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1 Course Contents

1. Free Particle: (9 lectures)

(a) Schroedinger Equation, Hamiltonian, Commutation Relations,
Wave functions, Probability Interpretation, Currents, Measure-
ment, Plane waves, Normalization, Boundary conditions, Dis-
crete Space and Regularization, delta function, Wave packets,
group velocity. (1 1/2 lectures)

(b) Postulates of QMech, Bra-ket notation, Fourier Transform, Vec-
tor Space. (11/2)

(c) Matrices, Hermitian, Unitary, Tensor Product, Projection Oper-
ator.(1)

(d) Schroedinger and Heisenberg Representation, Evolution Opera-
tor.(1)

(e) Feynman Path Integral.(2)
(f) Density Operator, Quantum Statistical Mechanics. (2)

2. Spin-1/2 system:(3 lectures)

(a) Stern Gerlach, Illustrating q mech., Atom in a magnetic field,
Dynamics of two level systems. (2)

(b) Quantum Computer.(1)
3. Rotation Group: (4 lectures)

(a) Symmetries and Conservation Laws, Lie Groups, Rotation, Lorentz,
Poincare, Global and local invariances (gauge invariance).(2)



(b) Spin and Orbital Angular Momentum, Spherical harmonics.(2)
(c) Discrete Symmetries:C,P,T. (1)

4. Harmonic Oscillator: (4 lectures)
(a) Path Integral treatment. (2)
(b) Anharmonic Oscillator.(1/2)
(c) Coherent states.(1/2)

(d) Introduction to field theory.(1)

5. Perturbation Theory: (5 lectures)

(a) Time Independent (Degenerate and Non-degenerate Pert. The-
ory).(1)

(b) Time Dependent Perturbation Theory, Sinusoidal perturbations,
Fermi Golden Rule.(1)

(¢) Scattering Theory.(3)
6. Interaction of Charged Particles:(11 lectures)

(a) Hamiltonian and Lagrangian, Gauge Invariance. (1/2)
(b) Bohm-Aharanov Effect.
(c) Path Integral.(1 1/2)
(d) Hydrogen Atom, Diatomic Molecule. (2)
(e) Atom in an Electric and Magnetic Field, NMR. (2)
(f) Fine and Hyperfine Structure, Lamb Shift.(1)

)

(g) Electron in a Magnetic Field. , Landau levels, QHE (Q Hall
Effect).(1)
(h) QED, Scattering, Dipole Radiation.(3)

7. Dirac Equation and Klein Gordon Equation.(4 lectures)

Text Books:
1. Cohen-Tannoudji....
2. Landau and Lifshitz....

3. Feynman and Hibbs ....



These notes foloow these books quite closely.

Grading Policy:

Homework : 30 %
Mid-term examination: : 20 %
Final Examination: : 50 %
Total : 100 %

Other points:

1. Homework assignments will be given out once a week and will be due
back in exactly one week. Homeworks handed in late will not be
graded. You may consult with each other on the homework problems
(indeed this is a very good thing), but the final solution should be
yours. You may also be asked occasionally to work out problems on
the board.

2. Basic knowledge of quantum mechanics is assumed. The aim of the
course is to extend your formalistic and mathematical skills and also
develop physical intuition.

3. Although text books have been specified we will not follow the order
of presentation of any particular book. In terms of material Cohen-
Tannoudji will be followed quite closely. For path integrals Feynman
and Hibbs. The quasi-classical approximation is taken from Landau-
Lifshitz. There are many other good books, such as those by Dirac,
Schiff, Sakurai...



2 Free Particle

2.1 Basics

In classical mechanics a free particle is described by specifying its mass m,
position z and momentum p. The Hamiltonian is given by

2
p
H=— 1
2m (1)
In Heisenberg’s formulation this equation continues to be true but
x,p are non-commuting operators that satisfy

[,p] = ih (2)

Dimensions: zp has dimensions L?T~'M - dimensions of angular mo-
mentum. This is also M L?>T~2T which is energy x time. This has di-
mensions of “action”. In g.mech. we often use units where A = 1. Then
E ~ T7'. Also P ~ L~!'. Then action can be said to be dimensionless.
In relativistic sytems it is common to set ¢ = 1 (c=vel. of light). (So
h=c=1). L~T~E '~ P!~ M~! Thus in these units, p, £, m all
have dimensions of 1/length. However for non-relativistic quantum mech
we usually keep the constants.

(H.W: Show that ﬁihc is dimensionless. What is it’s value? Can you
define something analogous using the other important constants in nature:
G gravitaional constant? Should the fundamental constants in nature be
dimensionful or dimensionless? What if we had a universe where A has
twice its present value, and all other (dimensionless nos.) are the same.
What would be different? Think about these things.)

e=1,6x10"" Coul

h=105x10"3*J—s
c=3x10%m/s

2
m
= 8.98 x 10
4meg % oul?
N 2
G=66x10"1 2"
kg?

In this formulation the possible values that can result when momentum
is measured(what does this mean??) are the eigenvalues of the operator



p. Same for x. Operators can be represented by matrices. Eigenvalues of
H are thus the measured values of energy. In particular at the end of a
measurement the particle has that measured value i.e. it is in an eigenstate
of that operator. As x and p do not commute, it follows that the particle
cannot be simultaneously an eigenstate of both. Therefore if it has a precise
value of momentum, it cannot have a precise value of position, and vice
versa. This observation is embodied in the “Heisenberg Uncertainty
Relation”

AzAp > g (3)

In the Heisenberg formalism one has to diagonalise matrices.
(Do they know Fourier Transforms?) This is trivially a consequence of
the mathematical properties of FT.
In the Schroedinger formulation one has to solve a linear differential
equation:
oY

ot
1 92

where H is a linear differential operator. It is equal to —5,- 5 From study-
ing differential equations we know that this also reduces to an eigenvalue
problem. Thus the space of solutions of Schroedinger’s equation forms a
vector space on which H,p, z can be represented as (infinite dimensional,
why?) matrices. These matrices satisfy Heisenberg’s commutation relations.

In a nutshell these are the two (equivalent) descriptions of quantum
mechanics discovered in the 1920’s. R.P. Feynman discovered (19407)
another formulation called the path integral formulation. We will discuss
this soon. This idea is used a lot in Quantum Field Theory.

Schroedinger’s formulation is more convenient for Non-relativistic QM.

Things you should know:

1. The wave function represents what? Born’s probability interpretation:
dP | |* dz

1.1. Given a wave function, physical quantities that can be calculated
are expectation values of operators such as z, p, .. and functions thereof:

Hy = ih (4)

“+oo
/ Y OYdr =< O >

2. Normalization : fffoo | 1 |2 dz = 1. This is a physical requirement
and constrains the solutions of SE.
3. In this representation p is represented by —ih%.



3.1. Proof of uncertainty reln.:Consider for « real:

+00
/ | oz + 2 [ dz >0

oo

The three terms are:

a2/m2 | Y |2 dz = o*(Ax)?

A 2
[120pan =50

/a:c(i/Ja%w* + 1/1*% )dr = —«

They add up to

(Ap)?
h2

This means the discriminant has to be< 0. So

2 (Ap)z
h2

oa?(Ax)? — o+ >0

1 —4(Ax)

<0

This gives
(A)(2p) >
4. The eigenfns of p are Ae**® and have ev hk. “plane waves”

5. These plane waves are not normalizable. [*2°| 4 |? dz = co. Dirac
introduced a “delta function” to deal with these. The Dirac Delta Function
d(x) is zero everywhere except at x = 0 where it is infinite. It also satisfies
Jdzd(x) =1. And [dzf(x)d(x) = f(0). Using this notation one can show
that (HW) [T2° | 4 |2 dz =| A |? 276(0). (for plane wave states). These
are called “plane wave normalizable”. Although these states are not allowed
strictly speaking we will use them as an approximation and for practical
convenience.

Another way to deal with plane waves is to put it in a box:

Size L. So if ¥(x) = A%* is plane wave, then |A]? = ﬁ This is
infrared regularization. What is the smallest value: Depends on bc.
If we have standing waves, then we have states with sin kx and k = 7.
(Periodic?)



Ultraviolet gularizatipon assume k£ has a max. As in a crystal with
spacing a. k < 2% And Na = L. So k takes N values.

dz — SN a. dk — YN _ 2. Try evaluationg [ dve’*® and [ dk [ dxe™®
and figure out properties of delta-function.

6.Probability density of finding a particle in such a state (=constant)

7. Probability current:

hoo  hk )
Jy = %W} 2 —cc] = m | A (5)
velocity number density

8. Current Conservation 0,J, — 0yJy = 0 where J; = ¥*1) = number
density.

9. States havind a definite time dependence e *F* satisfy the time inde-
pendent SE Hy = E1. For plane wave states clearly E = %

10. We usually require E to be real. what if it is not? Calculate 0¢(¢0*).

11.  Continuous versus discrete F. Confining potentials and bound
states. Particle in a box. HW.

12. Prove current conservation using SE. Starting with — 0%y _ ;hov

g 8 2moz?2 ot

we get (multiply by ¢*, integrate by parts and subtract c.c) —d,J, on the
LHS and i0;(¢*1) on the RHS. QED.

12. HW problem with particle leaking out of a box.

13. Given a wave function, physical quantities that can be calculated
are expectation values of operators such as z, p,.. and functions thereof:

%

+o0
/ Y OYdr =< O >

14.For a plane wave what is < z >, < 22 >? What does it mean?
15. Given the above, how does one construct a classical looking particle?
ANS “wave packet”. Superpose different harmonics: Draw. eg ¢(x) =

_ (z—vt)2
Ae 22 . Do you know how to fix A? This represents a particle moving

along the trajectory x = vt. At least initially. After some time? calculate!
16. Group velocity is ilTUI; is % But what is k7 1) is peaked around some
k. Consider the wave fn.

b2 (hk—mwv)? _ih2k2t

Y= A/dkei'me_ 2 e ' 2m (6)

This represents a superposition of plane waves of momentum hk and the
appropriate time dependence. k peaked around mwv. Do the integral. Set



h = 1. The exponent is:

b? t m2v2h?
pa— 2 — '7 2 ) J—
k(2+22m)+k(bmv+zx) 5
_ _(ﬁ N zi)(k _ (0*mo —.i—tim)>2 N (b*mu —l—.ita:)2 _ mPoPh?
2 2m (b +i-) 2(0% +i-) 2

After doing the k integral we are left with a term in the exponent:

(B*mv +iz)?  m2?b?

2(b% +i-%) 2

We expand this for large m but small mb to get

(@—vt)?2 2 |
w ~e 12;2 —it g~ +imuz (7)

We can also calculate | ¥ | by adding to the exponent its c.c. to get

b2 (asf'ut)2

2
Y lxe O 8)

This clearly represents a ‘semi-classical’ wave function of a particle mov-
ing along a trajectory with vel v. The ¢t and x dependences give the classical
energy and momentum respectively.

The Feynman Path Integral (FPI) approach is best suited to demonstrate
this. Later.

2.2 Postulates of Q.M.

1. The space of allowed “wave-fns” is a vector space over complex nos.
(Hilbert space). The wave fns have to be square integrable and smoooth.
i) Superposition: ¥ = aj11 + agibe, a1, as € C is also a physical state.
ii)Scalar product [ d3r¢*(r)y(r) =< ¢ | 1 > has the following props:
)< @ >T=<y| o>
b)Linear < ¢ | a191 + agtpas >=a1 < ¢ | 1 > +ag < ¢ | o2 >
c)anti linear < a9y + agths | ¢ >=af <1 | ¢ > +a5 <o | d >
d) Norm < ¢ | ¢ >= [dr¢*¢ > 0 and is =0 iff ¢ = 0. 2.Dirac’s
Notation:
| 1 > represents a state. Inner product of | ¢ > and | ¢ > is denoted by
<¢ly>

Q



Thus
Y(r) < ¢ >
“ket”

[ e @) o< ol v >

Dual space: The space of linear functionals:
defn of lin fnl: y is a linear fnl = it assigns a complex no. to every ket
| ¢ >.
x(lv>)=c

The space of x’s is the dual vector space.
Linear i.e. axi(] ¥ >) 4+ bxa(| ¥ >) = ax1 + bxa(| ¥ >)
Hilbert space and its dual are isomorphic. (Except for plane wave states!)
A particular linear functional %% can be associated with a ket | ¢ >
by:
P ¢ >) =<y | o>

This defines the bra < ¢ |= ¢?al,

3. Basis vectors: | e; > i = 1, N for an N dim space. Completenes.
Discrete and continuous.

Orthonormal:< e, | €y, >= Oppm or < e(A) | e(N) >= (A = N)

Thus usual wave fn ¢(r) =<r | ¢ >

| >:/d3r1/)(r) >

<r|r>=4§(0) = oo not normalizable.
Momentum basis:

d3p - ~
— ip.r
vir) = [ Gt
“Fourier transform”

o) = [ dre i)

Check . .
Define | p > by (p) =< p | ¢ >. and

3 ~
0= [ i) o>

9



This requires < p | &' >= (27)383(p — p')

| >= /d3r
3 ~ .

Sdponjenr

—_—

lp>

P o) |r>

Thus < r|p>= e
Thus inserting f 3 | p><pl|or [d® |r><r]is equivalent to FT.
4. Operators: Llnear operator: A | ¢» >=| ¢ > and correspondingly

Ai(r) = ¢(r) where A is a differential operator.
Ab(r) =< | Al p>= [ & <r|Alr > ()

<r|A|r" > are matrix elements. Operators are represented by matrices.
Discrete or continuous depends on basis.
eg A is -id/dx what is A?

—id/dzip(z /d:z; id/dx'§(x — 2")(a))
_ /dw’z’d/d:c' <al|a > ()
_ / da'[< @ | id/dx | 2 >]ob(a')

<z|A|d >=<ux|id/dd | 2 >=id/dx'5(x — )

. (Note the sign change)
<plA[p >= /dmp/ei(p/_p)” =2m0(p' —p)p/
5. Hermiticity: A = AT
<x | Ap >*=<y | AT | x>
/ dx(x* Ab)* / dz* Aly / da(Av)*x

10



eg A=d/dx:

JOc@dvdey = [ v jdox(a) =~ [ davdy/da

Note - sign. We have “integrated by parts”. (What boundary conditions
are required?) Thus Af here is —d/dz. Thus it is anti-Hermitian. Thus z’%
is Hermitian.

6. Eigenvalues and eigenvectors.

If Ay, >= an|th, > then a, is an eigenvalue and |¢,, > is an eigen
vector.

2.3 Matrices

If e; = |i > are a orthonormal basis then the matrix A;; =< i|A|j > is the
matrix representaion of the operator A. Thus

Alj >=" Ayjlk >
k

< Z‘A|j >= ZAIW < Z‘k >= Aij
k

Thus if |¢p >= > ap|n > the column vector (ay) represents the state
|t >. Then

Al >= ZA”L > il >= Za2A|z >
= ZGZZL] >< jlAli >
= Z(Z Ajia;)|j >
j 7

So the numbers }°; Aj;a; represents Al >.

Diagonal rep of matrix : Choose a (orthonormal) basis consisting of
eigenvectors of A. In this basis A is a diagonal matrix: A = diag(ai, az,as...ay).
Then A = A implies that the eigevalues are real. Physical (i.e. experimen-
tally measurable) quantities must be represented by Hermitian matrices.
eg. energy, momentum,...Hermitian means real symmetric, or imaginary
antisymmetric. eg Pauli matrices.

Unitary matrices: UUT = UU = I.

They are important - they preserve norm:

<UP|UY >=< p|UTU[p >=< ¢|¢ >

11



Det(UU') = DetUDetU' = |DetU|* = 1

So DetU = +1. If we diagonalise U then since U~ = Ut = U* the diagonal
elements must be of the form e where 6, is real.
Thus U = €' where A is hermitian. (iA is anti Hermitian).
If Ais small, the U = 1444, and UT = 1—iA. A Unitary transformation
is
UFUT = (1 +iA)F(1 —iA)
=F +i[A, F]

Thus
OF =i]A, F|

is the form of the infinitesimal transformation. eg ¢i€% is a translation by e.

P
OF = i€]

T Fl = ie(—i

2.4 Tensor Products

V1, Vo are two vector spaces. The tensor product is a vector space Vi ® Vs.
If e} >,i=1— Ny, ]e? >.j = 1— Ny are the bases of Vi, Vs, then the N No
states |e} > ®|ej2 > are the basis states of V1 ® V5.

eg |pz, Py, P> > actually is a state in the tensor product space |p, >
®|py > ®|p, >. Similarly, multiparticle states.

1.

AMlp1 > ®[x2 >] = A|¢1 >] @ [x2 >= [¢1 > @A[|x2 >]

|p1 > ®[Ix1 > +x2 >] = |1 > ®[x1 > +[P1 > ®|x2 >]
3. If |¢1 >= M aplel > and |y >= SN2 byyle2, >, then
|1 > @|x1 >= 320 SN2 b, ek @ e, >

N1+No
4. But the general state is |V >= zfj;l AN/[QZI Cnom |€h > ®|e2, >
~—~—

N1Np
5. Scalar product |¢1 > ®|x1 > and |2 > ®|x2 >

12



is < ¢o|d1 >< x1|x2 >.

6. Similarly operators: If A acts on V3 and B in V5. and

Alp1 >= |2 > and B|x1 >= |x2 > then A® B|¢1 > ®|x1 >= A|é1 >
®Blx1 >=|¢2 ® [x2 >

Similarly on a general state (i.e. not a direct product) act on the indi-
vidual basis states which are direct products.

Thus we should actually write A = A® I and B = I ® B and AB =
AIRIB=A®B.

Example: Two spins 1/2 . The basis states are

|+ > @+ >
[+ > ®|— >
|— > ®+ >
|— > ®|— >
Another notation:
|+7+ >7|+)_ >7‘_7+ >7|_7_ >)

Operators 51, 52 - Pauli matrices.
Let S1; = 0, etc. As matrices 05,7, = 1,2
Let Sy = 7, etc. As matrices 74,a,b=1,2
Then L
S1.52 = S1252 + S1ySoy + 51252

= Slx ® S2x + Sly ® S2y + Slz ® S2z
= OgzijTeab + OyijTyab + OzijTzab

Action on states:
S12520 = S1z ® S2[|+ > O+ >] = 0, @ T [|+ > B[+ >] = [|— > ®|— >]
On the other hand
0,0, =1

This is not a tensor product.
0 ® T can be written as a 4X4 matrix.

13



2.5 CSCO

Complete Set of Commuting Observables: How do you specify a state com-
pletely?

Let the eigenvectors of A be |a,, >, i.e. Ala, >= an|a, >. There may
be many of these. So label by another index: |ay,i >,i:1— N,,. How does
one label them? Use another observable B such that [A, B] = 0. B will not
change A eigenvalue. So

B]an,z' >= Zbi]’|an,j >
J

Thus B is block diagonal. Draw. Let us diagonalise B in each block. So
instead of 7 use by,, Thus the states are labelled by |ay, by, >,m : 1 — Np. If
Ny = N, then we have a distinct eigenvalue for each state. If Ny, < N,
then then we have many states with same values a,,b,,. Thus we call
them |an, by, k > where k : 1 — Ny, ,,. Find another operator C' such that
[A,C] = [B,C] = 0. This is block diagonal in the block labelled by a,, by,.
Diagonalise it. Let the ev be ¢,. If all ev are distinct we are done. Otherwise
keep going. In this way we get a CSCO: A, B,C, D, ... and a set of labels
that uniquely specify the state |ap, b, ¢p, dg, ... >. The set is not unique.

eg Plane waves in three dimensions.

2.6 Projection Operators

P is a projection operator if P? = P. Eigenvalues are 1,0.

i i g 1¥><d]
Projector into a state |¢) > is NS

2.7 Schroedinger, Heisenberg and Interaction Representa-

tion
1. .
b, t) = e 7z, 0) 9)
if H is time independent.
2.
[ t ’ /
P, t) = Peti Jo 1O (5 0) (10)
| —
EvolutionOperator

if H is time dependent. P stands for “Path Ordering”.
3. The evolution operator U(t,0) is unitary if H is Hermitian. U(¢,0) =
U(t,t1)U(t1,0).

14



4. Defn of Path ordering: U(t,t — At) = e *HA when At — 0. Also
U(t,0) = U(t, t—At)U (t—At, t—2At)...U(At,0). (Note thatede? # eA1B).

5. Check Schroedinger eqn.

6. Why Path ordering is imp for time dependent H only: H = Hy +
f(t)Hl with [Ho,Hl] 7'5 0.

[Ho + f(t1)H1, Ho + f(t2)H1] = (f(t1) — f(t2))[H1, Ho

7.Use bra-ket notation: | ¢(t) >g= U(t, ) | ¢ (to) >g “S”=Schrodinger.
s < ¥(to) | UT(t, t0) =s< (1) |

s <P(t) | Os(t) [ (t) >s=< Og(t) >¢

is exp value at time “t”. The t-dep in O is because of some explicit time
dependence.

s <1(0) | UT(£,0005U(t,0) | (0) >5=< O >
8.H = Heisenberg. Define UTOg(t)U(t,0) = Og(t)
| 9(0) >s=| ¢ >n
Heisenberg states have no time dep.
< Ou(t) >=a< ¢ | Ou(t) [ >a=s< (1) | Os(t) | ¥(t) >5=< Os(t) >¢

At t = 0 both reps are identical. H-operators have all the time dep. S-op
only have explicit time dep. H-states have no time dep.
9. Calculate Oy (t + At) — Opn(t) using U’s to get

T U 7 U+ hU [Hs, Og]U
dOg 1
= (W)H + ﬁ[HHaOH(t)]

10. —ih%n = —jpln
ih 9l — iRy (X )

15



2.8 Path Integral

1. Instead of starting with a wave function one defines directly a probability
amplitude for a particle to go from a point x;at time t; to a point xy at time
ty. Call it K(xg,tf;24,t;). Feynman defined the following formula for it:
Motivation: double slit experiment.

x(ty)=xyf i [tr )
Da(t)  eap(+y /t dL(z(t),2(1) (11)

sum over paths

K(xp, ty;xi,t;) =/

{L‘(ti)zwi

Note that this is not the probability amplitude of a measurement, it is
the probability amplitude of an event.

2. Draw pictures and show classical limit. Principle of stationary phase.
Derive Lagrange’s eqn.

3. How do you actually calculate: What does Dz(t) mean? Divide
ty—t; into N intervals € = tj 11 —t; with tg = t;and ty = tn. Let x; = x(t;).
Then Dz(t) ~ dxidxs....dx;...dxy_1 There will in general a constant of
proportionality (possibly infinite). Thus

N=Zf

K(f, Z) = K(xf, ty; @, ti) =N [dl’ldxg...dw]v_l]e%s(f’i)

To=;
Where S is the action and A is a normalization constant.

2. The composition law K(a,b) = [dz.K(b,c)K(c,a) : Draw figure. K
is called Kernel. This can be iterated.

3. Get

K(zg, 501, 6:) :/d:cl/d:uQ.../d:vN_lK(f,N—l)K(N—l,N—2)...K(j+1,j)...K(1,z’)
(12)
4. Do the integral [da; K(j+1,7)K(j,7 —1)

) T 1w wi—wi_q
e%%[ . € J]2+%[ . eJ ]2

i Tip1t+Ti—1 Tj41—Tj—1
e%[(zj_ J+ 5 J )2+( Jj+ 5 J )2

the2r i2em (i1 Tj1)2
e h2 2e

2m

16



This is clearly proportional to K(j+1,j — 1). The factor in square root
is the normalization factor. If we use the Gaussian normalization factor for
each of the unit K’s , i.e. /5 %, we get the final result

m i2€m(zj+1_lj—1)2
-€ h2 2e
2m2ehi

which has the correct normalization.
Clearly this process can be iterated to replace 2¢ by Ne =ty —t;. Thus

i(tp—t;)m  (xp—x;)
m = (tfc—m >

(:Ef; f7:1;l7 Z) 27T(tf—tz)hze

(13)
5. Relation to wave functions - evolution operator.

—i [Y Hat
T

V(g ty) = P, t;) = /K@fﬂff;!Ei,tiW(xi,ti)dfﬂi (14)

5.5) Expansion of K(xf,t¢;xi,t;) in terms of wave functions

B (ty—t;)

6. Derivation of Schroedinger’s eqn.
Consider infinitesimal evolution from ¢ to ¢ 4+ €. The evolution operator
is

z(t;)=wz;

(o trmit) =[S0 Da(t)  enp(+i il dtL(x(t), (1))

sum over paths

We set ty =t; + € to get

x(ti+e)=xy i [tite .
Wiz, tite) = / Da(t)  eap(L / AL (2 (1), () (s, ) da
x(ti)zmi S—— h t;
sum over paths

For infinitesimal evolution

Iffzi}Z

(g, t; +€) :./\/'/e%%e[ < (g, ty)dx;

17



N is chosen so that the gaussian integral gives 1 bLHS is ¥(xf,t;) + €5

o
b
Letting x5 — z; = y and ¥(x¢,t;) = ¥(xi, t;) + y —|— y—a—f (we get (linear
term vanishes by symmetry)
SO0 n? 0%
at 2m Oy?

(After multiplying by h on both sides.) This is SE. QED.
Note that K (zy,tr; x;, ;) satisfies SE. Also the be limy, ¢, K(zp,tp;2i,t:) =
Ny — ;).

z(tf t;)m (If x;) 2

. . . ( )
m (t t;)

7. getting semi classical energy, momentum. Using \/ P (e £~

we can understand semi classical limit

: Change in phase wrt change in x
gives momentum and change wrt ¢ty gives energy. Use K(xf,ts;24,t;) and
study variation wrt xy. Prove that 55,

% cd =P
a)

t
S+465 = bL(az+5gg,5g+5¢)dt
ta
d.. OL .
0S = /ta @[5x%]dt+/dt[eqn of motion]
0S = (5x ]
08 87[’ tb

=P
Oz, 0i b
b)Same thing for energy:

ty+0ty
S + 0S = dtL(t,fL‘cl, cl)
ta

«’ is the modified classical solution. (¢, + dtp) = zq(ty) =

ty+6tp .
S+0S = L(xl,, ' )dt
taq

ty

t L(xly, ') + 6ty L(xly, 7' )

t .
55 = Sty L(aly, ') + | [L(aly ')

— L(xe, o)) dt
ta

18



The term in square brackets is after integrating by parts and using equations
of motion 53:61%.

Using be we get z7,(ty) + 2'¢0ty = x¢. So zl; — xq = —a'0t,. All this
gives:

ty
08 = Loty + / dt[L(ta xlcla J/Jcl) - L(tv Lely x'cl)

= Loty + gL( ol — .CUCZ) = Loty — pxy0ty = —Edty.

c¢) Understand normalization: g 3=dx = P(b)dx.

mb e m(b+ dx)
T =7F T
Range of momentum dp = dex. Thus the probability is of the form P(p)dp =

const dp where const is ﬁ

7.5) Do the Gaussian slit - Feynman - and repeat results of wave packet
spreading etc. - Perhaps as HW.

8. Include potential term V(x). Harmonic oscillator approx. Add
—V(z(t)) to L. Then calculate PI all over again. Stationary phase gives the
usual classical equations of motion. In general cannot

be done exactly. Expand V (z) in power series near minimum. Quadratic
term gives harmonic oscillator. Can be done exactly.

The kernel for the harmonic oscillator can be found exactly:

X(T)=Xy
/ () ( )625 f (22 —w?x?)dt

X(0)=X;

Expand X (t) = Xeassical(t) +y(t), where z(t) is the classical solution that
satisfies the boundary conditions. Expand. Purely classical piece give the

classical action. This is
1MW
xp{m[($?c + 27)coswT — 2 ]}

What remains is a Gaussian integral over y(t)

[ py et v

Y (0)=0
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Expand y(t) = 3, ansin(%*)

51 nm

KE=T —(—)?

1
PE=T} jaw’
n

Do integral over a, (Jacobian is a constant) : the integral is of the form

consta? ((4F)?—w?)

e . The constant is independent of w and has the same value

when w = 0. This integral is const’ x (1 — Zzzz )_%.Product over all n gives
(SZL*:“F’T)_I/Q. Comparing with free particle gives const’ = (%%T)I/Q.
The final result:

rmw

2hsinwT

mw

) 2exp{ [(ﬂ??c + 27)coswT — 2z ;] }

2mihsinwT
9. Do with forcing function. Only classical action will be different.
10. Several degrees of freedom. K(xy, Xy, tf;x;, X;,1;). The conve-
nience of the formalism. Separable systems. S(z, X) = S1(z) + S2(X). The
concept The final result:

mw 1/2 Tmw
) expd 2hsinwT

(

D — [(a:fc + 27)coswT — 2 ;] }

9. Do with forcing function. Only classical action will be different.

10. Several degrees of freedom. K(xf, X¢,tf;x:, X;,t;). The conve-
nience of the formalism. Separable systems. S(z, X) = S1(z) + S2(X). The
concept of “integrating out” degrees of freedom. When would you want to
do that: unobservables : eg ren group - effective actions, thermodynamic
heat bath or the rest of the universe,

2.9 Statistical Mechanics and the Density Matrix

1.Elementary Quantum Stat Mech: Expectation value of an operator in
equilibrium so that states are weighted with Boltzmann factor < A >=
> piA; where p; = 2e P

Z The partition fn. Free energy.F(T,V, N)or E(S,V,N).

2.0ther infmn P(z)? Need the unintegrated form of the partition fn i.e.
density matrix.

3. P(x) = 3 3, ¢} (x)di(w)e P
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Similarly
1 _BE;
< A>= Z EZ AjePEi

AGETIO R S SR AP

%

1
Z
Define

quz )5 (x
P:Z|¢i><¢i|6_ b

=" i >< g |ePH

1
=1.e A1

“Density Matrix”.
1
< A>= ZTT[Ap] = /dxAp(x’, r)0(z — 2')

where Z = Trlp| = [dxp(z,x)
4. Con51der

K(zf,tyiaiti) Z¢n xp)y (zi)e” Bty —t)

If we let i(ty —t;) = Bh we have the density matrix!
Thus can use path integral with ¢th replaced by u to evaluate p:

p(z',x) = K(2', Bh;x,0) = /x((])—:c R e:vp{ff/ hl— )+V(z)]du})Dx(u)

To calculate Z = T'r[p] set 2/ = x and integrate over z, i.e. sum over all
periodic paths.
5. Density operator in general:
a) Pure case : pj =| ¥ >< ¥, |. Assume normalized. p? = p. Trp = 1.
In terms of some energy eigenstates (say):| ¥ >= >, cn | ¢n > with
doncrcn =1. S0
Pk = Zczcm | Om >< ¢n |

n,m
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Trp =1 clearly. Off diagonal elements are “coherences”.
. . d
Time evolution: py(t) =| 5 (t) >< ¥y(t) | So % = Z[H, p).
Note that only coherences have non zero time dependence.
b) Mixed case

p=> DPkPk
k

pr is a probability :>°, pr = 1. Motivation for this can be from thermo or
from integrating out.

Trp = 1 obviously. But p? < p. Equals sign only in pure case.

Time evolution: same as pure case. In the case of e ## obviously time
dependence is not there.

6. Several variables and partial traces - that discussion can be carried
over to density matrices. Tensor product. In general the density matrix is
not a direct product of two density matrices. If the systems are physically
independent it will be a direct product.

i)Direct product:p = pg ® p¢

pe=Dp1|P1 >< 1| +p2| 2 >< g2 |

pe=aq | & ><& | +a|L><&|

Partial trace over ¢ gives p¢ and vice versa.

ii) Consider

p=p1|d1>& ><d1 <& [+p2] 2> & >< 2 [<&

Tryp = p¢ defined above, and vice versa but this p is not a direct product.

iii) Start with pure state dm: %ﬂ O1>1 6>+ | g2 > & >)(< o1 |<

§1|+<¢>2|<§2|)%

This is a pure state. But Tryp = 3(| & >< & |+ [ &L >< & )
which is not a pure state.

3 Spin half system

3.1 Stern Gerlach

1. Force on silver atoms in a non-uniform magnetic field F = V({i.B). p
S(spin). Classically spin is in a random direction. The no. of spins dN(6)
aligned at an angle 6 w.r.t. z-axis is o< 2wsinfde (solid angle). Force is o< S,
and thus the displacement Az is also «x S, = Sjazcos6. So dAz x sinfdb.
Thus we get that dN(0) o« sinfdf < d(Az). So dN(Az) = constd(Az).
In other word a constant no. density fn. What is observed are two peaks
corresponding to S, = +1/2h. =quantization of spin.
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2. So we have a two state Hilbert space spanned by | + >,| — >. Can
obviously apply all postulates of QM. Except need an evolution operator.

3. CSCO is either S,, .S;, or S;, or some linear combination.

4. Thus S.u where # is a unit vector measures spin along .

S.u = costlo, + sinfcospo, + sinfsingo,

This is obtained by rotating o,. Thus consider rotating by # around the
y-axis. This is done by

—ifoy oy .
e 2 o,e 2 =(cosho, + sinboy)

Rotate further by ¢ around z-axis and get S.u. Thus Ro.R! with R =

—ipoz —i@ay .
e 2 e 2 gives the answer.

5.The corresponding eigenvectors are thus | £ >,= R | £ > Thus

[+ >u=
e~ 5 (cosQ —z'sz'ngo* )|+ >= e%wcosg | + > ~|—e%sing | — >
2 27 2 2
= >u=
e~ 5 (cosg —isinga )| —>= e%cosg | — > —e 2" sin | + >
2 2°Y 2 2

6. Polarizer analyser sequence. Start with | + > . Analyser in some

other direction 4. Find various probabilities.
Basic expressions :

—ig
<H |+ >u= 670035

i 0
<*|+>u:€281n§

—i¢ 0
<H|—>y=—e2 sing
i 0
<—|—>u:e2cos§

What is , < + | S, | + >4? ANS c0s20/2 — sin?0/2 = cosf which is the
classical answer. Similarly < S, >, < .Sy, >.
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7.Back to Stern Gerlach. Prepare | + >, state. Then analyze into | £ >
states.
—io 0
<+ |—>u=-—e2 sing
When does measurement take place? Even after the magenetic field there
is a wave packet which has split into two - representing the two possible
outcomes. Even after they hit the screen? After we observe it?

If it doesn’t hit the screen it is possible to recombine them into a single
beam and get back | + >, state. This is a physical explanation of “complete
set of states”.

8. Precession in a magnetic field. “Larmor precession.” Quantum
mechanical evolution in a constant magnetic field Rotating frame.

i)H = —yS.B and assume B is const.

Classically % =~ym x B If —75 = &, then % =& X M.

Larmor Precession.

ii) Effect of going to a rotating frame q(%) X = (%

iii)Quantum mechanically U = /2787t G — —yg. So if B, is there
then U = e~"/2%=9t which is a rotation about the x-axis by an angle wt -
time dependent rotation - Larmor precession.

eg H=H,o,. If . (t) =< +]1(t) > and _(t) =< —[¢(t) > then

Jo — W X M

_ iHst

[W(t) >=e" 7 |+ > ¢4 (0) + e’

iHt

= > v (0)

Compare with

—ie 0 tie .0
|+ >u=€e"2 cos §]+>+e 2 sin 5]—>

If we set cos 0/2 = 44 (0) and sin 6/2 = 1_(0) and ¢ = h;ft then they
are the same. Thus the solution is just a rotated state.

iv) Generalize to the case where there is both B, and some B,.

Stepl : Determine 6, ¢.

Step2 Find | + >, and the eigenvalues are & | yB |. where | B |*=
Bg + Bg. wy = —vB; and Aw =B,

Step3. Start with | (0) >=| + >=|+ >, w <+ |+ >+ | — >4 u <
- +>

Step 4. |Y(t) >=e W+l | 4 >, <+ |+ > e Wt = >, < — |
+ >

= /2710 050 /2 | + >, —e 2T tsing)2 | — >,

Step5:Calculate < — | 1(t) > to get e'?sind/2cos0/2(e!AH — 1A% ) g—iwavgt
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Prob (t)= sin*@sin* AQt where (AQ)? = (Aw)? 4+ wi and tanf = £L

9. Rotating magnetic field. Classical picture of resonance. Quantum
picture. NMR. % = ym x (B.é, + Bicoswte, + Bisinwte,)

Go to rotating frame where By (t) is time independent.

(4h)x = (G1)e — @ xm

If yB, = —wy then we get

(%)X =m x (w—wp)e, — M X wiex

gm: Time dependent Hamiltonian!

wreTiwt wo

H="1/2 ( w - we ™ ) (15)

Going to rotating frame qm is done by | ¢ >= e~ wt/20z

of x > where Hamiltonian becomes time independent.
Equation becomes (Use e~"t0=/25 et

X > is a definition

lo e = coswto, + isinwtoy

ih%efiwt/Qaz ‘ X >= e*iU’t/2azh/2(wOo’Z —+ wlax) | X >

= ih% | x >=Nh/2[(wo — w)o, +wi0.] | x >
2

w . /

When Aw = 0, the probability becomes 1 at some time. This is when
resonance occurs. So wp = w. w is the energy of the photon corresponding
to oscillating field. wq is the energy difference. So hw = AFE.

10. Other 2-level systems....(K? — Ksystem). “Regeneration”. Gen-
eral two level sytem and Spin 1/2 analogy.
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4 Rotation Group

4.1 Symmetries and Conservation Laws

1. Physical idea of symmetry - translation, rotation, Lorentz transformation.
Connection to coordinate transformation - the idea of manifest invariance of
equations/Hamiltonian /Lagrangian. Distinction between active and passive
transformation - one involves a physical movement whereas the other is
a change of coordinates. But ultimately they amount to the same thing
because “if the coordinate change leaves H invariant “you can’t tell from
within the system that you have moved”.

If H is invariant under translations, then [P, H] = 0. But this also means
P is constant in time. Conservation of momentum.

2. Transformation of other quantities: eg. background fields. If B # 0
then rotation is not a symmetry, unless you rotate B also.

3. Practical application:i) when you choose a convenient coordinate sys-
tem.

ii)Intuitive idea that the final result cannot contain such and such term:
e.g by rotation/reflection symmetry the energy of a magnetic field cannot
contain B,. It must be B2.

These ideas are made precise by group theory.

4. Groups: mathematical objects that describe symmetry operations.
Multiplication, inverse, identity, closure. Discrete vs continuous. (Note:
gh # hg in general - non commutative, but associative)

5. Discrete vs continuous groups. Lie groups. Lie algebras (addition
is also included). Illustrate with translations. D.(a) = €!*f* The idea of
exponentiation.

Generator = P,

Similarly Dy(b). P, P, form an algebra. D,, D, form a group. Commu-
tation relation for algebra. Commutative (Abelian) vs Non abelian groups.

Dy(a)Dy(b) = Dy(a +b) = Dy(b)Dy(a)

Dy (a)Dy(b) = Dy(b)Dx(a)

Equivalent to
[Py, P)] =0

Explain the action on coordinates, wave functions, etc.
Dy(a) :x — x+a and Dy(a)xD,;! = x + a (prove to second order)
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[Py, x] = —i

Here z is being treated as an operator.

[iPy,x] = Oyx = 1 is a particular representation of the operators in
z-space. Then D, (a) = ¢+

Acting on functions D, (a)y(z) = ¢¥(z + a).

Rotations:
2’ = xcosl + ysin
y = —xsind + ycosl
Can write as a matrix. R(f) = .... Also abelian - any one generator group
is abelian by defn.
6. Implications for qm: [G,H] = 0 G is the generator of a transfor-

mation. Degeneracy. R(orG) |1 >=[2 > |1 >,| 2 > have same energy.
R|2>=| 3> ... It will probably end somewhere if the group is compact.
This defines an irrep. Dimension of the irrep is known from group theory.
eg for rotation group. eg of spin 1/2. 2j + 1.

How does one define transf of wave fns.

W (1) = (r)
Why? Defines a scalar. If v’ = Rr Then
Yr) = p(R)
= ¢'(r) = Ry(r) = (R~ 'r)
eg Translations:
V(@) = R(a) = ¢(x — a) = e % ()

where R is the effect of a translation by +a on the state. This gives

R = Dy(—a) = ¢ % = ¢~tals

Note the signs.

Action on kets:
| >=R |1 >

S<r|Y >=<r|R|yY>=<Rr|¢ >
Thus
R |r>=Rr>
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Clearly R'R = RR' = I So R is unitary. It is obviously linear. So
on states it is represented by a unitary matrix and the generators by a
Hermitian matrix.

Action on operators A’ = RAR'.

7. Let us use this to find R for rotations: eg

W (r) = Ry(r) = (R™'r) = ¢(a+yde, y—ade) = [1—d(z0y—yd,)|¥ (z,y)

Let .
7

Oy — YOy = =L,
X0y —y -

Thus .
)

R=1-dop-L,
¢h

This can be defined as the action of (infinitesimal) rotation about z on states.
For finite rotaions R,(¢) = e Physically: Rotates your coordinate
system by +¢. Or physical system by —¢.

So if Hamiltonian is rotationally invariant about Z- axis [L,, H] = 0.
What is L,? It is angular momentum. Check : Classically L = r X P . So
L,=xP,—yP, = —ih(x0y — y0Oy)

Similarly

)
ﬁLx = y(?z — 28y

%Ly = 20, — 20,

Commutation relations
[Li, Lj] = iheF Ly,

8. Implications for matrix elements. eg for integration : even and odd
fns. The analog of this for more complicated groups. eg [e™df Using
invariance of measure df under § — 6 + a show that integral must be
zero. So only singlets can be integrated to get non zero answer.

2 2

avf(0)= [ a0's(#)

0

Choose ¢/ = 6 + a. Consider I, = f02 ™ dfe™. By change of variables
In = [J7d0'e™ = [27 dhe™0+e) = ¢mef, We have used df = df'. =
I,[1 — €™ = 0. So either n =0 or I,, = 0.
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Get result that the integral is zero unless f is a singlet.
Similarly for rotation gr.

/dgmfa(x,y,z) = /d?’x'fa(:v’..) = /dgxfa(R(G,gb)x..) = /d?’zR;blfb(x..)

= (6w~ B (0.0)) [ Pafi(w.y.2) =0

eg of functions that transform are e®cos m#.
Cannot be zero for all 6, ¢ unless i) R is the identity or ii) the integral is

zero.QED.
9. Using above result one can make statements about matrix elements

[ @0, ) x)

. Multiplying two irreps. the general answer is complicated - but known. Q
nos add. again eg of Y}, and ™.
10. Before we turn to rotation group what are the other symmetries?

Lorentz group

pt)
i)

v(z
v(t

Yy =y

/

xr =
/

t

/
z =z

L__). In units where c=1. SO(3)- rotations. SO(3,1) Lorentz group.

(VZM

Poincare group includes translations.
11. Internal symmetries: Best known example : electric charge! Phase of

the wave function can be changed. Overall phase is not important. Actually
this corresponds to particle number.

12. Local vs. global symmetries. “gauge” symmetries.
4.2 Rotation Group and Angular Momentum

1. Commutation relns:
(i, Jj] = i€iji

[J2, Ji] =0
Jp = J, +il,
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J_ = Jp—ild,
[, Je] = s
([J4, J-] = 2J.
. CSCO

. How nonlinearity fixes normalization. Thus o; do not satisfy the com-
mutation relns: % do. Unlike Abelian case.

. Ji are raising lowering operators.

Jy | m >=const |m+1>.

. Show that |j, m > and |j, m£+1 > are orthogonal using J, J; commu-
tation. Thus the states generated by rotations span a vector space of
some dimensionality that can be worked out. This is the represen-
taion. Explain the concept of a representation.

Fix const by using | J_ | j,m >]*=<j,m | JyJ_ | j,m >
=j(G+1) —m*+m=(j+m)j—m+1)
Eigenvalue of J? being j(j + 1) is a convention. j is a real number.

|J+ |jam>’2:< jam | J*']Jr |]am>

=j+1)—m*—m=(j—m)(j+m+1)

So
Jeljom >=/§(G +1) — m(m + 1)|j,m +1 >
. Show
i) —j<m <y

i) J_ | j,—j >=0but J_|j,—j + e > 0.
J+ 4,7 >=0Dbut Ji|j,m —e>#0.

iii) The value of m closest to —j, if it is a little larger than —j (can
always be made to lie between —j, —j + 1) we get a contradiction.
Because on the one hand J_ acting on that has to give zero, because
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m — 1 < —j. On the other hand the norm of J_|j, m > is not zero if
m > —j. Only possibility is that the m must be precisely = —j.

Thus the difference between —j and m must be an integer. Similarly
between j and m. Thus we have :m —p = —j and m + ¢ = j.

Therefore j = (¢ + p)/2.= j is integer or half integer

Matrix elements :

<jm|J.|j,m >=8;y6m,m'm

< j,m | Ji | j/’m/ >= 5j7j’6’m,m’:|:l\/j(j —+ ]_) — m(m + ].)
As an example of the group theoretic selection rule.

Examples of representations: j=0,1/2,1. What they act on.

Orbital Angular Momentum and Y},

Lx = ?(yaz - Zay)

etc. Physical idea of orbital vs spin.

Write this in terms of 0, g, ¢, Oy

Change of variables:z,y, z — 1,0, ¢. Volume element d3z = r2drdQ) =
r2drde¢d(cost)

Yim =< 0,90 | L,m >
This is the definition. Like

<z|k>=¢he

3. Just as e’** is a soln of d,1)(x) = ki(x) we need eqns for Yi,,.

LyY;=0
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4. Need L; expressions in spherical coordinates.

o oS}
L =
+ = i(singdy + tan@ad))
. sing
L, = i(—cospdg + ry—; 0p)

L, = —’ia¢
Ly = €%(0p + icotfd)
L_ = e (—0p +icotdy)

L

2 (a2
L7 = (0 + sin208¢)

Oy +

tand

z =rcost, p=rsinf, x = pcosp,y = psing
Consider functions that don’t depend on 7.
f(x,y, z) = f(rsinfcose, rsinfsing, rcosd) = g(0, @)
of dg 0g00 0gd¢

or  O0r 000z %%

tan 6 =
z
2xdx + 2yd
sec? 0 df = —%dz + 2xar + 2ydv
z 2pz
0 1
gz = —Z%COSQG = —;sin 0
00 1
— = 00820£ = —cosbcos¢p
ox pz T
0 1
8— — cos20L = —cosfsing
dy pz T
d d
r_ cot ¢ = @ _ry 2y = —cosec® pdo
Y Y Y
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0¢ _ _sz’n2gz§ __sing

ox y  rsinf
87¢ B xsin’g _cos ¢
dy  y2  rsiné
@ 1cos&cosqb g _ sn ¢ @
dr r 90  rsin 0 ol

9%

= sinf cosf sing cosqb—g — sin d)—

You a0 96
dg 0g 90 n @%
dy 900y ' 9¢ oy
dg @7 dg cos ¢
oy 00r coshsing + 5. do rsin 6

azgg = sm@cosHsmqﬁcosqﬁa + 0032¢
Yy

o
99 89 99
oy 61‘ ¢
Similarly 9y 1 COS¢ 9
ay ;COSGS nqﬁ 89 rsinf 371)
dg  sint dg
dz %

. dg
3y Y= 9, nd) + cospcotld = 8¢

0
L,g= z% — l'% osqﬁ— — cotﬁsquTb

Thus we get a realization in terms of Hermitian differential operators
(multiplying by —i):

0
+icosgpcotl—, L, = zcos¢ +zsm¢>cot0

.0 0
L,=—1—, L, zsmd)ae 30 30

0¢’
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5. Using L, get Y, (0, ¢) = Fjn(0)ei™m?

and
L.Y; =0=[-0y+ cothl]Fj; =0

IF — ld(s‘an)F
sinf
F = ¢(sind)"

Yy = ce®sinlo
Get the rest by using lowering operators.

Example: ‘
Y11(0,¢) = ¢ esin 0

where ¢ is a normalization constant.
L_Yi1 = 78y + icot 00,)(ce'®sin 0)

= V2Yip = —2¢ cos 0
Ym = C\/§COS 0

L_Y10 = \/§Y1_1 = \/5 C €_i¢8in 0
=YY= ce “sinb
6. Orthogonality:
[ 49556, 6)¥in(0',6,) = b

Closure:

NE

Yim (0, )Yy, (0, ¢') = (cosd — cost)d(¢ — ¢')

N
Il
=)

The delta fns satisfy [ dQ6% =1
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7.

10.

Explicit expressions:

0.0 = [ Eoinse
T
Yio=1/ 430030
T

Cartesian representation x,y,z !
Similarly Y2,,(0, ¢) are essentially x;x; these five.
Check that they satisfy Riy(r) = (R ™r)

Observables transform as A’ = RAR'

[V,J;] =0 = V is a scalar

Vi, J;] = i€;jx Vi, = V is a vector.

J itself is therefore a vector.

Spin vs Orbital ang momentum. eg. If v itself happens to be a
vector, ¢/ (Rr) = Ri(r). Thus ¢'(r) = Ri(R~1r). The R outside
is implemented by d¢ x . Which is —id¢.S where S is ¢ times the
matrix that implements the cross product. eg

0
0 (16)
0

implements rotaion about z-axis. (—i.i = 1). The R~! inside is im-
plemented as already seen by —id¢.L. So total generator is S + L. S
is spin.

Addition of Angular Momentum - Clebsch Gordan coeff.

The product of two representations must be a representation - in the
sense that the generators will not take you out of that set. But it may
be reducible. Thus:

> c(§) | j,m(=mi+mg) >=| ji,m1 > @ | ja, ma >
j

The max value on RHS is m; = j; and mo = jo. So max on LHS is
Munaz = j1 + jo. This must be the max value of m of some j,,4, Thus
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Jmaz = J1 + j2. No other (smaller) value of j can give this m. Thus
we have

lj1 + j2, J1 + Jo >= |j1, 41 > ®|j2, jo >

Use Jy | j,m>=j(G+1)—m(m=x1)|jm+1> Get

| j1+J2, jitje—1>= /= L | j1—1>® | ja > +4/- 2 | ji > ® | ja—1>
J1+ 72 71+ J2

The orthogonal state is

L . jo ) ) 1 ) )
| jitje—1, jit+jo—1 >= /- J — | j1—=1>® | jo > =4/~ J — | ji >®|j2—1>
J1+ 72 J1+ 72

Example: spin 1/2

| 1,1 >=]+4+ >
1
|1,0>=\[2[|+—>+|—+>]
|1, -1>=]——>

The orthogonal combination:

1
|o,o>:\f2u+—>—\—+>]

The above was an example of calculation of Clebsch-Gordan coeffi-
cients.

. Clebsch-Gordan:

| LM >= " | ji,ma;j2,ma > < ji,ma;ja,ma | J, M >

miy,m2

Clebsch—Gordan

| j1— 72 IS J < g1+ o
Recursion reln for C-G:

Act with J_ on LHS and J;— + Jo— on RHS and apply< m/,m} | to
get

VI +1) = MM ~ 1) < mh,mby | J,M —1>
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12.

:\/jl(jl—l—l)—m’l(m/l—i-l)<m’1+1,ml2]J,M>

- [ia(a + 1) — m(mly + 1) < mi,my +1| J,M >

Another reln where +1 and -1 are interchanged. General procedure:

As in the example above we started with |j; + j2,71 + j2 > and got
|71 + 742,71 + j2 — 1 >. Then by orthogonality we got |j1 + jo — 1,71 +
ja—1>.

Continue: Use these relations to get |j1 + j2,j1 + 72 — 2 >, |j1 +Jj2 —
1,71 + jo — 2 >. Then by orthogonality get |j1 + j2 — 2,j1 + j2 — 2 >.
Keep going and work out all the C-G’s.

Wigner-Eckart:
i). Scalar operator A: Using [J2, A] = 0 = [J;, A] we can show that

<j/7m/’A’j7m>: 6jj’5mm’a(j)
From
<j/7m,|[‘]27A]|j7m> =0 = <j,am/|[‘]Z’A”jvm>

we see that j = j/ and m = m/.

To see that the matrix element doesn’t depend on m:
< jomlJAdiljm >= [+ 1) = m(m + )] < j,m +1|Aljm +1>

Also:

< j7m|J—AJ+‘j7m >=< jvm’AJ—J-F‘.jam >= [j<j+1)_m<m+1)] < ]7m‘A’]7m >

Thus the matrix elements do not depend on m. So any two scalars
matrix elements are proportional in the entire (j,m) subspace.

ii) For vectors V: Can show that:
<gm' |V |j.m>=a(j) <jom' [ J|j,m>

i.e. the prop const is ind of m:
Use [V, 4] = 0 and the fact that V; has m = 1. Thus

<gj,m+ 2|V+J+‘j)m >=<jg,m+ 2‘J+V+’.]7m >
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Insert complete set of states: Only |j,m + 1 > contribute. so
< J,mA2\Vilj,m+1 >< jym+1|J4|j,m >=< j,m+2|J|j,m+1 >< j,m+1|Vi|j,m >

Thus
<gm+2\Viljm+1>  <jm+1Vi|jm>

<jom2djmtl> <jm+l|iilim> +0)
Similarly with V_ we get C_.
Finally, using [V, J_] = 2V, we find on inserting a complete set of
states, < j,m|V;|j,m >= Cym. If we use [V_,J ] = =2V, we get

< 7,m|V;|j,m >= C_m. Thus C}y = C_.

Thus if P is proj operator into j-subspace:

PJVP =a(j)PJJP =a(j)j(j +1)P

= aj) = =

i +1)

in the given subspace.
Useful: iii) spinning electron in a magnetic field: H; = w;(L, + 2S,).
J=L+S
CSCO:J,, J?, L2, S?
Thus if we neglect mixing between different valus of j for small B-field.

<JL>42<SL>

<J,M,S,L|H|J,M,S L >=
) 5 My ’ 1‘7 5 My wy J(J—|—1)

J-

S(S+1)— L(L +1)

RV [§

)Mwl

“Lande’s g-factor” - splits the degeneracy.

iv) General Wigner-Eckart: matrix elements of Tg i are proportional
to clebsch-Gordan:

< jvm | TQ,K | jlvm/ >= a(j?j/) < j?m ’ Q7K;j/m, >

c-G
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Use CG to write

Tox |5 m' >=> Ny | JM><JM|Q,K;j,m >
J

TQ7K |j’,m' >:Z|J,M >< J,M|TQK |j’,m'>
J

These two equations are proportional in each J, j', Q sector. Because
rotaion of coordinate systems will change M, K, m’ in exactly the same
way in both equations. So the proportionality constant N; cannot
depend on M.

As a special case consider
Toqli'si' >=a(@Q+7,NQ +7,Q+ 75 >

Let

g [ Q
To.o-1lj'. 5 >= 017 ,a1!Q+] Q+j'—1> — Q—i— ,b1|Q+j -1,Q+5 -1 >

Take the matrix element:

. . g [ Q
<Q+]/3Q+],_1|TQQ—1|3,,], >= mal

LHS can be written as

1 1
———— < Q+5, Q+i'| T+ Too-1li". § >= ——— < Q+j". Q+J'|[J+, Tog-1]l5". i’ >
20Q +7) 2(Q +5')
© Q4 7.Q 4 Tooli i = | =@+ .7
Q+7 Q-+

=a(@+4,5)

Similarly for the rest, by recursion. The above calculation implements
the idea od rotating the coordinate system.

More general proof (a la Schiff): Want to show that Tkql|j,m >=
Yoyl M >>< J, M|Q,m >. Here< J, M|Q, m > are the C-G’s. The
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sum is over all allowed values of J. |J, M >> transforms like an angular
momentum state, but its normalization depends on 7. Want to show
that this normalization cannot depend on M. So invert the above:

|1 M >>= " Tkqljm >< Q,m|J, M >
Q7m

Act with J+.
RHS gives:

> \/K(K +1) = Q(Q + D)Tkq+1lj,m >< Q,m|J, M >
Qm

/3 + 1) —m(m+ 1)Tkqlj,m +1>< Q,m|J, M >

Let @ = Q + 1 in the first term and m’ = m -+ 1 in the second term.

= Y VEK +1) - QQ — DTkgljom >< Q' — 1,m|J, M >
Q'm

+ 30 i +1) = m(m = )Tkgljsm >< Qm' — 1]J,M >
Q.m/

Note that the range of @', m’ is the same as ), m because the extra
term vanishes anyway. Drop the primes.

If you use the recursion relation RHS becomes

VI +1) = MM +1) Y Tiegljm >< Qm|J, M +1 >
Qm

= \JT(J+1) = M(M + 1)|J,M +1>>

The last equality implies that the proprtionality between |J, M > and
J,M >> is the same for all M. In particular if we know one <
J',m/|Tkqlj,m > we know all the rest (i.e. other values of m,m’, Q
and same 7, j’, K) by using C-G relations. This is the Wigner Eckart
Theorem.
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44 P,T,C

Motivate by asking the question “ How does one communicate the concept
of left-handed to a Martian?” This is the idea of symmetry. Ans. W~
decay. It decays into left handed electrons!

Parity:
1.
Pr=—r
On the ket:
Plr>=|—r>.

i)As a matrix P has det =-1. Not a rotataion
ii)Mirror Reflection (z — —z) followed bey rotation about z-axis by 180
gives parity.
2.
W) = wi(r)

Allowed as parity is discrete.

Pp(r) = wi(=r)

However for integer spin can require that P2 =1 So w? = 1 and w = +1.
Thus for the operator r

3. PrP~l = —r  PpP~' = —p but PLP~! = L same for S and J.

In polar coordinates § — 7 —60 and ¢ — ¢+ 7. Y}, — (—1)1Yl,m- Check.

Current: j — —j and p— p.

So ¢(z) — ¢(—z), A — —A Thus photon has intrinsic parity -1. E —
—F B — B (Axial vectors)

4. If parity is conserved PHP~! = H. This implies PSP~! = S.

eg 70 — 2y. What is the intrinsic parity of 7° Does it have defn parity?
If yes : J=0 means the final state wave fn must be a scalar depending on
€1, €2, k.

- =

1-€2

or
(gl X gz)k

It is found that 7% has P=-1 - pseudoscalar.

In terms of helicities ¥ grpr *+ 111, are the two photon states with defn
parity.

5. Parity is violated.eg when a W decays (e~ , ) the electron coming out
is always left helicity.
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Charge Conjugation

Supoose the Martian doesn’t know what is +ve and -ve charge. Then
how would he distinguish between the W~ decaying into left handed electron
and W™ decaying into right handed positrons? He can’t!

lem —e™
CH = H(C and so CS = SC. Unitary.
2.
¢— =0
Ao —A

= photon has intrinsic C of -1. Does nothing to r,t.

examples: 3. 7 — 2+ 2 photons state has C =+1. So the pion has
C=+1. Which means m — 3 is not allowed!

4.Furry’s theorem: No. of external photons must be even. (—1)" =
(—=1)™ = n+ m is even.

5. Positronium: ete™. The electron has 7,9, C quantum nos and we
interchange electron and positron. Fermions , so overall sign has to be

negative.
(- (=) C = -1

So C' = (—=1)"*5. Thus

150 — 2’7
(spin =0, 1=0)
351 — 3
(spin 1, 1=0) but not 2~.
6.CP )
K = sd and K° = &d.
KO o KO

V2
has C=-1 and P=-1 so CP=1
K9 4 KO
V2

has C=1 and P=-1 so CP=-1
279 has P=1 (S-wave), C=1 So CP=1. 37 has P=-1 (S-wave) and C=1
so CP=-1. (It has to be S-wave because the K’s are J=0)
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The K-Kbar goes into 27 and is faster decay - hence Kg and the other one
is called Ky CP odd and longer lived. These are also the mass eigenstates.

But in fact occasionally Ky decays into 27: violates CP.

So in fact there may be a difference between W decay and W~ decay!
So the Martian will be able to distinguish between left and right after alll.

Unless he doesn’t know the difference between time going forwards and
backwards!

Time Reversal:

1. Ty(x,t) = cp(x, —t) Schroedinger eqn doesn’t have this symmetry!
Because it is first order. Assume T is unitary. If we take a state at t=0 and
propagate to t and then time reverse, or time reverse and then propgate to
-t, we should get the same answer.

Te By = e BTy
other way
eiEtTu
. Want anti linear: T'(ay(x,t)) = a*T(¢(x, —t))
This will solve the problem. So
T=UK

where U is unitary and K is antilinear - “complex conjugation” - i.e K¢ =
Pr.
<@l >=<¢|o>"'=<TY|T¢>

But in general U, K will depend on the representation.
2.
rI'=1Tr
pT'=-Tp
TL=-LT
TY}y = l;kn

(T does nothing to 6, ¢)

p—p
J— =
¢—¢
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Az, t) » —A(x, —t)
F—FE
B— —B

3. Spin is like L. Want to reverse. o, is imaginary so K does the job.
0z ,0, need to be reversed: e~ will do that. So

T = e—i’n’SyK

. This argument works for any spin. .S, can always be chosen imaginary.

For spin 1/2 T' = —io K.

T? = ¢=*2™5 which is 4+1 on integer spin and -1 on half integer.

4. Application Kramer’s degeneracy. Can electric field lift degeneracy?

Suppose there is no degeneracy due to T. Then Tu; = cux must be true
for ¢ a number. T?uy, =| ¢ |? ug. Now if we are talking of a half integer then
| ¢ |>= —1 is a contradiction. So there must be a degeneracy! Regardless
how complicated the electric field.

B breaks the symmetry.

TY}m = Yy, is possible only for m=0 or for states like Y7, +Y;_,,. Thus
m is not a good quantum no.

5 Harmonic Oscillator

5.1 Review

1. Importance of harmonic oscillator: Leading Aproximation.

2. Hamiltonian and Lagrandgian.

— P72 mw2X2

H =
2m+ 2

Rescaling variables.
Let X’ = /mX and P’ = % (X', P'] = ih.
1
H = (P? +w'X")

Rescale again: X = ﬁX’ and P = \/wP'.
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H= %(PQ + X2

Thus & = /wa’ = /mwz. Drop hats from now on.
Creation operator a' = (X — iP)/v/2h and [a,al] = i.

3. Eigenstates: | n > : a' | n >= y/n+1 | n+ 1 > Number operator
N =afa , H=hw(N +1/2).

4. Wave fns.

(z + %W =0=d(nvy) = —%d(xz)

322 777’“;.112

o)~ T m e
We have rescaled from hat variables to ordinary variables.

7mwx2
oo = (%)1/46 2~ X Hermite polynomials.

5.2 Path Integral Treatment
1. Doing Gauusian integrals:

z(ty)=z i rt ;
JRZE Dat)  eap(+f [ diL(x(t), 2 (1))
sum over paths
with L =T — V(x) where V is quadratic.
Let x(t) = z.(t) +y(t). Then X, satisfies bc. So y is 0 at both ends. So
we get
SRR Dty eap(+E [ dtL(x(t), @(t) = F(ta, ty)eh 5

z(t;)=z; . ,
sum over paths

where

.rt .
Fitat) = | Dyt il 05
y(ta)=y(ts)=0
and of course L is quadratic.
Time independent implies F'(t, — tp)
2. Do the calc for SHO. First S., then F. Done before.
3. Evaluate ¢g(z) and ¢1(z) by expanding kernel.

2 coswt = e (1 4 e~ 2wt

2i sinwt = e™(1 — e~21)
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5.3 1-dim crystal and field theory
1. Want to solve:

N
L=>Y1/2¢ — */2(gj41 — ¢;)°
=

2. Special case of coupled oscillators:

1. . )
L= 5[(61% +@3) + @+ @+ aqige)

If we define Q = % and ¢ = % , then

L= 5l@+(+a)Q + @+ (- a)g?].

Gives a decoupled system.
)+qlt H—q(t
Can get ¢q1(t) = QW)+ 1/+§q( ) and q2(t) = QW—a®) 2/;( ),
If « = —1, then we have diatomic molecule - centre of mass is free.
The crystal is a generalization of this.

Now general case:
3. Periodic bc gn4+1 = qo-

4. Eqgn of motion.

d2(]n 9
o2 =V (n+1 = qn) + (gn—1 — qn)

Solns. Use translation inv. to get the normal modes.
Gn = eiﬁn

are the form of normal modes with g = %

o B
ezﬁn wt _ eza(z avt)

vel is

Cc = av

w? = 1/2(43in2§)
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5. Show that normal modes are decoupled oscillators.
an = L > agern
=
VN %
L=1/2 Z[a‘ka,k — 41%5in* By [2aka_4]
k

Also need to divide by v/N to get finite limit.

Reality of ¢,(t) implies aj(t) = a_x(t) But a_yp = ay_j. So aj =
anN_—k- Define

by = 1/2(ak + ap) = 1/2(ak + an—k)

and
Cr = 1/2i(ak — aN,k)

The index on b,c clearly go only to N/2. In terms of b,c:

Mw\z

L=1/2Y [(bx)* - 4u25in2?kbi] + same forc

k=1

With time dep
gn(t) = akeiﬁkn—iwkt + aze—wknﬂ‘wkt

= by, cos(Brn — wit) — cx sin(frn — wyt)

What happened to waves in the opp direction: by changing g —
Br — 2w = Br_n we get waves moving the opposite way! So if we want
we can change all the indices on the ¢ to negative. Thus N — k = —k.
Whichever way you count there are N oscillators.

6. Continuum limit. “ Free Field Theory”. The velocity of light emerges.
qn(t) = q(z,t).

L= 1/2/0&1:[(22 —v%a(q)?

1/2 / de[0? — Q"]
where ¢ = Q/a
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In terms of oscillators

Z b2 — 41/23in2(%)bz

k
In cont. limit 4v2sin?... = (27;\1;”)2 = w}. Thus we have harmonic osc
with energy quanta =
5 h2rkv  h2wk
w = = C = pcC
N L 7P
phonons / photons ...
Coherent States
. Rescale
vmwX =2
P
JVmw b
. Classical eqns © = wp and p = —wzx. Can be written as

o = —iwo

Want same eqns qm.for < a >
ihd/dt < a >=<[a,H] >=w < a > (t)

. Find a state such that < a >= ag and also < H >= hw | ap |? =
classical.

Let
ala>=ala>

This will solve the problem.

“la a’
| >=¢"! |2/2Z%|¢n>

n
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4. Props: i) closure

1
—[d d{I = ><n|=1.
7T/ {Re a}d {Im a}|a >< o] Z\n n|

n

Note that the measure is dmg—ﬁ.

ii) not ortho. They are over complete:

7‘042 7|a/|2 *\1 nn
<ald >=e72 e 2 Z(a)(a)
n

v/

—la2 -2 .,

=e 2 ¢ 2 e*®

Thus | < ala’ > |2 = e~le=o'* £,

< H >,=hw|| a > +1/2]

<H?>.,=hw|a|*+2 | a|? +1/4]

AH = aqw
AH
Same for X,P
< X >,< P >= Re,Im(a)V2
<X?>-<X>*=1/2
Find

AXAP=1/2
Minimum uncertainty.
6. Unitary operator D(a) | 0 >=| a >
D =ea'=e"e ppt=1.
<z|la>=<z|D|0>

aa —ata = (a—a*)z/V2 —i(a+ a*)P/V2
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It follows that
Y(z,0) = ee<P>Tp(z— < X >)

o is the gnd statet wave fn. Width of gaussian is 1/4/2 for Z or |/ 51—

2mw
for x.

7. Time dependences of everything. Coherent states remain coherent.
| a(t) >= e 2 | a(0)e ™ >

Wave packet remains a wave packet. So at later times also we get
same wave fn except that < x > and < p > change with time as cos
wt , sin wt etc. and also we get an overall phase.

6 Perturbation Theory

6.1 Stationary Perturbation Theory

1.
H=Hy+V

Matrix elements of V are assumed to be smaller than EO — Eg Let V =AW
where )\ is a small number and matrix elements of W are not small.
2.
H(A) [$(A) >= E(X) [$(A) >

Let
E(X\) =€+ Xe1 + Mey + ...

[N >=[ 0> +X [ 1> A2 2> +...

We get
Hy|0>=¢|0>

(Ho—EO)‘1>+(W—€1)|0>:0
(Ho—ﬁo)‘2>+(W—61)|1>—62’0>=0
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Assume < ¢ | » >= 1 and phase convention < ¢ | 0 > is real.
=<0|0>4+A<0|1>isreal. So <0|1 > is real
Also < 0]|0>4+A<0|1>+ <1|0>=1. Plugging in lowest order
solution which is < 0 | 0 >= 1 and using reality get < 1|0 >= 0.
Solution:
Zeroeth order gives
|0 >=| ¢ >

1st order Applying < ¢, |
61:<¢n|W|¢n>

Applying < ¢, | gives

11>= Z <p | W | n >

>
E, - E, |

D;pF#N

2nd order Apply < ¢,| to second order equation:

o=

P,p#EN

<O [ W lp><gp | W |[¢n>
E.— B,

Note sign: decided by E, — E,. eigen value repulsion.

2. Degenerate Perturbation theory

Let | ¢!, >:i=1,.., g, be states degenerate in energy.

first order eqn is modified: get a matrix eqn insted of a single eqn:

Apply< gZ)f1 | to get
<H W |0>=¢ < ¢ |0>

Insert complete set of states and use orthogonality to restrict sum to sub-
space.

D<o WIgh><gl[0>=ea <g¢p,|0>

J

gn X gn matrix

This may or may not split degeneracy. But W has been diagonalized so
need not fear infinite denominators.

Degeneracy is important because it is qualitative and not quantitative.
If due to symmetry, higher orders will not resolve it.
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6.2 Applications

1.Anharmonic oscillator
Hy = 1/2hw(P* 4+ X?)

V = \hwX?

Non zero matrix elements of pert:

<bua |V 100 >= S [t Dn+ 20 +3)

hw
<z |V | >= Q—ﬁ\/n(n —1)(n—2)

3h
< it | V| b >= qux/(nﬂ)?’

3hw
< 1 | V| p >= —=Vn3
b1 |V |9 Wokdk

61:<¢n’V‘¢n>:O
2nd order

| < nsslVign > P Tw(n+1)(n+2)(n+3)
—3hw 3 8

| < dnslVign > > _ hwn(n—1)(n—2)

+3hw 3 8

2 3
| < bni1lVign > ° o, (n+1)
—hw 8

i%i(n +1)(n+2)(n+3)+ %n(n —1)(n —2) + w9/8n* — hw9/8(n + 1)*

= —15/4(n + 1/2)*hw — 15/2nhw

X2,
Note E,—FE,,—1 = hw—15/2nAhw. The energy difference is not constant.
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Eigenstate is of the form

| % >:| ¢n > +O()‘)(| ¢n+3 >7| ¢n73 >7| ¢n+1 >7‘ ¢n71 >)

Y

2. Applications : Oscillating dipole normally radiates only Bohr frequen-
cies w. But the anharmonic X connects n with n+2 and also n-2.

This is because < ¥o|X |9 >~ X < ¢1]|X|pg > O(X) # 0. So we get
frequencies corresponding to Fs — Ey =~ 2w. So we get 2w also.

Even < ¢, | X | ¥, ># 0, =~ O(=An??). This implies at higher n
the dipole stretches. When A is negative it is easier to move to the right
(4+ve x) than to the left. Vice versa when A is positive. So at higher energy
levels expect that average x will change in the direction which is easier. This
explains the sign in the equation and also explains why materials expand on
heating.

Van der Waal’s force

1. Potential due to a charge = ¢(r) = 4. Potential due to a dipole
q q  qr q'pt pF_pr
P(r) == — =2 T T2 T 27T 3
r o r4+dér r r r r

Electric field due to dipole:

i _pt L0 1
E'= -0;¢(r) = *(73 Jr]””gi(fg))
pz . — 3yt
B+ 5T
i 0; 3ripd
E' = _p][ ; - ro ]
Energy —El.ﬁg: '
i ji0i  3r'rd
W = P1 %[7; - 705 ]

2. We are considering force between two neutral atoms, that have no
dipole moments. Say, hydrogen atoms in their ground states. The
state is [thg >= |1 > ®|2 > oryo(r1)vo(re). We are given that <
1|p1|1 >=< 2|pa|2 >= 0. Therefore < ¥|W|p >= 0.

No first order correction.
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3. Second order: )
D onz0 < Un|[Wltho > |

Ey— FE,
Note the sign: it is negative (Fy < E,,) : = attractive.
Since W ~ r%, the van der Waal correction is = %6 AFE = —3%. Let

us estimate c.

4. Ey = E§ + E3. For each atom, |E,| = |£§| << |Ep|. So we drop E,.
Then

| <n|W|0 > |?
A= TR
n
< ow?o >
e

Choose the direction between the atoms to be 2. So we get

W = p1apas + P1yP2y — 2p12p2-

W? = e4(x1:c2 + y1y2 — 2z122)2

We need < 0|TW?2]0 > so all cross terms can be dropped.
< W >=< 2121 >< 2229 > + < y1y1 >< Yoyo > +4 < 2127 >< 2929 >

By symmetry they are all equal to < % >< % > . For the hydrogen
atom < % >=a?. Also Ey = 2% - the factor of 2 because there are
0

two atoms. Thus we get ¢ = 6¢%ag.

5. Physical mechanism: QMec fluctuation produces a dipole moment in
one atom, which induces a dipole in the second atom and they attract.
These two dipoles are correlated because one is induced by the other.
The uncorrelated fluctuations average out.

Because one dipole induces the other there is a time lag. So when the
time taken for influence is of the order of Bohr frequency, this approx
breaks down. Thus r < £ = A. Also R should be large enough that
the independent wave function approx holds.So r >> ag.
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6.3 Time dependent pert theory

We ask for transition prob from some initial state i to some final state f
usually during the perturbation or after. Usually i and f are eigenstates of
unperturbed H. Special case 1) Adiabatic 2) Sudden.

Otherwise do pert in A as before.

ihd/dt | Y(t) >= (Ho+ AV | ¢(t) >
$(0) >=| ¢i >

Reqd:Py;(t) =|< ¢y | ¥(t) >2

[W(t) >= ) c(t)lon >

k

¢k (0) = 0g; Project < ¢y, | to get

iy =< ¢n | Ho+ AW [ Y cr | ¢ >
k

Insert complete set of states:

=S (Endum + AWom)em (1)

Redefine ¢, (t) = by, (t)e~*Fnt to get
ihd/dtbn(t) = XD Wime " by,

Now expand
by, = b0 + Moy, + .

Soln

bg = const = Op;

1t A
bi(t) = — / dtW,,;e"nit qt
n( ) Zh 0 €

t ‘
Ppi(t) = 1/h% | / dtWe™nitdt |2
0

special case i) harmonic perturbation W (t) = Wsinwt or Wecoswt. If
w = 0 use cos to get:
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| Wi |?
h2

stnwy;t/2

[ 2

If w # 0 use 2sin wt and get same formula with wy; — wp; — w.
Coupling to continuum:

Use (sinwt/2/w/2)* = 2nthé(E; — E;).

Derivation:

/ it = 216 (x)

T 2i sin T
= limr_so / ety = ==~
T 1T
sin T
= Limp_yoo ——— = mo(x)
x

. sin T sin T
LzmT_mo(T)2 = md(x)

For the case w =0,
2
dPy; Junittime/df = % < B,E|W | ¢ > p(8,E = Ey = Ej)

Here [ represents any other continuous parameter (eg. angle). p(f, F)
is the no. of states per unit AFE, per unit AS. (“number density of states”).
This is Fermi Golden Rule

2. Prove Born scattering formula: Take initial state to be | p; > and
final state to be | p; >. Note: < z|p >= P This is different from that in
some books where < x|p >= e,

Calculate p(E).

(2rh) 3

/ (2fh / AdEp(E)

(In the other normalization there would be no factors of 27.)

/ 1222%;? — / BofyadEd = / ﬁdedQ

Thus p(E) = "(L%%glf .
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Divide final probability /unit time by flux (=£)to get prob /unit flux/unit

time.

p
m

m2 i(pr—pi).r
i | [ e ()

[If we use the other normalization we also get same. But p(F) = mv2mE.
The factors of 27 are in the matrix element.]

This is called the “differential scattering cross section”.

The total scattering cross section will now involve integration over df).

6.4

1.

Scattering

dn = o(0,¢) F; dQ

where Fj is the incident flux and o (0, ¢) is the differential scattering
cross ection. It is no. of scattered particles per unit incident particle
per unit solid angle.

/ dQo(0,¢) =0
is total scattering cross section.

Calculation of o.

Look for stationary states:

2

A+ V()] = Bé

2m
Let 2mV/h? = U and let h%k? = 2mE, then
[A + k6 (F) = U (r)¢(7)
Now the soln we want has the asymptotic form
o(r) = ™ + f(0,0)e’™ /r
Because it has the form of incident wave plus outgoing scattered wave.

and e*" /r is also a soln to the homogeneous eqn as long as r > 0. To
see that:
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A(1/r) = 478(F)

- from electrostatics. Note that this is the three-dimensional delta
+ikr

function. Can check that —%_— = G+(r) is the Green fn [Do they
know what it is?] for Scattering eqn above. [Use A = 59—:2 + 20

The incident flux is % and scattered flux is %%.This is flux per
unit area. Multiply by r2d€) to get : no. of particles per unit time
dn = |f|2dQ2™:. Thus from the definition of o, o(6,¢) = |f|>. So we

need f.

. There will be interference in forward direction between scattered and
incident flux. This follows from unitarity - conservation of particles.
Thus we can expect total scattering probability (o< |f|?) to be related
to this interference term (o< f). This is the content of the optical
theorem -which is done later.

. Actually the interference should not be only in the forward direction,
because we have an infinite plane wave front. Resolution: The infinite
front is an idealization. Actually it is a narrow beam. So we really
should be taking a superposition of several EZ with small amounts of
kg, ky. Rotated k; has the effect of changing 0, ¢ in f. Thus it is as if
one has to take f and average over a small range of 6, ¢. However if
f is a smooth function (which it is) this makes very little difference.
So we can pretend there is only one ]_5, = k.2 and inspite of having an
infinite wave front, pretend there is a small beam, and therefore ignore
interference in all but the forward direction. It is like having the cake
and eating it too! The idealization should be such that it simplifies
the calculation but doesn’t change the answer.

. So we get soln
6(r) = dulr) + [ dr'Ga(r = U )o0)

where ¢g solves the hom eqn.

Iterate by plugging in for ¢ back into the eqn:
6(r) = do(r)+ [ L= W oo+ [ ' [ 17 Galr—1 UG (=T ()"
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Hopefully each term is smaller than the other. Keep leading term and
get “Born approx” with ¢y = e'**

Using (for large r) | #— 7 |~ r — .77 where @ is the unit vector in the
direction of 7 which is also the direction of scattered particle. Thus
uk = ky

we get

—

¢<T) ~ etkz _ Zkr/47r7’/d37“/€_lkur U( ) k.7

for large r.
So

=

f(97¢) - _1/47T/d37’/67i]€f7?,U(7J)ei ;T

2 - T
— _hQZI‘Tr /dg’l“,e_Zkfr V(r/)ezki.r

And so we get o also. This is Born (differential) scattering cross sec-
tion.

. Path integral approach

z(ty)=x i rt ;
K(b,a) = K(zp,tyimit) = [0f 50 Da(t)  exp(+i [ dtL(x(t),x(t)

sum over paths

L=T-V. So expand in powers of V:

K(b,a) :/x(tf)xf D:c( exp(+ / dtT(x 1—7/ dt'V(z(t')+
alis)=e: sum over paths i
ty
*Eﬁ dt'V(x / 5 dt"V(z(t")) + ...]

o(b, a) h//Ko b, )V (2(te)) Kolc, a)dtoda(t.) +

Only diff with other series: This has t - the other is in energy variable.
So do FT. Thus (T' =ty — t;)

oo .
/ dte™ K (x,t;2',0) = —iG(x — 2/, w)
—0oQ
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where G satisfies (—ES—Q —w)G(x — 2/, E) =d(x — ).

2m Ox2

(Note that K is zero if ty < t;). To see this

/ dte™ K (z,t;2',0) :Z¢n($)¢;($/)/ dpe—iEnt+iwt
0 - 0

_x— Un(@)Yr(2)
N Zn: (B, —w)

Thus acting with Schroedinger equation cancels F,, — w and we get
—i6(x — o).

If we let hk = p and hw = E in G4 defined earlier we get %
Also multiply by ¢(z,0) to get in terms of wave fns.

_Z-G:/OO d eiwt/ d’p ot P
0 (2m)?

00 72 2 1 ) 1
= —/ pdp/ dgf)/ e ————
o 81 Jo 1 (2 — ﬁ)

2m 2m

(Note the sign from : d cosd = —d sin 0d6)

2 /°° J e’
=— ———— —cc
sodir Jo 7 pi(ﬁ — B2y

2m 2m

We have set w = % Extend range —oo to 400 by combining cc. and
do contour int. The ie prescription is w+ie. So (p—k —i€)(p+k+ie).
Pick p = +k since r > 0, to get 2metitr 12mGy. Thus G = —2mG.

lrr

This is a series for K. Act on initial state i;(2/,t):
Uila,t) = [ Kl (e,

Take t' — —oo so that v; is a plane wave state =t)o(z) = e**. It
has definite energy Ep = h;—nkf The integral over t. from —oo, +00

guarantees energy conservation in all interacting terms.
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iS0(r) | whose eqn is

7. Eikonal approx Instead of e’** for ¢(r) use e
(VSp)? =2m(E — V(1))

If % is much larger than other variations then,

95 . V(2,y.2)
0z v

Approx soln is
So = hkz — 1/1)61/ V(z,y,2")ds

Thus momentum depends on V - better approx.

extra factor

Clearly when velocity is very small or [ Vdz' is large (not V) this term
cannot be neglected. Better than Born. Born requires large vel and
weak potentials.

8. Yukawa

—Qar

/ei(ki—kf).’r‘%e . d3,r

2m

Straightforward integration (and multiplication by oy ) gives:

2m
T L—
! "R2(k2 + a2)

where k = |k; — Ef] = 2k;sin6/2
Also set @ = 0 to get Rutherford scatterin:

ZiZ3et
h*16 E2sint6 /2

9. Partial Wave method

This is for central potentials, where L is conserved.
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i) Expand e?** in partial waves ¢),(r, 6, ¢) which are solns of free eqn.
Bhim = RietnYim (1) (6, 9)
where
h? 2d I(I+1)
— (=d?/dr* + = — =FE
Qm( /dr® + - dr + 2 YRy () k,lel(T)
142
T dr2

etikr

Set rRy(r) = ug(r). For large r: u =

gbklm(ra 07 ¢) Y, 2k2/7r]l(k‘lr)yvlm(07 ¢)
The boundary condition used is that «(0) = 0.

Ji(p) ~ p'/(21 + 1! for small p. So the fn is negligible for p < 1.
= kr > [ or if the range of the potential is small only very small I’s
will contribute. r = [/k is the analog of the classical impact parameter.

. For general r

Without any potential we have incoming plane waves, which can be
decomposed as:

oikz — Zeilw/2mjl(k7“)5/zo(9)

=0

kz

Note: m=0 because e*** = ¢#7%5% has no ¢ dependence.

For large r

Gi(kr) & sin (kr — lw/2) /kr = (e e™4/2 — ¢=thril™/2) 19k

ii) Now turn on the potential. The only effect can be to change the
relative phase of the ingoing and outgoing waves. Magnitudes cannot
change because ingoing flux has to equal outgoing flux. Also since
Hamiltonian does not mix different values of [, the magnitude of each
- component must not change - it is unitary evolution.

K2 I(l+1
[%(—dz/dr2 41 = )) + V(r)]up(r) = Erup(r)
For large r:
Aetkr L Be—ikr
u = % ~ Csin (kr — 3;)
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(Since |A| = |B|) Thus when V = 0, 8, = Z. We can thus assume
that phase changes by an amount ¢; (6 — §+ J), when V' # 0. Total
change is 24;. Thus we try

—ikr Y ikr , =4 eml)

—231VMT%+1Y%w%e —

. [Note: Whend = 0 it reduces to e**2.] So e?® — 1 = 2isin §;e*" is the
effect of scattering and will produce the f term. If || = [e*?] < 1
then we have lost some particles. This is inelastic scattering.

The rest of it will give e?**. So

Fi(6,0) = 1 3 sindiel®\4x(2i -+ 1)Yio(6)
!

47 )
Oclastic — /dQ | f |2: p Z Sln2(5l(2l + 1)
l

Note also that:

Zszn & €\ /ar(21 4+ 1)Y;(0)

Imf(0) = %Zmﬁ S1y/4m (20 + 1)Y;(0)
l

1
= > sin® §(20 + 1)
l

(Using Y;(0) = /ZE1).

4

?I’I?’Lf( ) = O¢l-

This is the Optical theorem.

Do hard sphere. s-wave gives 4mwsin®(kro)/k? ~ 4mrd
fr = 1/ksin Soe'do

o(0) = 1/k*sin>8
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Eqn for large r is
d? 9
(W + k )u =0
The soln is

~ sin k(r —ro)

(Using b.c. that u(rg) =0). By =0 for [ — 0.

= g = kro
Q.E.D.
10. Absorption.
Im| =| e¥¥ |< 1 = absorption. Calculate probability current into

target (outgoing - ingoing). [72dQ[Rev(r)Lo,v*(r)]. o (1— | n |?
). ois | m —1]%. Add the two to get Re(m — 1). But Im f o
Im(1/ik (g — 1)) o this also. Get

4
?Imf(O) = Ototal

Optical theorem.

Landau-Lifshitz define S-matrix and optical theorem in terms of
that.

Simplified analysis:
Define S matrix as evolution operator for scattering problem. Thus

< f|S]i > is amplitude that at ¢t = —oco a particle with momentum k;
scatters into the state k; at t = +oo.

Let S = I +4T. Then if no potential 7" = 0. Thus scattering proba-
bility (due to potential) is < f|T|i >. STS =1 = (T —T7) = T'T.
Thus < i|i(T — TH|i >=< 4|TT|i >= ¥,,| < n|T|i > |*>. LHS is
Im part of forward scattering amplitude. RHS is total probability of
scattering (into any state).

7 Identical Particles

1. In classical mechanics there is never any ambiguity about which par-
ticle is which because one can always track the trajectory. In QM
when wavefunctions overlap, this is not possible. Thus |+, — > and
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|—, 4+ > are both acceptable descriptions for a state with one up and
one down spin. So are a|+,— > +3| — + >. Need a prescription for
a, 5. Symmetrization Postulate resolves this.

2. Permutations: Let |1,u;;2,u; > be basis states of two particles. |u; >
is a basis for one particle states. Then define

Pglll,ui;2,uj >= ’2,114;1,@7 >

(Pnq means replace 1 by n and 2 by ¢q.) Note that |1,u;;2,u; >=
12, u5; 1, u; >.

3. Action on wave function:

[ >= Z/dgT/dgr/¢€7f’(T» M1, 62,07 € > .

Pyl >= Z/dgr/d?’r'¢€75/(r, Py |1, 7, 62,7 € > .

= Z/d‘?’r/d?’r’w“/(r, )2, r 61,7 € > .
€€’
= Z/d3r/d3r'¢575/(r,r')|1,r',e’;Q,r,e >

= Z/dgr/dgr'wege(r',rﬂl,r, 2,7, e > .
€€’

We have exchanged the primed and unprimed variables - being dummy
variables. Thus we can define the action of Py; on the wave function:

P21¢e,e’(ra T/) = ¢e’,e(r/7 T)'
4. Obviously P% = I. Also PQT1 = Py Thus PP = I thus it is unitary.
5. If Py|tp >= |¢p > then it is a symmetric state. If Pyi|tp >= —[¢p >
then it is antisymmetric.

I _ 1+P _1-P
6. Define projection operators S = =52t and A = 521,

§2 =5, A2 = A, SA =0, A+S = 1. Also PySly >= [y >
P21A’1/} >= —A|w >
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7.

10.

Action of P on observables. PQlO(l)Ple = 0(2). Check by acting
on a state. Assume that |u; > has ev o; for observable O. Similarly
Py O(1,2)Pj, = 0(2,1).

Observables can be symmetric or not. Hamiltonian for identical par-
ticles should be symmetric.

For three particles: Pppg|l, wi; 2, uj; 3, up >= |n, us; p, uj; q, up >.
There are 3! such permutations. For N-particles :N! permutations.
They form a group: i) Identity=Pj93 ii)product of two is a perm iii)

Inverse also exists. eg P?)_lé = P»s31.

Any permutation can be expressed as a product of transpositions
whcih are perms that interchange two only. This decomposition is not
unique. However the parity - which is whether it involves even no.
or odd number of transpositions - is. Define ¢, - parity of perm P, =
+1 if even and = -1 if odd.

Then S = % YoPoand A= %Za €a Py
are the projection operators for N-particle wave functions..

PoyA = €qyA. (Proof: Let P, P, = Pg. Then €y eq = €g. Thus

Pog Y €aPoa = €aPayPa
« «

= Z €an€8P8 = €ay Z egPs
o B

Summation over o has ben changed to f3.)

For bosons we get a symmetric state classified by occupation numbers
Ny, No...Ni with Ny + Ny +..Np = N.

SI1,u1;2, ut, Ni,ur; Ni+ 1, ug; Nv + 2, ug; ...; Ny + No, ug; ... N uy >

. i . .
The number of permutations are now e Nt The normalization

Nol..Ni!"
constant will be inverse of the square root of this.

For fermions we get the Slater determinant. ﬁdet\i, uj >. Note that
if u; = u; the determinant vanishes - Pauli exclusion.
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11. Amplitude for transition/scattering:

Let initial states be |¢ > and |y >. Then the symmetrized state
is %(]1,(1);2,)( > £(2,¢;1,x >). Let final state be |u; > and |u; >.
Then the symmetrized state is %(H,ui; 2,u; > £[2,u;;1,u; >). Thus
amplitude is

A =< uilg >< ujlx > £ < ujl¢ >< wi|x >. The first term is the
direct term and the second is the exchange term.

Note that when u; = u; for fermions the amplitude vanishes. For
bosons the final state is then |1, u;;2,u; >. A = V2 < ui|d >< uglx >.
Prob = |A%.

Classically we would just add the probabilities for the two. So we
would have | < ;¢ >< ujlx > |* +| < uj|¢ >< u;|x > |?. If they are
identical then | < u;|¢ >< u;|x > |? - which is less than the quantum
one by a factor of 2.

12. When can the effect of symmetrization be neglected: If for some reason
the exchange term is very small. eg if the two one particle states
are spatially very far apart. eg an electron on earth need not be
symmetrized with the electron on the moon.

8 Applications of QM

8.1 Hydrogen atom

1.Pauli’s solution.
H = P%/2m —¢/r

has L and also M = (P x L — L x P)/2m — ¢/r Runge Lenz vector as
conserved quantities. Commutation relns

[M,H]=[L,H]=0 L.M=M.L=0

2H
M? = = (L? + h?) +
m

[Mi7 LJ] = ifijkMk

obviously - being a vector.
2
[Mi, Mj] = _EHEijkLk
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Working on energy eigenfns can redefine M’ = (—m/2E)1/2M
(M, Mj] = iejjp. Ly,

and it is clear that M,L form SO(4) algebra. Split into SU(2)XSU(2): I =
L+ M and K=L-M".
In SO(4) notation

[Lij, Li) = i0ii Lj; + 0y L, — 105 L) — 1051 Lis

where Ljy = M! Also I? = K2 (from L.M=0). And I? + K? = 2k(k + 1)
Also

M"? + 7 = 1% — *m/2E
So

—02m —e4m

k(k+1)+1  n?
2. Fine structure and Hyperfine structure (Students work it out
on the board)

hE =

8.2 Interaction of an atom with plane waves

1. To calculate transition rate we use Golden rule: % = 2% \Weil2p(Ey, 8)(with
energy conservation ).

2. W = w. e is charge of electron. We will use semiclassical

treatment whereby A = aée®*X —iwt

3. Normalization : Energy in em fld = %GoEQ + %. E = —%—‘? ~ wA
Thus 1/2eqw?a® x 2(B— fld) x 1/2(time average) is the energy density.
This must be equal to hw (1 photon per unit volume) Thus a? = 620%
We have assumed that A(t) = acos wt. The normalization of one
photon per unit volume is arbitrary. That fixes the overall scale only.
If there are two, we get twice the absorbtion or induced emission rate.
For N photons we get a factor of N. When we include spontaneous

emission, N — N + 1.

Thus a = /2%, If we want the coefficient of ¢! rather than cos then

eow
we get a factor of 1/2: a = ’/2e7;w‘
aé.p

4. Dipole Approximation: Let e*X ~ 1. Thus W = .

m
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Wfl = < < f’ml > .eq = €waXf,Lé
m

6. phase space :
d3p
(27h)3

(5(Ef - Ez - w).

Also pc = E.

E2dQ)
~ (27he)3
w2d§)
(2mc)3h

We have used up the energy delta fn to do dE.

7. Put everything together:

2
2.2 2/ 42 W 2m
Xg.el2dQ——ae —
a’e’w | X i-el (2mc)3h h
e W 21 -
P=—— _“"|X:.6%d0
2¢g (2m¢)3 K Xi-él

8. Do the angular integral: Choose z axis along )Zfi. Then 6 is angle

made by k the direction of the photon. é is perpendicular to k. Thus
X.& = |X|sin . Thus we have to do [, dcos fsin? 0 [ dp = 213,

B e? 4w3| 2
 dweghce 3 2 fi

where
Xpi =< fIX|i >= [ d®z% ()@ ().
If we have n photons then the answer is nP. Actually if we include

spontaneous emission the answer is (n + 1)P. We can also express n
in terms of Intensity of the plane wave.
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8.3 Charge particle in a magnetic field

1. Classical

mTﬁ(—f) = q¥ x B. Thus w = %. Direction of motion: Current

induced opposes build up of B.

2. Quantum Mechanically

1
—(p—eA)?¥ = EVU
2m(p ed)

1
2m
II, = (—iha% —eA,) etc.

= —[II} + ]V = BV

0A, O0A
I, 11, = ihe[—% — —=] = iheB,
Define II, = %, 1, = % Then [II,, 1] = ih and
B - A X
H= ;—m(ni +T12) = —w(P? + X?)
1

Thus we have the energy levels and in principle a wave fn. What about
degeneracy? Classically the centre of the orbit can be anywhere.

3. Simple solution: Choose gauge that separates z,y: A, = —By
H = (—idy + eBy)?* + (—id,)*
= (02 + 85) + 2 B%y? — 2ieyBO,

Choose z—dependence e**+¥X where k, = 22—:
Then
H = -0} + h’k> + €’ B*)® + 2eBhk,y
Bhk
_ a2 2 n2 2
——8y+e B (y—i-ﬁ)

Thus the y dependence is that of a harmonic oscillator with center

%. Note when % = L, we cannot shift any further. Thus we get

2mNmazlt = LyLyBe Thus nya. = % = ;%
e

Thus we have a degeneracy of Ny = %.
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4. More elegant methoods:

Choose circular gauge: A, = —% and A, = %. Define K, = —ih0,+
eA; and K, = —iho, + eA,

Check that the following are true:

(K, ;] = [Kl‘vﬂy] = [Kyvﬂy] = [Kyvﬂx] =0
[Kx,Ky] = —jeBh

Thus
[H, K| =[H,Ky] =0

. K, K, are symmetry generators. They are like translation operators
: call them “magnetic translation operators”.
If we define T, = e No T, = e ¥ then

i?LoLy
N2

T, T, = T,Tye "

(K, Ky]

127

=T, Tpe™

This means T, T, can be written as Ny x Ny matrices. We can diag-
onalize one of them.
Thus let T, U, 0 = e*¥,, 5 and HY,, o = (n + 3)hwiy, o.

i(%.i_)\o)

Then it is easy to see that Tym\lfn,o =V, ,, satisfies T, ¥, ,, = ¢ Yym.

Thus clearly m = 0,1, ..., Ng.

5. Even more elegant (!): Choose complex notation:

Define _ .
(IT; + ¢I1,) _p . (IT, — I1,) _p

2 2
The following can be checked:

eBz
P =(0; T)
_ eBZz
P=(0.- )



8.4

eBz

K =(0:~—)
_ Bz
K = (82 + u)
4
where K, K are defined analogously. and z = x + iy.

1L 1L o
iLp _ AL
Define T =e™e™ T =¢e™¢

Uy, = e~ 2" satisfies HU, 0= (n+ 3)hw¥,.

Elegant way to check this: Find action of P, P:

_ eB
PV, o= _7q1n+1,0

PV, o=V, 19
and H = —PPLPP
m
Also KW, 0 =0. Thus TW, o = U, 0.
Now act on it with T to get Wy, 1.

Bohm-Aharanov Effect, Monopole etc

A= (9, 4), Ay = (=9, A)

Ej = 87,14] - BJA, == Gz‘jkBk
F = —Fy; = B;

Bohm-Aharanov Effect

Can associate a phase eh Jo Ad= in the Feynman sum over paths. The

phase depends on the path. However if B = 0 the phase does not de-
pend on path. If we have a solenoid of flux, and electron is not allowed
to see solenoid, then the propagator will have such a factor for each
path in the sum. Depending on whether the path is on one side of the

ie § B.ds ie
solenoid or the other there will be a phase difference e™ »  =e "

Thus there can be destructive or constructive interference depending
on ¢ even if electron never actually sees the magnetic field. Note: if
e® = 2wnh the flux tube has no effect!
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8.5

monopole

Dirac said: Have an infinitely thin tube of flux coming out of the
monopole to satisfy div of B =0. If the flux satisfies e¢ = 2nwh,
we see from the discussion of BOhm-Aharanov effect that the tube is

invisible. So if g = ¢ = Q"T” monopoles can exist!

Semi-classical techniques (see Landau-Lifshitz)

: : i
. When system is almost classical, we can assume a form e for the

particle propagator. Motivated by this try a solution of the form
P(x) = en¥ and expand S in a power series in i:

h h
S:S()—i-( )Sl—l—( )25'2+...

1 ?

. Schrodinger’s eqn is

i P+ V =F

h? i S’

A < M N2 —
= Qm[FLS +(h)}+V(x) E
Logne_ e
2m(S) 2mS =FE-V

This is non-linear in S. Substitute above series:
h h ih 12

)?(S1)* + 2;5651] - %56/ - %Sf =E-V

5[50+ (

7

O(n°
" SE =2m(E - V) = p

So(x) = + [ \/2m(E - V(@)de + So(a) = + [ pda
[V

O(h)
LS, + %sg —0
p/

=5 =—-=
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1
S1 = —gln D

1 i [z i [T
W)= %(Cleﬁ Jorde L opei)ap )

This is the leading non-trivial part of semiclassical (WKB) approxi-
mation for the wave function.

. Normalization: % ~ (velocity)~!. This is expected since the prob of

finding a particle betwen « and = + dz is prop to time it spends there,
which is inversely prop to velocity.

. Taking the exponent [ p dx would be exact if hS” << S”.

/
md(ld/f)y <<1

dX
A— A
dr <<

The change in de-Broglie wavelength over a wavelength should be less
than the wavelength itself. In particular when p — 0 this cannot be
true. These are the classical turning points.

. If p is imaginary then we have a rising exponential and falling exp.
Can keep the falling one only if rising one is strictly zero. This has to
be imposd as a boundary condition.

. Thus for a rising potential with = a as the turning point:

1 i [T i [T
)= %(Cleﬁ Jorde L opeifop dry

for x << a

and
L oot [Tl da
VD

for x >> a.

To find the relation between the coefficients do an analytic continu-
ation of p in a semi circle around x = a. In this region we assume

V(z) — E=V'(a)(z — a).
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So p=+/2mV'(a)(a — ).

Let  —a = pe®. When # = 0, x is to the right of a. Here the
exponentially falling solution is assumed. Now let # increase to .
Start with > a and 6 = 0,

/ Ip| dac:/ \(z—a) dxz/pid@ ew\/ﬁew/2

i36
2

3
2

pze

Wl N

3
2

2
z3p a us

So
1 x .
e ® fa vzr—a dzx N e+@¢
Where ¢ is a positive real number.

Thus we conclude that
1 z 7 T
e_ﬁfa p| dax s e fa p| dz

when we go to the classically allowed region = < a. Note that because

x < a the integral is -ve and so phase is positive as required.

Another way is to see that (z — a)% — (a — m)%(—{—z) when we go on

the upper semi circle. Thus we get exponent of Cy term.

This is the Cy term in the wave function. Also Vpl = (z — a)i —
(a— J;)ie% Thus Cp = Ce ™4

Similarly we get C1 piece by going on the lower semi circle. Cy = Ce't.

Thus c
1 [z
Y= He_hfa Plde ohen x> a
p
1 i i [T —ir _ 1 %
= —(Ce7ehn Jololde 4 G e Ja 1P 4y when x<a
p

This is the main result. Rest are applications.
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7. Barrier tunnneling
Three regions:
x < a :I to left of barrier where we have incoming and reflected wave.
a < x < b: 1II - inside barrier, where we have a falling exponential.

x > b: 111 - to right of barrier where we have only right moving wave.

e Start with right moving soln in III. Analytically continue over a
semi circle to make sure that in II we get a falling exponential.
Now we again analytically continue as in the previous para to get
the C12 terms in region I.

Q= o
e Assume that in region II, we have ﬁeﬁ Jo el d= 5 ich s a
P

wave travelling to right.

Analytically continue as before. z —b = pe'’. We have to go from
0 =0 to 0 = £x depending on whether we go along upper semi
circle or lower one.

0 = m gives Wxr —b= \/ﬁe% — /Pl
0 = —m gives :v/x — b = ﬁe% — /P(—1)

z/ \p|da:—>—/ Ip| dx  for 0=
b b

This is positive because x < b and becomes zero at b. So it 1is a
falling exponential, which is what we want. Also since (z—b)1 —

1 aim

pie1 we get

1®
%e 7 Jy Ipl dz for x < b.
I3

(Note: Exponent is 0 at = b and +ve for < b so it is a faling
exp as reqd.)

b
_ D el e [ ol de

VIl

b
Thus comparing with the WKB expresion we get C = Dela Pl dz.
b
Thus tunnelling probability is |D/C|? = ¢~ 2 J el de

8. Energy Splitting due to tunneling
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Given a double well with a barrier. In lowest order approx there are
two degenerate eigenstates: If x = 0 is the symmetric point (V(z) =
V(—z)) then ¢y(x) is a wave fn mainly in well I, the ¢o(—z) is the
solution in the other well, II.

bi(z) = \2[1/10(517) + 1po(~)]

1
=7
Thus, to lowest order these have same energy as g, but in next order
they don’t.

Pa(x) [Yo(x) = tho(—2)]

Assume that 1o(z)1o(—x) << 1 because the wave fns are strongly
damped outside the well.

o +2m(Eg— V) =0

/1/ + 2m(E1 — V)Z/)l =0
Multiply first by ¥ and second by %y and subtract and integrate from
0 — oot

(oo} 2 o0
/0 (Prpy — oy) da + %(Eo - E1)/0 dx 1poi)n

Integrate by parts: first term is 19(|3° — o} |g° At = oo, ¥y =
Yo =0. At x =0, 1) = 0. Thus we get —1b15(0) = —v/2¢1}(0).

Second term: [ dx oy = [ dx % = % So eqn becomes

—V2¢01)(0) + \/52771(150 —E)=0

hQ
= E1 — Ey = —— o1 (0)
m
Similarly Fo — Ejy is the opposite sign. Thus

2h2
Ey — Ey = W@Z}o%(o)
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Using v (z) = \/Lef: Phde for 2 < a

Ip|
_ O i de

0) = —— hJo

¢0( ) \/’p‘e

and »
¥6(0) = 2yo(0)

Thus o

Ey, —E = 7p¢0(0)2-
m

The normalization C' is fixed by assuming the cosine soln (27%005..)

2

bdt _ T where T is time period T = %’r Thus

.. . 40?2 . . o d
inside the well: [ dx o5 =1 (Average of cos is 1/2). Using p = m$7

Wegetf%”:

am ~— 2m
C%or _ 2 _ mw C __ w
mw =1 C" = 2r /P 27v”

_o [® — [ d
Thus AE:%’Je 25 e dx:%”e Ja el de

8.6 Dirac Equation

We want a Lorentz covariant version of Schrodinger equation to describe
relativistic quantum particles. Klein Gordon eqn has problems with square
root etc. Try for an equation linear in derivatives.

L0y 0y
ZTZE = iha Bre + mpBy
Or better still o0
L oY
ihy Bk ma

—

Conventions: " = (—, +++). at = (t,7). p’=E = —po,p' =p.
Ppu = —p'p’ +p'p' = —E* + pip = —m?

&0 200 0
pu = —ilhgm = =i, 57)

If we act again with ihiy#p, we get

E:poz—pozih%

2

B2 p v _ 2
Ry ﬁx*‘&x”d}_mw
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If we require {y*,7"} = —2n* then the above equation will become

0? 0?

2 P — [
Pl ot? * Oxi?

Ji = m*y

So (v9)? = 1 and the eigenvalues are £1. 7° is Hermitian. (y%)? = —1
and 7' are anti Hermitian, with eigenvalues =i.

p(10) =(%7)

Note y%4 is Hermitian.
Thus

Explicitly

SO0 0 0% g
Zh@t Jrzh’y'yaxi—mvw

is Dirac equation in its original form, with «, 8 matrices.

. Solutions in the rest frame:

Zha = m~ Y

Why shouldn’t a positive energy particle fall into the negative energy
state with emission of photon? Dirac postulated a “sea” of filled neg-
ative energy states. Pauli exclusion ensures that positive energy elec-
tron will not fall into these states. Also this means that a photon can
knock an electron from a filled negative energy state to a higher energy
positive state. Effectively creating an electron and a hole (positron).
This was the theoretical discovery of anti-particle.

. Reduction to nrSE with spin (Pauli eqn):
Couple to em : pt — pt —eAt. A0 =d, A" = A
0 0¥

—ihy B ihy!

9y

— 4+ e — ey Ai) = —map
ox?
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Negative energy solutions need an interpretation.
assume 34 = 0.

For the moment

Assume:
|9
v 1]
o, _| @
7Y [—x
i UiX
7¢_[—01¢‘|
09 i 0x i AN —
—zha— ho &Ci—i—e@cb ec'Ayx = —m¢
X it 2

5 + iho? I edy + eciAip = —mx

Set ¢ = e~ and y = ey - take out the main time dependence.

—mao — ih% ]

ot

hot

+myx + zha—x + iho? 0¢

4 ePp — e’ Ay = —mo
ox*

—edy + eo'Ajp = —mx

ot oxt
. 00 o : Ox i
—zha = tho Dt ePop + ec' A;x
—H’FL% = —iho! 8¢. + edy — ec’ Aip — 2my
ot ox*

The dominant term involving x is —2my. Thus

ihaia—gﬁ. + e’ Ajp = —2mx
ort

X = —2m

2m

Thus x << ¢ is called the small component and ¢ is the large compo-

nent. Eqn for ¢:
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L 00  oIILIL¢
h— =" 1 cd

T 2m Tede
where Il = p — eA.

Using o'0? = 6% + ie'*o* we get

112 ehok B,

I1? i OA;
b 1jk 277 — (T _
2m(ZS che oxt 9 +e2¢ (2m 2m

+ed)o

Thus we get the Pauli equation. Using ch = 25 we get %. This
is the correct gyromagnetic ratio: because e(p.A + A.p) — eL.B in
a uniform magnetic field. So we get the expected —ﬁ(fj +29).B
coupling.

. Lorentz Covariance:
Want ' (2") = S (x) or ¢/ (z) = S¥(R™1x). S represents spin.

(FPutm)v(e) = 0= (Yp,+m)df (@) = (=il 520 +m)d/ (@) = 0

oz 0

0
(—ihyH— + m)y(x) = (—ih Dl DV

oxH

+m)p(R™"a’) =0
N———’
Silw’(x’)

't =RH; ¥

= (—ily"R", py

Thus we want S’y“SflRVM =Y.
RE, = 0, + €/, with €'V = —e/.
Let S =1+1ieo,,

We find:

+m)S™ 1 (') =0

STIyHS = 1 et 4

—1€’7[0pe, V'] = €7
Flnd Uﬂa = %h/pa ’YO']
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Note: [")/0,’)’1] is Hermitian. [y2,71] is Anti-Hermitian. S, is Unitary.
But Sboost Shoost-

We can check that all S satisfy: 7Sty = 51

Using this can show that 794" is a 4-vector.

Define ¢ = ¥T7%. Then the four vector is 1y*y. Clearly 1) is a
scalar.

. Can define various tensors...HW. Need 77 = i791y2~3. 'y =1.

Under parity 7' — —4%. So v — —~°. Thus 97’y is a pseu-
doscalar. Check that it is a scalar under LT.

. Parity: P~'4#P = RX 4*. Where R is the diagonal matrix: (1, —1,—1, —1).
7° satisfies this property. Thus ¢'(z) = 79 (z) where 2/ = Ra. Thus
we can check that 1y%1) is a pseudoscalar.

. current: o . o
zhw:—zh’y’ya -+ my Oqp
it 90 = ity 90 mytyy
ﬁgﬁg = +ihgw: (7% + myTy°
81/}01# +zh(a;pz b+ maptn
Subtracting,
= i ($19) = i~ (9 )

Thus j° = iy and j° = ¥T404%). Thus j* = v is a conserved
current.

. Spin 4-vector: Define s* = (0,5) in the rest frame of the parti-
cle. This is the usual spin. Then the general 4-vector is defined by
LT of this: s = a*,s”. Another way (more formal) Define WH =
e"9P P, Js,. For a massive particle this is mgs* where s is a s defined
above. (Note: €7%.J;, = J?).

Note that p,s* = 0 in the rest fram and hence in all frames. It is also
manifest that p,W# = 0.
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9. Can construct explicit solutions of Dirac equation corresponding to
moving particles by boosying the rest fram solutions.
Finite S = "7, We use w = w9 for finite LT. What is this
parameter physically? Try on 4-vectors

coshw —sinhw 0 0
iwM _ | —sinhw coshw 0 0
N 0 0 10
0 0 01
This is obtained by exponentiating M defined by 620 = eMxz = —ex!
and dz!t = —ex?.
0 -1 0 0
-1 0 00
M= 0 0 00
0 0 00O
Thus tanh w = 8 = ¢ and cosh w =7 = L Also

V1-p32

7 0 ot
=731 st 0

S = e2woor Note: 03, = I Thus

1 0 0 —tanh 5
w 0 1 —tanh % 0
_ “ 2
§ = cosh 3 0 —tanhq 1 0
—tanh 3 0 0 1
10. Express in terms of p, E etc: (Note: sin i = isinh 6 , cos i =

2tanh £
_ 2 : w o _ tanh w _
cosh 9) Use tanh x = tanh? To1 925 1 and invert to get tanh 5 = 71 Metonh 20

B _ _p w _  [E4mg
1+% = Ftmg and cosh 5 = g

Use this in the matrix and get

L0 0 mm ]l
E 0 1 L 0 ;
e I
0 E+mg
—-p
e 0 0 1 0



1
_JEEme | 0 i)
277’L0 0

p
E-+mg

Note the presence of large and small components of the spinor. Simi-
lary we get three other solutions including 2 negative energy ones.
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