0,1\}^n \times \{0,1\}^n$ (input universe for Alice + Bob)

Take P deterministic protocol, communicating $\leq c$ bits



Let $U = \{0,1\}^n \times \{0,1\}^n$ (input universe for Alice + Bob)

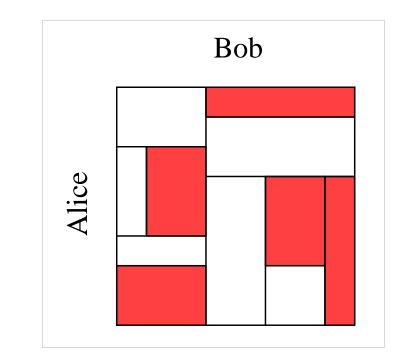
Take P deterministic protocol, communicating $\leq c$ bits



Let $U = \{0,1\}^n \times \{0,1\}^n$ (input universe for Alice + Bob)

Take P deterministic protocol, communicating $\leq c$ bits

Then P partitions U into $\leq 2^c$ combinatorial rectangles (sets $A \times B$, where $A, B \subseteq \{0, 1\}^n$)



If P computes $f: U \to \{0,1\}$, then $f^{-1}(0) = R_1 \cup R_2 \cup \cdots \cup R_{2^c}$

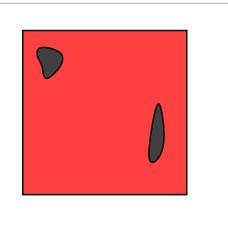
Discrepancy and Corruption

We had: $f^{-1}(1) = R_1 \cup R_2 \cup \cdots \cup R_{2^c}$

If P is a correct protocol, matrix of f contains 0-rectangle of size $\geq 2^{2n-c}$

Basic method for lower bounding D(f): Show that f does *not* contain large 0-rectangle

To lower bound R(f), apply Yao's minimax principle



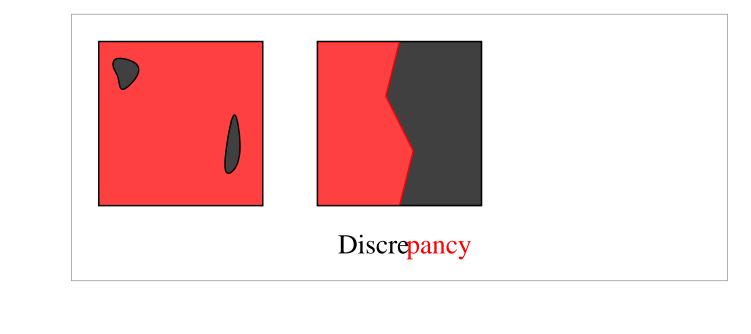
Discrepancy and Corruption

We had: $f^{-1}(1) = R_1 \cup R_2 \cup \cdots \cup R_{2^c}$

If P is a correct protocol, matrix of f contains 0-rectangle of size $\geq 2^{2n-c}$

Basic method for lower bounding D(f): Show that f does *not* contain large 0-rectangle

To lower bound R(f), apply Yao's minimax principle



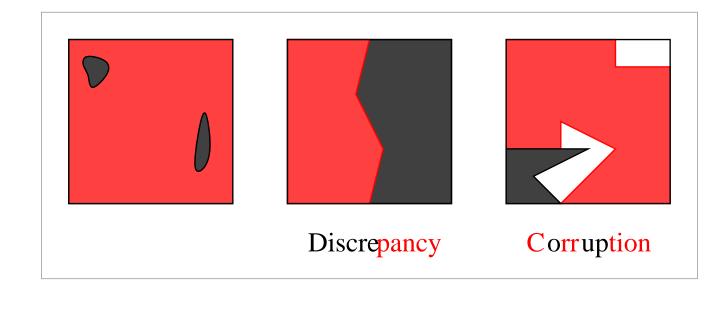
Discrepancy and Corruption

We had: $f^{-1}(1) = R_1 \cup R_2 \cup \cdots \cup R_{2^c}$

If P is a correct protocol, matrix of f contains 0-rectangle of size $\geq 2^{2n-c}$

Basic method for lower bounding D(f): Show that f does *not* contain large 0-rectangle

To lower bound R(f), apply Yao's minimax principle



The Trouble with Corruption for GHD

There exist very large "uncorrupted" rectangles!

Consider:

$$A = B = \{0^{100\sqrt{n}}x : x \in \{0,1\}^{n-100\sqrt{n}}\}\$$

Then, $A \times B$ has size $2^{2n-200\sqrt{n}}$ and is essentially a 0-rectangle!

The Trouble with Corruption for GHD

There exist very large "uncorrupted" rectangles!

Consider:

$$A = B = \{0^{100\sqrt{n}}x : x \in \{0,1\}^{n-100\sqrt{n}}\}\$$

Then, $A \times B$ has size $2^{2n-200\sqrt{n}}$ and is essentially a 0-rectangle!

 $\Pr_{(x,y)\in_R A\times B}[\operatorname{GHD}(x,y)=0] = \Pr_{(x,y)\in_R A\times B}[\operatorname{bias}(x,y)>1] = 1-2^{-\Omega(n)}$

Need a new technique?

The Corruption Method: A Closer Look

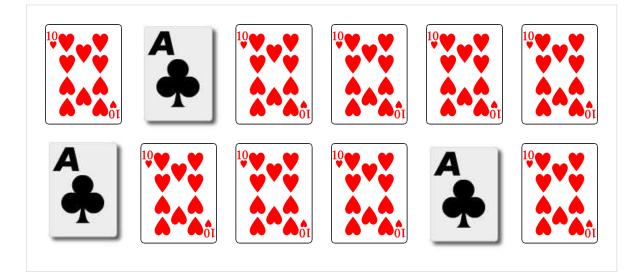
Pick distribs μ_0, μ_1 on $f^{-1}(0), f^{-1}(1)$

Argue that for all large rectangles R, we have

 $\mu_1(R) \geq \alpha \mu_0(R)$

Sum this over all 0-rectangles R; if protocol P is good for μ_0, μ_1 :

 $\mu_1(\{P \text{ outputs } 0\}) \geq \alpha \cdot \mu_0(\{P \text{ outputs } 0\})$



The Corruption Method: A Closer Look

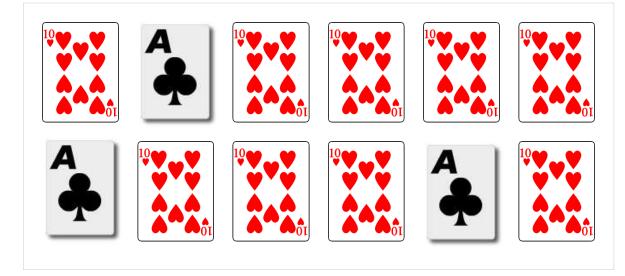
Pick distribs μ_0, μ_1 on $f^{-1}(0), f^{-1}(1)$

Argue that for all large rectangles R, we have

 $\mu_1(R) \geq \alpha \mu_0(R)$

Sum this over all 0-rectangles R; if protocol P is good for μ_0, μ_1 :

 $\mu_1(\{P \text{ outputs } 0\}) \geq \alpha \cdot \mu_0(\{P \text{ outputs } 0\}) \geq \alpha(1-\varepsilon)$



The Corruption Method: A Closer Look

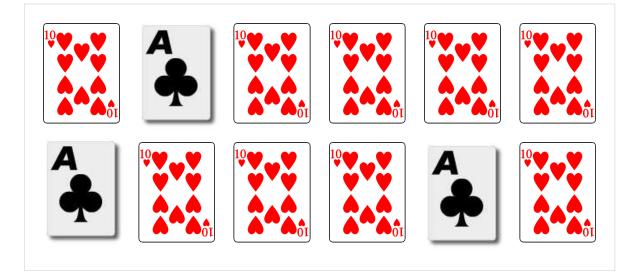
Pick distribs μ_0, μ_1 on $f^{-1}(0), f^{-1}(1)$

Argue that for all large rectangles R, we have

 $\mu_1(R) \geq \alpha \mu_0(R)$

Sum this over all 0-rectangles R; if protocol P is good for μ_0, μ_1 :

 $\varepsilon \geq \mu_1(\{P \text{ outputs } 0\}) \geq \alpha \cdot \mu_0(\{P \text{ outputs } 0\}) \geq \alpha(1-\varepsilon)$



Jokers

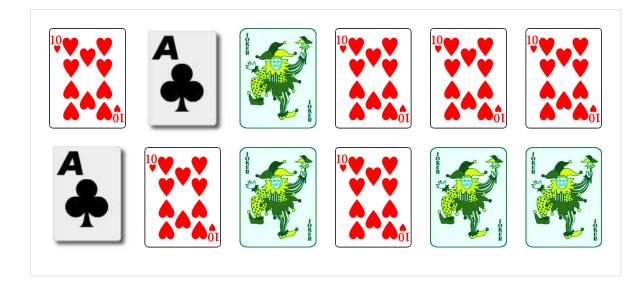
Pick distribs μ_0, μ_1 on $f^{-1}(0), f^{-1}(1)$, and another distrib μ_{\star}

Argue that for all large rectangles R, we have

 $\mu_1(R) + \beta \,\mu_\star(R) \geq \alpha \,\mu_0(R) \qquad (\alpha > \beta)$

Sum this over all 0-rectangles R; if protocol P is good for μ_0, μ_1 :

 $\mu_1(P_0) + \beta \,\mu_\star(P_0) \geq \alpha \,\mu_0(P_0) \geq \alpha (1-\varepsilon)$



Jokers

Pick distribs μ_0, μ_1 on $f^{-1}(0), f^{-1}(1)$, and another distrib μ_{\star}

Argue that for all large rectangles R, we have

 $\mu_1(R) + \beta \,\mu_\star(R) \geq \alpha \,\mu_0(R) \qquad (\alpha > \beta)$

Sum this over all 0-rectangles R; if protocol P is good for μ_0, μ_1 :

 $\varepsilon + \beta \geq \mu_1(P_0) + \beta \mu_{\star}(P_0) \geq \alpha \mu_0(P_0) \geq \alpha(1 - \varepsilon)$

Consider slightly "shifted" version (doesn't really change anything)

$$GHD'(x,y) = \begin{cases} 0, & \text{if } \text{bias}(x,y) > -4, \\ 1, & \text{if } \text{bias}(x,y) < -6, \\ \star, & \text{otherwise.} \end{cases}$$

The Distributions: Zeroes, Ones, Jokers Consider slightly "shifted" version (doesn't really change anything) $GHD'(x,y) = \begin{cases} 0, & \text{if } \text{bias}(x,y) > -4, \\ 1, & \text{if } \text{bias}(x,y) < -6, \\ \star, & \text{otherwise.} \end{cases}$ μ_0 = Uniform on $\{(x, y) : bias(x, y) = 0\}$ μ_1 = Uniform on $\{(x, y) : bias(x, y) = -10\}$ μ_{\star} = Uniform on $\{(x, y) : bias(x, y) = 10\}$

Let

The Distributions: Zeroes, Ones, Jokers

Consider slightly "shifted" version (doesn't really change anything)

$$GHD'(x,y) = \begin{cases} 0, & \text{if } \text{bias}(x,y) > -4, \\ 1, & \text{if } \text{bias}(x,y) < -6, \\ \star, & \text{otherwise.} \end{cases}$$

Let

 $\mu_0 = \text{Uniform on } \{(x, y) : \text{bias}(x, y) = 0\}$ $\mu_1 = \text{Uniform on } \{(x, y) : \text{bias}(x, y) = -10\}$ $\mu_{\star} = \text{Uniform on } \{(x, y) : \text{bias}(x, y) = 10\}$

The Key Inequality: For rectangles R of size $\geq 2^{2n-0.01n}$

 $\frac{1}{2}(\mu_1(R) + \mu_{\star}(R)) \geq 0.9\mu_0(R)$

Amit Chakrabarti

$$\mu_0 = \text{Uniform on } \{(x, y) : \text{bias}(x, y) = 0\}$$

 $\mu_1 = \text{Uniform on } \{(x, y) : \text{bias}(x, y) = -10\}$

$$\mu_{\star} = \text{Uniform on } \{(x, y) : \text{bias}(x, y) = 10\}$$

Key Inequality: $|R| \ge 2^{1.99n} \Longrightarrow \left| \frac{1}{2}(\mu_1(R) + \mu_\star(R)) \ge 0.9\mu_0(R) \right|$

Distrib of biases in large rectangle can't be too concentrated around zero

$$\mu_0 = \text{Uniform on } \{(x, y) : \text{bias}(x, y) = 0\}$$

$$\mu_1 = \text{Uniform on } \{(x, y) : \text{bias}(x, y) = -10\}$$

$$\mu_{\star} = \text{Uniform on } \{(x, y) : \text{bias}(x, y) = 10\}$$

Key Inequality: $|R| \ge 2^{1.99n} \Longrightarrow \left| \frac{1}{2}(\mu_1(R) + \mu_\star(R)) \ge 0.9\mu_0(R) \right|$

Distrib of biases in large rectangle can't be too concentrated around zero Rectangularity crucial:

 $S = \{(x,y) \in U : \text{bias}(x,y) = 0\} \text{ has } |S| \approx 2^{2n}/\sqrt{n}$

$$\mu_0 = \text{Uniform on } \{(x, y) : \text{bias}(x, y) = 0\}$$

$$u_1 = \text{Uniform on } \{(x, y) : bias(x, y) = -10\}$$

$$\mu_{\star} = \text{Uniform on } \{(x, y) : \text{bias}(x, y) = 10\}$$

Key Inequality: $|R| \ge 2^{1.99n} \Longrightarrow \left[\frac{1}{2}(\mu_1(R) + \mu_\star(R)) \ge 0.9\mu_0(R) \right]$

Distrib of biases in large rectangle can't be too concentrated around zero Rectangularity crucial:

$$S = \{(x,y) \in U : bias(x,y) = 0\} \text{ has } |S| \approx 2^{2n}/\sqrt{n}$$

Largeness crucial:

$$A = \{x \in \{0,1\}^{n/2}, |x| = n/4\}; \quad R = (0^{n/2} \cdot A) \times (A \cdot 0^{n/2})$$

$$\mu_0 = \text{Uniform on } \{(x, y) : \text{bias}(x, y) = 0\}$$

$$u_1 = \text{Uniform on } \{(x, y) : bias(x, y) = -10\}$$

$$u_{\star} = \text{Uniform on } \{(x, y) : \text{bias}(x, y) = 10\}$$

Key Inequality: $|R| \ge 2^{1.99n} \Longrightarrow \qquad \frac{1}{2}(\mu_1(R) + \mu_{\star}(R)) \ge 0.9\mu_0(R)$

Distrib of biases in large rectangle can't be too concentrated around zero Rectangularity crucial:

$$S = \{(x, y) \in U : bias(x, y) = 0\}$$
 has $|S| \approx 2^{2n} / \sqrt{n}$

Largeness crucial:

$$\begin{array}{rcl} A &=& \{x \in \{0,1\}^{n/2}, |x| = n/4\}; & R &=& (0^{n/2} \cdot A) \times (A \cdot 0^{n/2}) \\ & \mbox{then} & \forall (x,y) \in R: \mbox{bias}(x,y) = 0 & \mbox{and} & |R| \approx 2^n / \sqrt{n} \end{array}$$

Sleight of Hand?

Did we pull a new (joker) distribution out of a hat?

Do these jokers have any "meaning"?

Sleight of Hand?

Did we pull a new (joker) distribution out of a hat?

Do these jokers have any "meaning"?

- Yes! What we did here can be understood more deeply by studying a linear program (and its dual)
- Careful study of this type of generalization: "smooth rectangle bound" and "partition bound"

[Klauck'10] [Jain-Klauck'10]

The Inequality: A Gaussian Version

Original inequality: $|R| \ge 2^{1.99n} \implies \frac{1}{2}(\mu_1(R) + \mu_{\star}(R)) \ge 0.9\mu_0(R)$

Apply map from $\{0,1\}^n$ to unit sphere \mathbb{S}^{n-1}

Let $\gamma = n$ -dimensional Gaussian distrib

Analogous inequality:

 $\gamma(A), \gamma(B) \ge 2^{-n/100}, \ x \leftarrow A, \ y \leftarrow B \implies$ distrib of $\langle x, y \rangle / \sqrt{n}$ is "spread out" like N(0, 1)

The Inequality: A Gaussian Version

Original inequality: $|R| \ge 2^{1.99n} \implies \frac{1}{2}(\mu_1(R) + \mu_\star(R)) \ge 0.9\mu_0(R)$

Apply map from $\{0,1\}^n$ to unit sphere \mathbb{S}^{n-1}

Let $\gamma = n$ -dimensional Gaussian distrib

Analogous inequality:

 $\gamma(A), \gamma(B) \ge 2^{-n/100}, \ x \leftarrow A, \ y \leftarrow B \implies$

distrib of $\langle x,y
angle/\sqrt{n}$ is "spread out" like N(0,1)

[Can't just fix a direction $x \in A$: what if proj(B, x) sharply concentrated?]

The Inequality: A Gaussian Version

Original inequality: $|R| \ge 2^{1.99n} \implies \frac{1}{2}(\mu_1(R) + \mu_{\star}(R)) \ge 0.9\mu_0(R)$

Apply map from $\{0,1\}^n$ to unit sphere \mathbb{S}^{n-1}

Let $\gamma = n$ -dimensional Gaussian distrib

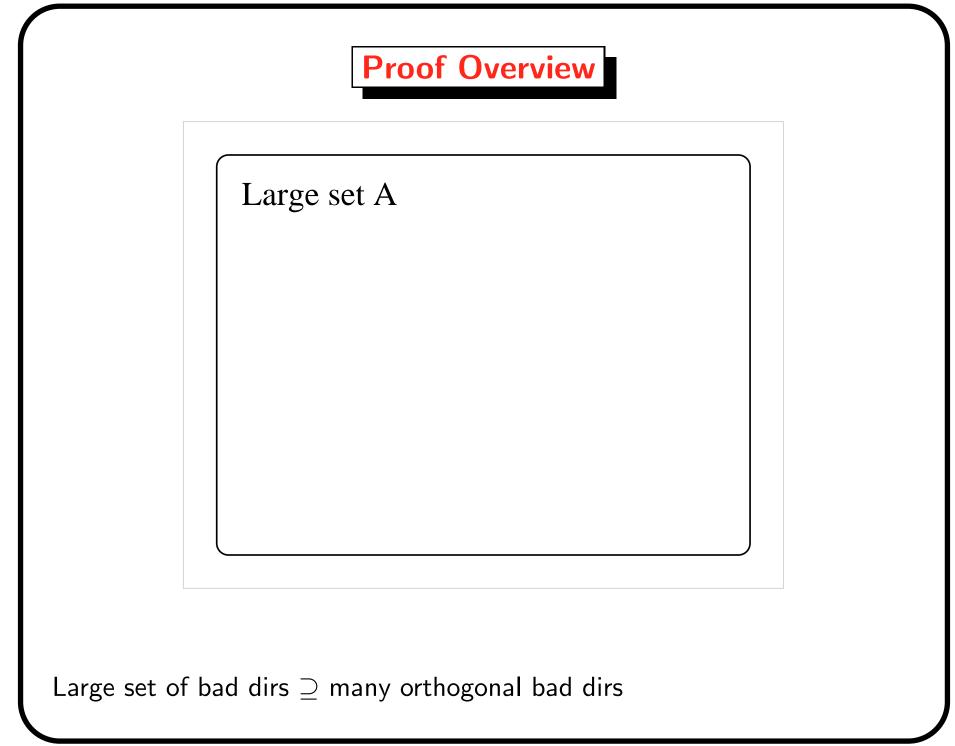
Analogous inequality:

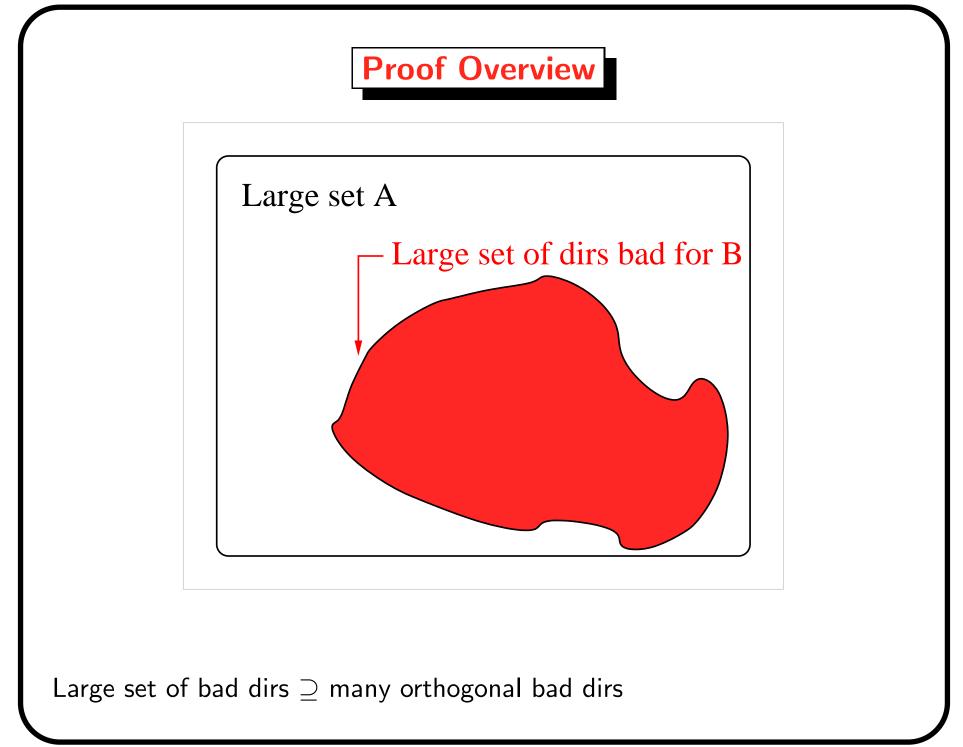
 $\gamma(A), \gamma(B) \ge 2^{-n/100}, x \leftarrow A, y \leftarrow B \implies$ distrib of $\langle x, y \rangle / \sqrt{n}$ is "spread out" like N(0, 1)

[Can't just fix a direction $x \in A$: what if proj(B, x) sharply concentrated?]

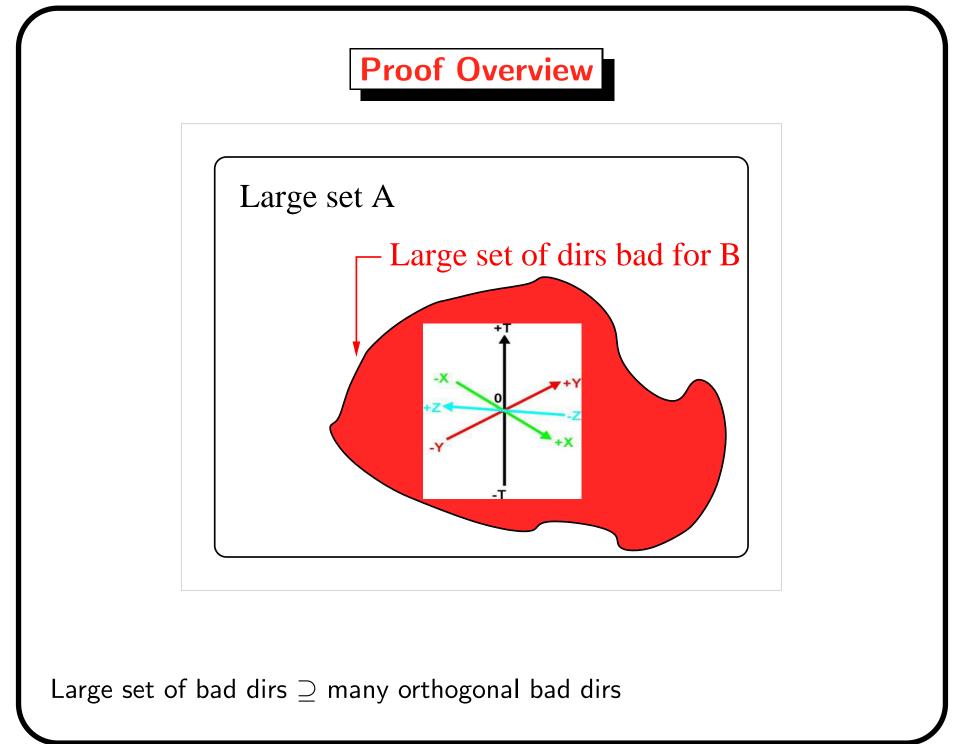
A Stronger Statement

 $\gamma(B) \ge 2^{-n/100} \implies \text{projection of } B \text{ on all but } 2^{-n/50} \text{ of directions}$ distributed like N(0,1) + Z (i.e., mixture of normals with variance 1)





Amit Chakrabarti



Amit Chakrabarti

Finding Orthogonal Bad Directions

Want to show that A doesn't have many bad directions

We'll show: if it does, then \exists many *nearly orthogonal* bad directions

Finding Orthogonal Bad Directions Want to show that A doesn't have many bad directions We'll show: if it does, then \exists many *nearly orthogonal* bad directions A lemma from Raz: [Raz'99] Any set $A' \subseteq \mathbb{S}^{n-1}$ of at least $2^{-n/50}$ directions contains a set of $\frac{1}{10}$ -near-orthogonal vectors $x_1, \ldots, x_{n/2}$, i.e., $\| \operatorname{proj}(x_i, \operatorname{span}(x_1, \dots, x_{i-1})) \| \le 1/10$ Proof via isoperimetric inequality

Lemma 1: Suppose $B \subseteq \mathbb{R}^n$ is s.t. $\gamma(B) \geq 2^{-n/100}$. Let $y \leftarrow B$. Let directions $x_1, \ldots, x_{n/2}$ be orthogonal. Then all of $\langle y, x_1 \rangle, \ldots, \langle y, x_{n/2} \rangle$ cannot be sharply concentrated.

Precise statement: At least one (in fact, most) projection $\langle y, x_k \rangle$ is close to N(0,1) (even when conditioned on $\langle y, x_1 \rangle, \ldots, \langle y, x_{k-1} \rangle$)

Lemma 1: Suppose $B \subseteq \mathbb{R}^n$ is s.t. $\gamma(B) \ge 2^{-n/100}$. Let $y \leftarrow B$. Let directions $x_1, \ldots, x_{n/2}$ be orthogonal. Then all of $\langle y, x_1 \rangle, \ldots, \langle y, x_{n/2} \rangle$ cannot be sharply concentrated.

Precise statement: At least one (in fact, most) projection $\langle y, x_k \rangle$ is close to N(0,1) (even when conditioned on $\langle y, x_1 \rangle, \ldots, \langle y, x_{k-1} \rangle$)

Proof Idea: Complete to orthonormal basis: $\{x_1, \ldots, x_n\}$

Then y is determined by $\langle y, x_1 \rangle, \ldots, \langle y, x_n \rangle$. Wave hands as follows:

 $0.99n \leq \mathrm{H}(y) \leq \mathrm{H}(\langle y, x_1 \rangle, \dots, \langle y, x_n \rangle)$

Lemma 1: Suppose $B \subseteq \mathbb{R}^n$ is s.t. $\gamma(B) \ge 2^{-n/100}$. Let $y \leftarrow B$. Let directions $x_1, \ldots, x_{n/2}$ be orthogonal. Then all of $\langle y, x_1 \rangle, \ldots, \langle y, x_{n/2} \rangle$ cannot be sharply concentrated.

Precise statement: At least one (in fact, most) projection $\langle y, x_k \rangle$ is close to N(0,1) (even when conditioned on $\langle y, x_1 \rangle, \ldots, \langle y, x_{k-1} \rangle$)

Proof Idea: Complete to orthonormal basis: $\{x_1, \ldots, x_n\}$

Then y is determined by $\langle y, x_1 \rangle, \ldots, \langle y, x_n \rangle$. Wave hands as follows:

 $\begin{array}{lll} 0.99n &\leq & \mathrm{H}(y) &\leq & \mathrm{H}(\langle y, x_1 \rangle, \dots, \langle y, x_n \rangle) \\ \\ & & = & \sum_{k=1}^{n/2} \mathrm{H}(\langle y, x_k \rangle \mid \langle y, x_1 \rangle, \dots, \langle y, x_{k-1} \rangle) \\ & & \quad + \sum_{k=n/2+1}^{n} \mathrm{H}(\langle y, x_k \rangle \mid \langle y, x_1 \rangle, \dots, \langle y, x_{k-1} \rangle) \end{array}$

Lemma 1: Suppose $B \subseteq \mathbb{R}^n$ is s.t. $\gamma(B) \ge 2^{-n/100}$. Let $y \leftarrow B$. Let directions $x_1, \ldots, x_{n/2}$ be orthogonal. Then all of $\langle y, x_1 \rangle, \ldots, \langle y, x_{n/2} \rangle$ cannot be sharply concentrated.

Precise statement: At least one (in fact, most) projection $\langle y, x_k \rangle$ is close to N(0,1) (even when conditioned on $\langle y, x_1 \rangle, \ldots, \langle y, x_{k-1} \rangle$)

Proof Idea: Complete to orthonormal basis: $\{x_1, \ldots, x_n\}$

Then y is determined by $\langle y, x_1 \rangle, \ldots, \langle y, x_n \rangle$. Wave hands as follows:

Finishing the Proof

Theorem: $\gamma(B) \ge 2^{-n/100} \implies$ projection of B on all but $2^{-n/50}$ of directions distributed like N(0,1) + Z

Proof Sketch:

- Let $A' = \{ \text{bad directions} \}$; suppose to the contrary that its measure is $\geq 2^{-n/50}$
- Get near-orthogonal bad dirs $x_1, \ldots, x_{n/2} \in A'$ by Raz's Lemma
- If these vectors were orthogonal, by Lemma 1, $\exists k \text{ s.t. } \langle B, x_k \rangle$ is close to N(0, 1). So x_k is not bad. Contradiction.

Finishing the Proof

Theorem: $\gamma(B) \ge 2^{-n/100} \implies$ projection of B on all but $2^{-n/50}$ of directions distributed like N(0,1) + Z

Proof Sketch:

- Let $A' = \{ \text{bad directions} \}$; suppose to the contrary that its measure is $\geq 2^{-n/50}$
- Get near-orthogonal bad dirs $x_1, \ldots, x_{n/2} \in A'$ by Raz's Lemma
- If these vectors were orthogonal, by Lemma 1, $\exists k \text{ s.t. } \langle B, x_k \rangle$ is close to N(0, 1). So x_k is not bad. Contradiction.
- Since they are only $\frac{1}{10}$ -near-orthogonal, we instead get that $\langle B, x_k \rangle$ is distributed like N(0, 1) + Z. Still a contradiction.

Conclusions

- Settled communication complexity of GHD, proving a long-conjectured $\Omega(n)$ bound
- As a result, understood multi-pass space complexity of a number of data stream problems, including frequency moments

Conclusions

- Settled communication complexity of GHD, proving a long-conjectured $\Omega(n)$ bound
- As a result, understood multi-pass space complexity of a number of data stream problems, including frequency moments

Open Problem

Apply the "jokers" idea (more generally, the smooth rectangle bound) to other interesting communication and query complexity problems.