
Quantum Mechanics

B. Sathiapalan

February 27, 2023

1 Course Contents

1. Free Particle: (9 lectures)

(a) Schroedinger Equation, Hamiltonian, Commutation Relations,
Wave functions, Probability Interpretation, Currents, Measure-
ment, Plane waves, Normalization, Boundary conditions, Dis-
crete Space and Regularization, delta function, Wave packets,
group velocity. (1 1/2 lectures)

(b) Postulates of QMech, Bra-ket notation, Fourier Transform, Vec-
tor Space. (1 1/2 )

(c) Matrices, Hermitian, Unitary, Tensor Product, Projection Oper-
ator.(1)

(d) Schroedinger and Heisenberg Representation, Evolution Opera-
tor.(1)

(e) Feynman Path Integral.(2)

(f) Density Operator, Quantum Statistical Mechanics. (2)

2. Spin-1/2 system:(3 lectures)

(a) Stern Gerlach, Illustrating q mech., Atom in a magnetic field,
Dynamics of two level systems. (2)

(b) Quantum Computer.(1)

3. Rotation Group: (4 lectures)

(a) Symmetries and Conservation Laws, Lie Groups, Rotation, Lorentz,
Poincare, Global and local invariances (gauge invariance).(2)
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(b) Spin and Orbital Angular Momentum, Spherical harmonics.(2)

(c) Discrete Symmetries:C,P,T. (1)

4. Harmonic Oscillator: (4 lectures)

(a) Path Integral treatment. (2)

(b) Anharmonic Oscillator.(1/2)

(c) Coherent states.(1/2)

(d) Introduction to field theory.(1)

5. Perturbation Theory: (5 lectures)

(a) Time Independent (Degenerate and Non-degenerate Pert. The-
ory).(1)

(b) Time Dependent Perturbation Theory, Sinusoidal perturbations,
Fermi Golden Rule.(1)

(c) Scattering Theory.(3)

6. Interaction of Charged Particles:(11 lectures)

(a) Hamiltonian and Lagrangian, Gauge Invariance. (1/2)

(b) Bohm-Aharanov Effect.

(c) Path Integral.(1 1/2)

(d) Hydrogen Atom, Diatomic Molecule. (2)

(e) Atom in an Electric and Magnetic Field, NMR. (2)

(f) Fine and Hyperfine Structure, Lamb Shift.(1)

(g) Electron in a Magnetic Field. , Landau levels, QHE (Q Hall
Effect).(1)

(h) QED, Scattering, Dipole Radiation.(3)

7. Dirac Equation and Klein Gordon Equation.(4 lectures)

Text Books:

1. Cohen-Tannoudji....

2. Landau and Lifshitz....

3. Feynman and Hibbs ....
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These notes foloow these books quite closely.

Grading Policy:

Homework : 30 %
Mid-term examination: : 20 %
Final Examination: : 50 %
Total : 100 %

Other points:

1. Homework assignments will be given out once a week and will be due
back in exactly one week. Homeworks handed in late will not be
graded. You may consult with each other on the homework problems
(indeed this is a very good thing), but the final solution should be
yours. You may also be asked occasionally to work out problems on
the board.

2. Basic knowledge of quantum mechanics is assumed. The aim of the
course is to extend your formalistic and mathematical skills and also
develop physical intuition.

3. Although text books have been specified we will not follow the order
of presentation of any particular book. In terms of material Cohen-
Tannoudji will be followed quite closely. For path integrals Feynman
and Hibbs. The quasi-classical approximation is taken from Landau-
Lifshitz. There are many other good books, such as those by Dirac,
Schiff, Sakurai...
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2 Free Particle

2.1 Basics

In classical mechanics a free particle is described by specifying its mass m,
position x and momentum p. The Hamiltonian is given by

H =
p2

2m
(1)

In Heisenberg’s formulation this equation continues to be true but
x, p are non-commuting operators that satisfy

[x, p] = ih̄ (2)

Dimensions: xp has dimensions L2T−1M - dimensions of angular mo-
mentum. This is also ML2T−2T which is energy × time. This has di-
mensions of “action”. In q.mech. we often use units where h̄ = 1. Then
E ≈ T−1. Also P ≈ L−1. Then action can be said to be dimensionless.
In relativistic sytems it is common to set c = 1 (c=vel. of light). (So
h̄ = c = 1). L ≈ T ≈ E−1 ≈ P−1 ≈ M−1. Thus in these units, p,E,m all
have dimensions of 1/length. However for non-relativistic quantum mech
we usually keep the constants.

(H.W: Show that e2

4πϵ0h̄c
is dimensionless. What is it’s value? Can you

define something analogous using the other important constants in nature:
G gravitaional constant? Should the fundamental constants in nature be
dimensionful or dimensionless? What if we had a universe where h̄ has
twice its present value, and all other (dimensionless nos.) are the same.
What would be different? Think about these things.)

e = 1, 6× 10−19 Coul

h̄ = 1.05× 10−34 J − s

c = 3× 108 m/s

1

4πϵ0
= 8.98× 109

Nm2

coul2

G = 6.6× 10−11 Nm
2

kg2

In this formulation the possible values that can result when momentum
is measured(what does this mean??) are the eigenvalues of the operator
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p. Same for x. Operators can be represented by matrices. Eigenvalues of
H are thus the measured values of energy. In particular at the end of a
measurement the particle has that measured value i.e. it is in an eigenstate
of that operator. As x and p do not commute, it follows that the particle
cannot be simultaneously an eigenstate of both. Therefore if it has a precise
value of momentum, it cannot have a precise value of position, and vice
versa. This observation is embodied in the “Heisenberg Uncertainty
Relation”

∆x∆p ≥ h̄

2
(3)

In the Heisenberg formalism one has to diagonalise matrices.
(Do they know Fourier Transforms?) This is trivially a consequence of

the mathematical properties of FT.
In the Schroedinger formulation one has to solve a linear differential

equation:

Hψ = ih̄
∂ψ

∂t
(4)

where H is a linear differential operator. It is equal to − 1
2m

∂2

∂x2
From study-

ing differential equations we know that this also reduces to an eigenvalue
problem. Thus the space of solutions of Schroedinger’s equation forms a
vector space on which H, p, x can be represented as (infinite dimensional,
why?) matrices. These matrices satisfy Heisenberg’s commutation relations.

In a nutshell these are the two (equivalent) descriptions of quantum
mechanics discovered in the 1920’s. R.P. Feynman discovered (1940?)
another formulation called the path integral formulation. We will discuss
this soon. This idea is used a lot in Quantum Field Theory.

Schroedinger’s formulation is more convenient for Non-relativistic QM.
Things you should know:
1. The wave function represents what? Born’s probability interpretation:

dP ∝| ψ |2 dx
1.1. Given a wave function, physical quantities that can be calculated

are expectation values of operators such as x, p, .. and functions thereof:∫ +∞

−∞
ψ∗Oψdx =< O >

2. Normalization :
∫+∞
−∞ | ψ |2 dx = 1. This is a physical requirement

and constrains the solutions of SE.
3. In this representation p is represented by −ih̄ ∂

∂x .

5



3.1. Proof of uncertainty reln.:Consider for α real:∫ +∞

−∞
| αxψ + ∂

∂xψ |2 dx ≥ 0

The three terms are:

α2
∫
x2 | ψ |2 dx = α2(∆x)2

∫
| ∂
∂xψ |2 dx =

(∆p)2

h̄2∫
αx(ψ ∂

∂xψ
∗ + ψ∗ ∂

∂xψ)dx = −α

They add up to

α2(∆x)2 − α+
(∆p)2

h̄2
≥ 0

This means the discriminant has to be≤ 0. So

1− 4(∆x)2
(∆p)2

h̄2
≤ 0

This gives

(∆x)(∆p) ≥ h̄

2

4. The eigenfns of p are Aeikx and have ev h̄k. “plane waves”
5. These plane waves are not normalizable.

∫+∞
−∞ | ψ |2 dx = ∞. Dirac

introduced a “delta function” to deal with these. The Dirac Delta Function
δ(x) is zero everywhere except at x = 0 where it is infinite. It also satisfies∫
dxδ(x) = 1. And

∫
dxf(x)δ(x) = f(0). Using this notation one can show

that (HW)
∫+∞
−∞ | ψ |2 dx =| A |2 2πδ(0). (for plane wave states). These

are called “plane wave normalizable”. Although these states are not allowed
strictly speaking we will use them as an approximation and for practical
convenience.

Another way to deal with plane waves is to put it in a box:
Size L. So if Ψ(x) = Aikx is plane wave, then |A|2 = 1√

L
. This is

infrared regularization. What is the smallest value: Depends on bc.
If we have standing waves, then we have states with sin kx and k = nπ

L .
(Periodic?)
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Ultraviolet gularizatipon assume k has a max. As in a crystal with
spacing a. k ≤ 2π

a . And Na = L. So k takes N values.

dx→
∑N
n=1 a. dk →

∑N
m=1

2π
L . Try evaluationg

∫
dxeikx and

∫
dk
∫
dxeikx

and figure out properties of delta-function.
6.Probability density of finding a particle in such a state (=constant)
7. Probability current:

Jx =
h̄

2im
[ψ∗∂xψ − c.c.] =

h̄k

m︸︷︷︸
velocity

| A |2︸ ︷︷ ︸
number density

(5)

8. Current Conservation ∂xJx − ∂tJt = 0 where Jt = ψ∗ψ = number
density.

9. States havind a definite time dependence e−iEt satisfy the time inde-

pendent SE Hψ = Eψ. For plane wave states clearly E = (h̄k)2

2m .
10. We usually require E to be real. what if it is not? Calculate ∂t(ψ

∗ψ).
11. Continuous versus discrete E. Confining potentials and bound

states. Particle in a box. HW.
12. Prove current conservation using SE. Starting with − h̄2∂2ψ

2m∂x2
= i h̄∂ψ∂t

we get (multiply by ψ∗, integrate by parts and subtract c.c) −∂xJx on the
LHS and i∂t(ψ

∗ψ) on the RHS. QED.
12. HW problem with particle leaking out of a box.
13. Given a wave function, physical quantities that can be calculated

are expectation values of operators such as x, p, .. and functions thereof:∫ +∞

−∞
ψ∗Oψdx =< O >

14.For a plane wave what is < x >,< x2 >? What does it mean?
15. Given the above, how does one construct a classical looking particle?

ANS “wave packet”. Superpose different harmonics: Draw. eg ψ(x) =

Ae−
(x−vt)2

2b2 . Do you know how to fix A? This represents a particle moving
along the trajectory x = vt. At least initially. After some time? calculate!

16. Group velocity is dω
dk is k

m . But what is k? ψ is peaked around some
k. Consider the wave fn.

ψ = A

∫
dkeikxe−

b2(h̄k−mv)2

2 e−i
h̄2k2t
2m (6)

This represents a superposition of plane waves of momentum h̄k and the
appropriate time dependence. k peaked around mv. Do the integral. Set
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h̄ = 1. The exponent is:

−k2(b
2

2
+ i

t

2m
) + k(b2mv + ix)− m2v2b2

2

= −(
b2

2
+ i

t

2m
)(k − (b2mv + ix)

(b2 + i tm)
)2 +

(b2mv + ix)2

2(b2 + i tm)
− m2v2b2

2

After doing the k integral we are left with a term in the exponent:

(b2mv + ix)2

2(b2 + i tm)
− m2v2b2

2

We expand this for large m but small mb to get

ψ ≈ e−
(x−vt)2

2b2
−itmv2

2
+imvx (7)

We can also calculate | ψ | by adding to the exponent its c.c. to get

| ψ |≈ e
− b2(x−vt)2

(b4+ t2

m2 )
(8)

This clearly represents a ‘semi-classical’ wave function of a particle mov-
ing along a trajectory with vel v. The t and x dependences give the classical
energy and momentum respectively.

The Feynman Path Integral (FPI) approach is best suited to demonstrate
this. Later.

2.2 Postulates of Q.M.

1. The space of allowed “wave-fns” is a vector space over complex nos.
(Hilbert space). The wave fns have to be square integrable and smoooth.

i) Superposition: ψ = a1ψ1 + a2ψ2, a1, a2 ∈ C is also a physical state.
ii)Scalar product

∫
d3rϕ∗(r)ψ(r) =< ϕ | ψ > has the following props:

a)< ϕ | ψ >∗=< ψ | ϕ >
b)Linear < ϕ | a1ψ1 + a2ψ2 >= a1 < ϕ | ψ1 > +a2 < ϕ | ψ2 >
c)anti linear < a1ψ1 + a2ψ2 | ϕ >= a∗1 < ψ1 | ϕ > +a∗2 < ψ2 | ϕ >
d) Norm < ϕ | ϕ >=

∫
d3rϕ∗ϕ > 0 and is =0 iff ϕ = 0. 2.Dirac’s

Notation:
| ψ > represents a state. Inner product of | ψ > and | ϕ > is denoted by

< ϕ | ψ >
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Thus
ψ(r) ↔| ψ >

“ket” ∫
d3rϕ∗(r)ψ(r) ↔< ϕ | ψ >

Dual space: The space of linear functionals:
defn of lin fnl: χ is a linear fnl ⇒ it assigns a complex no. to every ket

| ψ >.
χ(| ψ >) = c

The space of χ’s is the dual vector space.
Linear i.e. aχ1(| ψ >) + bχ2(| ψ >) = aχ1 + bχ2(| ψ >)
Hilbert space and its dual are isomorphic. (Except for plane wave states!)
A particular linear functional ψdual can be associated with a ket | ψ >

by:
ψdual(| ϕ >) ≡< ψ | ϕ >

This defines the bra < ϕ |≡ ϕdual.
3. Basis vectors: | ei > i = 1, N for an N dim space. Completenes.

Discrete and continuous.
Orthonormal:< en | em >= δnm or < e(λ) | e(λ′) >= δ(λ− λ′)
Thus usual wave fn ψ(r) =< r | ψ >

| ψ >=
∫
d3rψ(r) | r >

< r | r >= δ(0) = ∞ not normalizable.
Momentum basis:

ψ(r) =

∫
d3p

(2π)3
ψ̃(p)eip.r

“Fourier transform”

ψ̃(p) =

∫
d3re−ip.rψ(r)

Check .
Define | p > by ψ̃(p) =< p | ψ >. and

| ψ >=
∫

d3p

(2π)3
ψ̃(p) | p >
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This requires < p | ∂′ >= (2π)3δ3(p− p′)

| ψ >=
∫
d3r

∫
d3p

(2π)3
ψ̃(p) | r >

=

∫
d3p

(2π)3
ψ̃(p)

∫
d3reip.r | r >︸ ︷︷ ︸

|p>

Thus < r | p >= eip.r.

Thus inserting
∫ d3p

(2π)3
| p >< p | or

∫
d3r | r >< r | is equivalent to FT.

4. Operators: Linear operator: A | ψ >=| ϕ > and correspondingly
Aψ(r) = ϕ(r) where A is a differential operator.

Aψ(r) =< r | A | ψ >=
∫
d3r′ < r | A | r′ > ψ(r′)

< r | A | r′ > are matrix elements. Operators are represented by matrices.
Discrete or continuous depends on basis.

eg A is -id/dx what is A?

−id/dxψ(x) =
∫
dx′id/dx′δ(x− x′)ψ(x′)

=

∫
dx′id/dx′ < x | x′ > ψ(x′)

=

∫
dx′[< x | id/dx′ | x′ >]ψ(x′)

< x | A | x′ >=< x | id/dx′ | x′ >= id/dx′δ(x− x′)

. (Note the sign change)

< p | A | p′ >=
∫
dxp′ei(p

′−p)x = 2πδ(p′ − p)p′

5. Hermiticity: A = A†

< χ | Aψ >∗=< ψ | A† | χ >

∫
dx(χ∗Aψ)∗ =

∫
dxψ∗A†χ =

∫
dx(Aψ)∗χ

10



eg A = d/dx:∫
(χ∗(x)dψ/dx)∗ =

∫
dψ∗/dxχ(x) = −

∫
dxψ∗dχ/dx

Note - sign. We have “integrated by parts”. (What boundary conditions
are required?) Thus A† here is −d/dx. Thus it is anti-Hermitian. Thus i ddx
is Hermitian.

6. Eigenvalues and eigenvectors.
If A|ψn >= an|ψn > then an is an eigenvalue and |ψn > is an eigen

vector.

2.3 Matrices

If ei ≈ |i > are a orthonormal basis then the matrix Aij =< i|A|j > is the
matrix representaion of the operator A. Thus

A|j >=
∑
k

Akj |k >

< i|A|j >=
∑
k

Akj < i|k >= Aij

Thus if |ψ >=
∑
an|n > the column vector (an) represents the state

|ψ >. Then
A|ψ >=

∑
i

A|i >< i|ψ >=
∑
i

aiA|i >

=
∑
i

ai
∑
j

|j >< j|A|i >

=
∑
j

(
∑
i

Ajiai)|j >

So the numbers
∑
iAjiai represents A|ψ >.

Diagonal rep of matrix : Choose a (orthonormal) basis consisting of
eigenvectors ofA. In this basisA is a diagonal matrix: A = diag(a1, a2, a3...aN ).
Then A = A† implies that the eigevalues are real. Physical (i.e. experimen-
tally measurable) quantities must be represented by Hermitian matrices.
eg. energy, momentum,...Hermitian means real symmetric, or imaginary
antisymmetric. eg Pauli matrices.

Unitary matrices: UU † = U †U = I.
They are important - they preserve norm:

< Uψ|Uψ >=< ψ|U †U |ψ >=< ψ|ψ >
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Det(UU †) = DetUDetU † = |DetU |2 = 1

So DetU = ±1. If we diagonalise U then since U−1 = U † = U∗ the diagonal
elements must be of the form eiθn where θn is real.

Thus U = eiA where A is hermitian. (iA is anti Hermitian).
If A is small, the U = 1+iA, and U † = 1−iA. A Unitary transformation

is
UFU † = (1 + iA)F (1− iA)

= F + i[A,F ]

Thus
δF = i[A,F ]

is the form of the infinitesimal transformation. eg eiϵ
P
h̄ is a translation by ϵ.

δF = iϵ[
P

h̄
, F ] = iϵ(−idF

dx

= ϵ
dF

dx

2.4 Tensor Products

V1, V2 are two vector spaces. The tensor product is a vector space V1 ⊗ V2.
If |e1i >, i = 1−N1, |e2j >, j = 1−N2 are the bases of V1, V2, then the N1N2

states |e1i > ⊗|e2j > are the basis states of V1 ⊗ V2.
eg |px, py, pz > actually is a state in the tensor product space |px >

⊗|py > ⊗|pz >. Similarly, multiparticle states.
1.

λ[|ϕ1 > ⊗|χ2 >] = λ[|ϕ1 >]⊗ |χ2 >= |ϕ1 > ⊗λ[|χ2 >]

2.
|ϕ1 > ⊗[|χ1 > +|χ2 >] = |ϕ1 > ⊗|χ1 > +|ϕ1 > ⊗|χ2 >]

3. If |ϕ1 >=
∑N1
n=1 an|e1n > and |χ1 >=

∑N2
m=1 bm|e2m >, then

|ϕ1 > ⊗|χ1 >=
∑N1
n=1

∑N2
m=1 anbm︸ ︷︷ ︸

N1+N2

|e1n.⊗ |e2m >

4. But the general state is |Ψ >=
∑N1
n=1

∑N2
M=1 cn,m︸︷︷︸

N1N2

|e1n > ⊗|e2m >

5. Scalar product |ϕ1 > ⊗|χ1 > and |ϕ2 > ⊗|χ2 >
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is < ϕ2|ϕ1 >< χ1|χ2 >.
6. Similarly operators: If A acts on V1 and B in V2. and
A|ϕ1 >= |ϕ2 > and B|χ1 >= |χ2 > then A ⊗ B|ϕ1 > ⊗|χ1 >= A|ϕ1 >

⊗B|χ1 >= |ϕ2 ⊗ |χ2 >
Similarly on a general state (i.e. not a direct product) act on the indi-

vidual basis states which are direct products.
Thus we should actually write Ã = A ⊗ I and B̃ = I ⊗ B and ÃB̃ =

AI ⊗ IB = A⊗B.
Example: Two spins 1/2 . The basis states are

|+ > ⊗|+ >

|+ > ⊗|− >

|− > ⊗|+ >

|− > ⊗|− >

Another notation:

|+,+ >, |+,− >, |−,+ >, |−,− >,

Operators S⃗1, S⃗2 - Pauli matrices.
Let S1x = σx etc. As matrices σij , i, j = 1, 2
Let S2x = τx etc. As matrices τab, a, b = 1, 2
Then

S⃗1.S⃗2 = S1xS2x + S1yS2y + S1zS2z

= S1x ⊗ S2x + S1y ⊗ S2y + S1z ⊗ S2z

= σxijτxab + σyijτyab + σzijτzab

Action on states:

S1xS2x = S1x ⊗ S2x[|+ > ⊗|+ >] = σx ⊗ τx[|+ > ⊗|+ >] = [|− > ⊗|− >]

On the other hand

σxσx = I

This is not a tensor product.
σ ⊗ τ can be written as a 4X4 matrix.
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2.5 CSCO

Complete Set of Commuting Observables: How do you specify a state com-
pletely?

Let the eigenvectors of A be |an >, i.e. A|an >= an|an >. There may
be many of these. So label by another index: |an, i >, i : 1−Nn. How does
one label them? Use another observable B such that [A,B] = 0. B will not
change A eigenvalue. So

B|an, i >=
∑
j

bij |an, j >

Thus B is block diagonal. Draw. Let us diagonalise B in each block. So
instead of i use bm, Thus the states are labelled by |an, bm >,m : 1−Nb. If
Nb = Nn then we have a distinct eigenvalue for each state. If Nb < Nn

then then we have many states with same values an, bm. Thus we call
them |an, bm, k > where k : 1 − Nn,m. Find another operator C such that
[A,C] = [B,C] = 0. This is block diagonal in the block labelled by an, bm.
Diagonalise it. Let the ev be cp. If all ev are distinct we are done. Otherwise
keep going. In this way we get a CSCO: A,B,C,D, ... and a set of labels
that uniquely specify the state |an, bm, cp, dq, ... >. The set is not unique.

eg Plane waves in three dimensions.

2.6 Projection Operators

P is a projection operator if P 2 = P . Eigenvalues are 1,0.
Projector into a state |ψ > is |ψ><ψ|√

<ψ|ψ>

2.7 Schroedinger, Heisenberg and Interaction Representa-
tion

1.
ψ(x, t) = e−

i
h̄
Htψ(x, 0) (9)

if H is time independent.
2.

ψ(x, t) = Pe−
i
h̄

∫ t

0
H(t′)dt′︸ ︷︷ ︸

EvolutionOperator

ψ(x, 0) (10)

if H is time dependent. P stands for “Path Ordering”.
3. The evolution operator U(t, 0) is unitary if H is Hermitian. U(t, 0) =

U(t, t1)U(t1, 0).
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4. Defn of Path ordering: U(t, t − ∆t) = e−iH∆t when ∆t → 0. Also
U(t, 0) ≡ U(t, t−∆t)U(t−∆t, t−2∆t)....U(∆t, 0). (Note thateAeB ̸= eA+B).

5. Check Schroedinger eqn.
6. Why Path ordering is imp for time dependent H only: H = H0 +

f(t)H1 with [H0, H1] ̸= 0.

[H0 + f(t1)H1, H0 + f(t2)H1] = (f(t1)− f(t2))[H1, H0]

7.Use bra-ket notation: | ψ(t) >S= U(t, t0) | ψ(t0) >S “S”=Schrodinger.

S < ψ(t0) | U †(t, t0) =S< ψ(t) |

S < ψ(t) | OS(t) | ψ(t) >S=< OS(t) >t

is exp value at time “t”. The t-dep in O is because of some explicit time
dependence.

S < ψ(0) | U †(t, 0)OSU(t, 0) | ψ(0) >S=< O >t

8.H = Heisenberg. Define U †OS(t)U(t, 0) = OH(t)

| ψ(0) >S=| ψ >H

Heisenberg states have no time dep.

< OH(t) >t=H< ψ | OH(t) | ψ >H=S< ψ(t) | OS(t) | ψ(t) >S=< OS(t) >t

At t = 0 both reps are identical. H-operators have all the time dep. S-op
only have explicit time dep. H-states have no time dep.

9. Calculate OH(t+∆t)−OH(t) using U’s to get

dOH

dt
= U †dOS

dt
U +

i

h̄
U †[Hs,OS ]U

= (
dOS

dt
)H +

i

h̄
[HH ,OH(t)]

10. −ih̄dXH
dt = −ih̄PH

m

ih̄dPH(t)
dt = −ih̄V ′(XH)

15



2.8 Path Integral

1. Instead of starting with a wave function one defines directly a probability
amplitude for a particle to go from a point xiat time ti to a point xf at time
tf . Call it K(xf , tf ;xi, ti). Feynman defined the following formula for it:
Motivation: double slit experiment.

K(xf , tf ;xi, ti) =

∫ x(tf )=xf

x(ti)=xi

Dx(t)︸ ︷︷ ︸
sumover paths

exp(+
i

h̄

∫ tf

ti

dtL(x(t), ˙x(t)) (11)

Note that this is not the probability amplitude of a measurement, it is
the probability amplitude of an event.

2. Draw pictures and show classical limit. Principle of stationary phase.
Derive Lagrange’s eqn.

3. How do you actually calculate: What does Dx(t) mean? Divide
tf − ti into N intervals ϵ = tj+1− tj with t0 = tiand tf = tN . Let xj = x(tj).
Then Dx(t) ≈ dx1dx2....dxj ...dxN−1 There will in general a constant of
proportionality (possibly infinite). Thus

K(f, i) = K(xf , tf ;xi, ti) = N
∫ xN=xf

x0=xi

[dx1dx2...dxN−1]e
i
h̄
S(f,i)

Where S is the action and N is a normalization constant.
2. The composition law K(a, b) =

∫
dxcK(b, c)K(c, a) : Draw figure. K

is called Kernel. This can be iterated.
3. Get

K(xf , tf ;xi, ti) =

∫
dx1

∫
dx2...

∫
dxN−1K(f,N−1)K(N−1, N−2)...K(j+1, j)...K(1, i)

(12)
4. Do the integral

∫
dxiK(j + 1, j)K(j, j − 1)

e
i
h̄

m
2
[
xj+1−xj

ϵ
]2+mϵ

2
[
xj−xj−1

ϵ
]2

=

e
im
h̄ϵ

[(xj−
xj+1+xj−1

2
)2+(

xj+1−xj−1
2

)2

= √
ih̄ϵ2π

2m
e

i2ϵm
h̄2

(
xj+1−xj−1

2ϵ
)2
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This is clearly proportional to K(j+1, j− 1). The factor in square root
is the normalization factor. If we use the Gaussian normalization factor for
each of the unit K’s , i.e.

√
m

2πϵh̄i , we get the final result

√
m

2π2ϵh̄i
e

i2ϵm
h̄2

(
xj+1−xj−1

2ϵ
)2

which has the correct normalization.
Clearly this process can be iterated to replace 2ϵ by Nϵ = tf − ti. Thus

K(xf , tf ;xi, ti) =

√
m

2π(tf − ti)h̄i
e

i(tf−ti)m

h̄2
(
(xf−xi)

(tf−ti)
)2

(13)

5. Relation to wave functions - evolution operator.

ψ(xf , tf ) = e
−i
∫ tf
ti

Hdt
ψ(xi, ti) =

∫
K(xf , tf ;xi, ti)ψ(xi, ti)dxi (14)

5.5) Expansion of K(xf , tf ;xi, ti) in terms of wave functions

K(xf , tf ;xi, ti) =
∑
n

ψn(xf )ψ
∗
n(xi)e

−i
En(tf−ti)

h̄

6. Derivation of Schroedinger’s eqn.
Consider infinitesimal evolution from t to t+ ϵ. The evolution operator

is

K(xf , tf ;xi, ti) =
∫ x(tf )=xf
x(ti)=xi

Dx(t)︸ ︷︷ ︸
sumover paths

exp(+ i
h̄

∫ tf
ti dtL(x(t),

˙x(t))

We set tf = ti + ϵ to get

ψ(xf , ti+ϵ) =

∫ x(ti+ϵ)=xf

x(ti)=xi

Dx(t)︸ ︷︷ ︸
sumover paths

exp(
i

h̄

∫ ti+ϵ

ti

dtL(x(t), ˙x(t))ψ(xi, ti)dxi

For infinitesimal evolution

ψ(xf , ti + ϵ) = N
∫
e

i
h̄

m
2
ϵ[

xf−xi
ϵ

]2ψ(xi, ti)dxi
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N is chosen so that the gaussian integral gives 1. bLHS is ψ(xf , ti) + ϵ ∂ψ∂ti .

Letting xf − xi = y and ψ(xf , ti) = ψ(xi, ti) + y ∂ψ∂y + y2

2
∂2ψ
∂y2

(we get (linear

term vanishes by symmetry)

ih̄
∂ψ

∂ti
= − h̄2

2m

∂2ψ

∂y2

(After multiplying by h̄ on both sides.) This is SE. QED.
Note thatK(xf , tf ;xi, ti) satisfies SE. Also the bc limtf→ti K(xf , tf ;xi, ti) =

δ(xf − xi).

7. getting semi classical energy, momentum. Using
√

m
2π(tf−ti)h̄ie

i(tf−ti)m

h̄2
(
(xf−xi)

(tf−ti)
)2

we can understand semi classical limit : Change in phase wrt change in xf
gives momentum and change wrt tf gives energy. Use K(xf , tf ;xi, ti) and
study variation wrt xf . Prove that ∂

∂xScl = p.
a)

S + δS =

∫ tb

ta
L(x+ δx, ẋ+ δẋ)dt

δS =

∫ tb

ta

d

dt
[δx

∂L

∂ẋ
]dt+

∫
dt[eqn of motion]

δS = δx
∂L

∂ẋ
|tbtb

∂S

∂xb
=
∂L

∂ẋ
|tbtb= Pb

b)Same thing for energy:

S + δS =

∫ tb+δtb

ta
dtL(t, x′cl, ẋ

′
cl)

x′ is the modified classical solution. x′cl(tb + δtb) = xcl(tb) = xb.

S + δS =

∫ tb+δtb

ta
L(x′cl, ẋ

′
cl)dt

=

∫ tb

ta
L(x′cl, ẋ

′
cl) + δtbL(x

′
cl, ẋ

′
cl)

δS = δtbL(x
′
cl, ẋ

′
cl) +

∫ tb

ta
[L(x′cl, ẋ

′
cl)− L(xcl, ẋcl)]dt

18



The term in square brackets is after integrating by parts and using equations
of motion δxcl

δL
δẋ .

Using bc we get x′cl(tb) + ẋ′clδtb = xcl. So x′cl − xcl = −ẋ′clδtb. All this
gives:

δS = Lδtb +

∫ tb
dt[L(t, x′cl, ẋ

′
cl)− L(t, xcl, ẋcl)

= Lδtb +
∂L

∂ẋ
(x′cl − xcl) = Lδtb − pẋclδtb = −Eδtb.

c) Understand normalization: m
2πh̄T dx = P (b)dx.

mb

T
< p <

m(b+ dx)

T

Range of momentum dp = mdx
T . Thus the probability is of the form P (p)dp =

const dp where const is 1
2πh̄ .

7.5) Do the Gaussian slit - Feynman - and repeat results of wave packet
spreading etc. - Perhaps as HW.

8. Include potential term V (x). Harmonic oscillator approx. Add
−V (x(t)) to L. Then calculate PI all over again. Stationary phase gives the
usual classical equations of motion. In general cannot

be done exactly. Expand V (x) in power series near minimum. Quadratic
term gives harmonic oscillator. Can be done exactly.

The kernel for the harmonic oscillator can be found exactly:∫ X(T )=Xf

X(0)=Xi

DX(t)e
im
2h̄

∫ T

0
(ẋ2−ω2x2)dt

Expand X(t) = Xclassical(t)+ y(t), where xcl(t) is the classical solution that
satisfies the boundary conditions. Expand. Purely classical piece give the
classical action. This is

exp{ imω

2h̄sinωT
[(x2f + x2i )cosωT − 2xfxi]}

What remains is a Gaussian integral over y(t)∫ Y (T )=0

Y (0)=0
DY (t)e

im
2h̄

∫ T

0
(Ẏ 2−ω2Y 2)dt
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Expand y(t) =
∑
n ansin(

nπt
T )

KE = T
∑
n

a2n
1

2
(
nπ

T
)2

PE = T
∑
n

1

2
a2nω

2

Do integral over an (Jacobian is a constant) : the integral is of the form

econsta
2
n((

nπ
T

)2−ω2). The constant is independent of ω and has the same value
when ω = 0. This integral is const′ × (1− ω2T 2

n2π2 )
− 1

2 .Product over all n gives

( sinωTωT )−1/2. Comparing with free particle gives const′ = ( m
2πih̄T )

1/2.
The final result:

(
mω

2πih̄sinωT
)1/2exp{ imω

2h̄sinωT
[(x2f + x2i )cosωT − 2xfxi]}

9. Do with forcing function. Only classical action will be different.
10. Several degrees of freedom. K(xf , Xf , tf ;xi, Xi, ti). The conve-

nience of the formalism. Separable systems. S(x,X) = S1(x)+S2(X). The
concept The final result:

(
mω

2πih̄sinωT
)1/2exp{ imω

2h̄sinωT
[(x2f + x2i )cosωT − 2xfxi]}

9. Do with forcing function. Only classical action will be different.
10. Several degrees of freedom. K(xf , Xf , tf ;xi, Xi, ti). The conve-

nience of the formalism. Separable systems. S(x,X) = S1(x)+S2(X). The
concept of “integrating out” degrees of freedom. When would you want to
do that: unobservables : eg ren group - effective actions, thermodynamic
heat bath or the rest of the universe,

2.9 Statistical Mechanics and the Density Matrix

1.Elementary Quantum Stat Mech: Expectation value of an operator in
equilibrium so that states are weighted with Boltzmann factor < A >=∑
i piAi where pi =

1
Z e

−βEi

Z The partition fn. Free energy.F (T, V,N)or E(S, V,N).
2.Other infmn P (x)? Need the unintegrated form of the partition fn i.e.

density matrix.
3. P (x) = 1

Z

∑
i ϕ

∗
i (x)ϕi(x)e

−βEi
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Similarly

< A >=
1

Z

∑
i

Aie
−βEi

=
1

Z

∑
i

ϕ∗i (x)Aϕi(x)e
−βEi =

1

Z

∑
i

< ϕi | A | ϕi > e−βEi

Define
ρ(x′, x) =

∑
i

ϕi(x
′)ϕ∗i (x)e

−βEi

ρ =
∑
i

| ϕi >< ϕi | e−βEi

=
∑
i

| ϕi >< ϕi |︸ ︷︷ ︸
1

e−βH

= 1.e−βH

“Density Matrix”.

< A >=
1

Z
Tr[Aρ] =

∫
dxAρ(x′, x)δ(x− x′)

where Z = Tr[ρ] =
∫
dxρ(x, x)

4. Consider

K(xf , tf ;xi, ti) =
∑
n

ψn(xf )ψ
∗
n(xi)e

− i
h̄
En(tf−ti)

If we let i(tf − ti) = βh̄ we have the density matrix!
Thus can use path integral with ith̄ replaced by u to evaluate ρ:

ρ(x′, x) = K(x′, βh̄;x, 0) =

∫
x(0)=x,x(βh̄)=x′

(exp{−1

h̄

∫ β

0
h̄[
m

2
ẋ2(u)+V (x)]du})Dx(u)

To calculate Z = Tr[ρ] set x′ = x and integrate over x, i.e. sum over all
periodic paths.

5. Density operator in general:
a) Pure case : ρk =| ψk >< ψk |. Assume normalized. ρ2 = ρ. Trρ = 1.
In terms of some energy eigenstates (say):| ψk >=

∑
n cn | ϕn > with∑

n c
∗
ncn = 1. So

ρk =
∑
n,m

c∗ncm | ϕm >< ϕn |
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Trρ = 1 clearly. Off diagonal elements are “coherences”.
Time evolution: ρk(t) =| ψk(t) >< ψk(t) | So dρ

dt =
1
ih̄ [H, ρ].

Note that only coherences have non zero time dependence.
b) Mixed case

ρ =
∑
k

pkρk

pk is a probability :
∑
k pk = 1. Motivation for this can be from thermo or

from integrating out.
Trρ = 1 obviously. But ρ2 ≤ ρ. Equals sign only in pure case.
Time evolution: same as pure case. In the case of e−βH obviously time

dependence is not there.
6. Several variables and partial traces - that discussion can be carried

over to density matrices. Tensor product. In general the density matrix is
not a direct product of two density matrices. If the systems are physically
independent it will be a direct product.

i)Direct product:ρ = ρϕ ⊗ ρξ
ρϕ = p1 | ϕ1 >< ϕ1 | +p2 | ϕ2 >< ϕ2 |
ρξ = q1 | ξ1 >< ξ1 | +q2 | ξ2 >< ξ2 |
Partial trace over ϕ gives ρξ and vice versa.
ii) Consider
ρ = p1 | ϕ1 >| ξ1 >< ϕ1 |< ξ1 | +p2 | ϕ2 >| ξ2 >< ϕ2 |< ξ2 |.
Trϕρ = ρξ defined above, and vice versa but this ρ is not a direct product.
iii) Start with pure state dm: 1√

2
(| ϕ1 >| ξ1 > + | ϕ2 >| ξ2 >)(< ϕ1 |<

ξ1 | + < ϕ2 |< ξ2 |) 1√
2

This is a pure state. But Trϕρ = 1
2(| ξ1 >< ξ1 | + | ξ2 >< ξ2 |)

which is not a pure state.

3 Spin half system

3.1 Stern Gerlach

1. Force on silver atoms in a non-uniform magnetic field F⃗ = ∇(µ⃗.B⃗). µ ∝
S(spin). Classically spin is in a random direction. The no. of spins dN(θ)
aligned at an angle θ w.r.t. z-axis is ∝ 2πsinθdθ (solid angle). Force is ∝ Sz
and thus the displacement ∆z is also ∝ Sz = Smaxcosθ. So d∆z ∝ sinθdθ.
Thus we get that dN(θ) ∝ sinθdθ ∝ d(∆z). So dN(∆z) = const d(∆z).
In other word a constant no. density fn. What is observed are two peaks
corresponding to Sz = ±1/2 h̄. ⇒quantization of spin.
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2. So we have a two state Hilbert space spanned by | + >, | − >. Can
obviously apply all postulates of QM. Except need an evolution operator.

3. CSCO is either Sz, Sx, or Sx, or some linear combination.
4. Thus S.u where u⃗ is a unit vector measures spin along u⃗.

S.u = cosθσz + sinθcosϕσx + sinθsinϕσy

This is obtained by rotating σz. Thus consider rotating by θ around the
y-axis. This is done by

e
−iθσy

2 σze
iθσy
2 = (cosθσz + sinθσx)

Rotate further by ϕ around z-axis and get S.u. Thus RσzR
† with R =

e
−iϕσz

2 e
−iθσy

2 gives the answer.
5.The corresponding eigenvectors are thus | ± >u= R | ± > Thus

|+ >u=

e
−iϕσz

2 (cos
θ

2
− i sin

θ

2
σy) | + >= e

−iϕ
2 cos

θ

2
| + > +e

iϕ
2 sin

θ

2
| − >

|− >u=

e
−iϕσz

2 (cos
θ

2
− i sin

θ

2
σy) | − >= e

iϕ
2 cos

θ

2
| − > −e

−iϕ
2 sin

θ

2
| + >

6. Polarizer analyser sequence. Start with | + > . Analyser in some
other direction u⃗. Find various probabilities.

Basic expressions :

< + | + >u= e
−iϕ
2 cos

θ

2

< − | + >u= e
iϕ
2 sin

θ

2

< + | − >u= −e
−iϕ
2 sin

θ

2

< − | − >u= e
iϕ
2 cos

θ

2

What is u < + | Sz | + >u? ANS cos2θ/2− sin2θ/2 = cosθ which is the
classical answer. Similarly < Sx >,< Sy >.
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7.Back to Stern Gerlach. Prepare | ± >u state. Then analyze into | ± >
states.

< + | − >u= −e
−iϕ
2 sin

θ

2

When does measurement take place? Even after the magenetic field there
is a wave packet which has split into two - representing the two possible
outcomes. Even after they hit the screen? After we observe it?

If it doesn’t hit the screen it is possible to recombine them into a single
beam and get back | ± >u state. This is a physical explanation of “complete
set of states”.

8. Precession in a magnetic field. “Larmor precession.” Quantum
mechanical evolution in a constant magnetic field Rotating frame.

i)H = −γS.B and assume B is const.
Classically dm⃗

dt = γm⃗×B If −γB⃗ = ω⃗, then dm⃗
dt = ω⃗ × m⃗.

Larmor Precession.
ii) Effect of going to a rotating frame (dm⃗dt )X = (dm⃗dt )x − ω⃗ × m⃗

iii)Quantum mechanically U = ei/2γB⃗.σ⃗t ω⃗ = −γB⃗. So if Bx is there
then U = e−i/2ωxσxt which is a rotation about the x-axis by an angle ωt -
time dependent rotation - Larmor precession.

eg H = Hzσz. If ψ+(t) =< +|ψ(t) > and ψ−(t) =< −|ψ(t) > then

|ψ(t) >= e−
iHzt
h̄ |+ > ψ+(0) + e+

iHzt
h̄ |− > ψ−(0)

Compare with

|+ >u= e
−iϕ
2 cos

θ

2
|+ > +e

+iϕ
2 sin

θ

2
|− >

If we set cos θ/2 = ψ+(0) and sin θ/2 = ψ−(0) and ϕ = Hzt
h̄ then they

are the same. Thus the solution is just a rotated state.
iv) Generalize to the case where there is both Bz and some Bx.
Step1 : Determine θ, ϕ.
Step2 Find | ± >u and the eigenvalues are ± | γB |. where | B |2=

B2
x +B2

z . ω1 = −γBx and ∆ω = γBz
Step3. Start with | ψ(0) >=| + >=| + >u .u < + | + > + | − >u .u <

− | + >
Step 4. | ψ(t) >= e−iω+t | + >u .u < + | + > +e−iω−t | − >u .u < − |

+ >
= eiϕ/2−iω+tcosθ/2 | + >u −e−iϕ/2−iω−tsinθ/2 | − >u

Step5:Calculate< − | ψ(t) > to get eiϕsinθ/2cosθ/2(ei∆Ωt−e−i∆Ωt)e−iωavgt
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Prob (t)= sin2θsin2∆Ωt where (∆Ω)2 = (∆ω)2 + ω2
1 and tan θ = ω1

∆ω
9. Rotating magnetic field. Classical picture of resonance. Quantum

picture. NMR. dm⃗dt = γm⃗× (Bz êz +B1coswtex +B1sinwtey)
Go to rotating frame where B1(t) is time independent.
(dm⃗dt )X = (dm⃗dt )x − ω⃗ × m⃗
If γBz = −ω0 then we get
(dm⃗dt )X = m⃗× (w − w0)ez − m⃗× w1eX
.
qm: Time dependent Hamiltonian!
.

H = h̄/2

(
ω0 ω1e

−iωt

ω1e
+iωt ω0

)
(15)

Going to rotating frame qm is done by | ψ >= e−iwt/2σzχ > is a definition
of χ > where Hamiltonian becomes time independent.

Equation becomes (Use e−iwtσz/2σxe
+i.. = coswtσx + isinwtσy

ih̄ ∂
∂te

−iwt/2σz | χ >= e−iwt/2σz h̄/2(ω0σz + ω1σx) | χ >

⇒ ih̄ ∂
∂t | χ >= h̄/2[(ω0 − ω)σz + ω1σx] | χ >

P+−(t) =
w2
1

w2
1 + (∆w)2

sin2(
√
w2
1 +∆w2)t/2

When ∆ω = 0, the probability becomes 1 at some time. This is when
resonance occurs. So ω0 = ω. ω is the energy of the photon corresponding
to oscillating field. ω0 is the energy difference. So h̄ω = ∆E.

10. Other 2-level systems....(K0 − K̄0system). “Regeneration”. Gen-
eral two level sytem and Spin 1/2 analogy.

25



4 Rotation Group

4.1 Symmetries and Conservation Laws

1. Physical idea of symmetry - translation, rotation, Lorentz transformation.
Connection to coordinate transformation - the idea of manifest invariance of
equations/Hamiltonian/Lagrangian. Distinction between active and passive
transformation - one involves a physical movement whereas the other is
a change of coordinates. But ultimately they amount to the same thing
because “if the coordinate change leaves H invariant “you can’t tell from
within the system that you have moved”.

If H is invariant under translations, then [P,H] = 0. But this also means
P is constant in time. Conservation of momentum.

2. Transformation of other quantities: eg. background fields. If B ̸= 0
then rotation is not a symmetry, unless you rotate B also.

3. Practical application:i) when you choose a convenient coordinate sys-
tem.

ii)Intuitive idea that the final result cannot contain such and such term:
e.g by rotation/reflection symmetry the energy of a magnetic field cannot
contain Bx. It must be B2.

These ideas are made precise by group theory.
4. Groups: mathematical objects that describe symmetry operations.

Multiplication, inverse, identity, closure. Discrete vs continuous. (Note:
gh ̸= hg in general - non commutative, but associative)

5. Discrete vs continuous groups. Lie groups. Lie algebras (addition
is also included). Illustrate with translations. Dx(a) = eiaPx The idea of
exponentiation.

Generator = Px
Similarly Dy(b). Px, Py form an algebra. Dx, Dy form a group. Commu-

tation relation for algebra. Commutative (Abelian) vs Non abelian groups.

Dx(a)Dx(b) = Dx(a+ b) = Dx(b)Dx(a)

....
Dx(a)Dy(b) = Dy(b)Dx(a)

Equivalent to
[Px, Py] = 0

Explain the action on coordinates, wave functions, etc.
Dx(a) : x→ x+ a and Dx(a)xD

−1
x = x+ a (prove to second order)
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[Px, x] = −i
Here x is being treated as an operator.
[iPx, x] = ∂xx = 1 is a particular representation of the operators in

x-space. Then Dx(a) = ea∂x

Acting on functions Dx(a)ψ(x) = ψ(x+ a).
Rotations:

x′ = xcosθ + ysinθ

y′ = −xsinθ + ycosθ

Can write as a matrix. R(θ) = .... Also abelian - any one generator group
is abelian by defn.

6. Implications for qm: [G,H] = 0 G is the generator of a transfor-
mation. Degeneracy. R(orG) | 1 >=| 2 > | 1 >, | 2 > have same energy.
R | 2 >=| 3 > ... It will probably end somewhere if the group is compact.
This defines an irrep. Dimension of the irrep is known from group theory.
eg for rotation group. eg of spin 1/2. 2j + 1.

How does one define transf of wave fns.

ψ′(r′) = ψ(r)

Why? Defines a scalar. If r′ = Rr Then

ψ′(r′) = ψ(R−1r′)

⇒ ψ′(r) = Rψ(r) = ψ(R−1r)

eg Translations:

ψ′(x) = Rψ(x) = ψ(x− a) = e−a∂xψ(x)

where R is the effect of a translation by +a on the state. This gives

R = Dx(−a) = e−a∂x = e−iaPx

Note the signs.
Action on kets:

| ψ′ >= R | ψ >

⇒< r | ψ′ >=< r | R | ψ >=< R−1r | ψ >

Thus
R† | r >=| R−1r >
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Clearly R†R = RR† = I So R is unitary. It is obviously linear. So
on states it is represented by a unitary matrix and the generators by a
Hermitian matrix.

Action on operators A′ = RAR†.
7. Let us use this to find R for rotations: eg

ψ′(r) = Rψ(r) = ψ(R−1r) = ψ(x+ydϕ, y−xdϕ) = [1−dϕ(x∂y−y∂x)]ψ(x, y)

Let

x∂y − y∂x =
i

h̄
Lz

Thus

R = 1− dϕ
i

h̄
Lz

This can be defined as the action of (infinitesimal) rotation about z on states.

For finite rotaions Rz(ϕ) = e
−iϕLz

h̄ . Physically: Rotates your coordinate
system by +ϕ. Or physical system by −ϕ.

So if Hamiltonian is rotationally invariant about Z- axis [Lz, H] = 0.
What is Lz? It is angular momentum. Check : Classically L = r X P . So
Lz = xPy − yPx = −ih̄(x∂y − y∂x)

Similarly
i

h̄
Lx = y∂z − z∂y

i

h̄
Ly = z∂x − x∂z

Commutation relations

[Li, Lj ] = ih̄ϵijkLk

8. Implications for matrix elements. eg for integration : even and odd
fns. The analog of this for more complicated groups. eg

∫
einθdθ Using

invariance of measure dθ under θ → θ + a show that integral must be
zero. So only singlets can be integrated to get non zero answer.∫ 2π

0
dθf(θ) =

∫ 2π

0
dθ′f(θ′)

Choose θ′ = θ + a. Consider In =
∫ 2π
0 dθeinθ. By change of variables

In =
∫ 2π
0 dθ′einθ

′
=
∫ 2π
0 dθein(θ+a) = einaIn. We have used dθ = dθ′. ⇒

In[1− eina] = 0. So either n = 0 or In = 0.
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Get result that the integral is zero unless f is a singlet.
Similarly for rotation gr.∫
d3xfa(x, y, z) =

∫
d3x′fa(x

′..) =

∫
d3xfa(R(θ, ϕ)x..) =

∫
d3xR−1

ab fb(x..)

⇒ (δab −R−1
ab (θ, ϕ))

∫
d3xfb(x, y, z) = 0

eg of functions that transform are einϕcos mθ.
Cannot be zero for all θ, ϕ unless i)R is the identity or ii) the integral is

zero.QED.
9. Using above result one can make statements about matrix elements∫

d3xψ∗
n(x)O(x, ∂x)ψm(x)

. Multiplying two irreps. the general answer is complicated - but known. Q
nos add. again eg of Ylm and eimϕ.

10. Before we turn to rotation group what are the other symmetries?
Lorentz group

x′ = γ(x− βt)

t′ = γ(t− βx)

y′ = y

z′ = z

(γ = 1√
1−β2

). In units where c=1. SO(3)- rotations. SO(3,1) Lorentz group.

Poincare group includes translations.
11. Internal symmetries: Best known example : electric charge! Phase of

the wave function can be changed. Overall phase is not important. Actually
this corresponds to particle number.

12. Local vs. global symmetries. “gauge” symmetries.

4.2 Rotation Group and Angular Momentum

1. Commutation relns:
[Ji, Jj ] = iϵijkJk

[J2, Ji] = 0

J+ = Jx + iJy
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J− = Jx − iJy

[Jz, J±] = ±J±
[[J+, J−] = 2Jz

2. CSCO

3. How nonlinearity fixes normalization. Thus σi do not satisfy the com-
mutation relns: σi

2 do. Unlike Abelian case.

4. J± are raising lowering operators.

J+ | m >= const | m+ 1 >.

5. Show that |j,m > and |j,m±1 > are orthogonal using Jz, J+ commu-
tation. Thus the states generated by rotations span a vector space of
some dimensionality that can be worked out. This is the represen-
taion. Explain the concept of a representation.

Fix const by using | J− | j,m >|2=< j,m | J+J− | j,m >

= j(j + 1)−m2 +m = (j +m)(j −m+ 1)

Eigenvalue of J2 being j(j + 1) is a convention. j is a real number.

| J+ | j,m >|2=< j,m | J−J+ | j,m >

= j(j + 1)−m2 −m = (j −m)(j +m+ 1)

So
J+|j,m >=

√
j(j + 1)−m(m+ 1)|j,m+ 1 >

.

6. Show

:i) −j ≤ m ≤ j

ii) J− | j,−j >= 0 but J−|j,−j + ϵ ≯= 0.

J+ | j, j >= 0 but J+|j,m− ϵ ≯= 0.

iii) The value of m closest to −j, if it is a little larger than −j (can
always be made to lie between −j,−j + 1) we get a contradiction.
Because on the one hand J− acting on that has to give zero, because
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m − 1 < −j. On the other hand the norm of J−|j,m > is not zero if
m > −j. Only possibility is that the m must be precisely = −j.
Thus the difference between −j and m must be an integer. Similarly
between j and m. Thus we have :m− p = −j and m+ q = j.

Therefore j = (q + p)/2.⇒ j is integer or half integer

7. Matrix elements :

< j,m | Jz | j′,m′ >= δj,j′δm,m
′m

< j,m | J± | j′,m′ >= δj,j′δm,m′±1

√
j(j + 1)−m(m± 1)

As an example of the group theoretic selection rule.

8. Examples of representations: j=0,1/2,1. What they act on.

4.3 Orbital Angular Momentum and Ylm
1.

Lx =
h̄

i
(y∂z − z∂y)

etc. Physical idea of orbital vs spin.

Write this in terms of θ, ∂θ, ϕ, ∂ϕ

2. Change of variables:x, y, z → r, θ, ϕ. Volume element d3x = r2drdΩ =
r2drdϕd(cosθ)

Ylm =< θ, ϕ | l,m >

This is the definition. Like

< x | k >= eikx

3. Just as eikx is a soln of ∂xψ(x) = kψ(x) we need eqns for Ylm.

L+Yll = 0

LzYlm = mYlm
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4. Need Lj expressions in spherical coordinates.

Lx = i(sinϕ∂θ +
cosϕ

tanθ
∂ϕ)

Ly = i(−cosϕ∂θ +
sinϕ

tanθ
∂ϕ)

Lz = −i∂ϕ
L+ = eiϕ(∂θ + icotθ∂ϕ)

L− = e−iϕ(−∂θ + icotθ∂ϕ)

L2 = −(∂2θ +
1

tanθ
∂θ +

1

sin2θ
∂2ϕ)

z = rcosθ, ρ = rsinθ, x = ρcosϕ, y = ρsinϕ

Consider functions that don’t depend on r.

f(x, y, z) = f(rsinθcosϕ, rsinθsinϕ, rcosθ) ≡ g(θ, ϕ)

∂f

∂x
=
∂g

∂x
=
∂g

∂θ

∂θ

∂x
+
∂g

∂ϕ

∂ϕ

∂x

tan θ =

√
x2 + y2

z

sec2 θ dθ = − ρ

z2
dz +

2xdx+ 2ydv

2ρz

∂θ

∂z
= − ρ

z2
cos2θ = −1

r
sin θ

∂θ

∂x
= cos2θ

x

ρz
=

1

r
cosθcosϕ

∂θ

∂y
= cos2θ

y

ρz
=

1

r
cosθsinϕ

x

y
= cot ϕ⇒ dx

y
− xdy

y2
= −cosec2 ϕdϕ
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∂ϕ

∂x
= −sin

2ϕ

y
= − sin ϕ

rsin θ

∂ϕ

∂y
=
xsin2ϕ

y2
=

cos ϕ

rsin θ

∂g

∂x
=

1

r
cosθcosϕ

∂g

∂θ
− sin ϕ

rsin θ

∂g

∂ϕ

y
∂g

∂x
= sinθ cosθ sinϕ cosϕ

∂g

∂θ
− sin2ϕ

∂g

∂ϕ

∂g

∂y
=
∂g

∂θ

∂θ

∂y
+
∂g

∂ϕ

∂ϕ

∂y

∂g

∂y
=
∂g

∂θ

1

r
cosθsinϕ+

∂g

∂ϕ

cos ϕ

rsin θ

x
∂g

∂y
= sinθcosθsinϕcosϕ

∂g

∂θ
+ cos2ϕ

∂g

∂ϕ

Lzg = x
∂g

∂y
− y

∂g

∂x
=
∂g

∂ϕ

Similarly
∂g

∂y
=

1

r
cosθsinϕ

∂g

∂θ
+

cosϕ

rsinθ

∂g

∂ϕ

∂g

∂z
= −sinθ

r

∂g

∂θ

−Lxg = z
∂g

∂y
− y

∂g

∂z
= sinϕ

∂g

∂θ
+ cosϕcotθ

∂g

∂ϕ

Lyg = z
∂g

∂x
− x

∂g

∂z
= cosϕ

∂g

∂θ
− cotθsinϕ

∂g

∂ϕ

Thus we get a realization in terms of Hermitian differential operators
(multiplying by −i):

Lz = −i ∂
∂ϕ
, Lx = isinϕ

∂

∂θ
+icosϕcotθ

∂

∂ϕ
, Ly = −icosϕ ∂

∂θ
+isinϕcotθ

∂

∂ϕ
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5. Using Lz get Ylm(θ, ϕ) = Flm(θ)e
imϕ

and
L+Yll = 0 ⇒ [−∂θ + cotθl]Fll = 0

dF =
ld(sinθ)

sinθ
F

F = c(sinθ)l

Yll = ceilϕsinlθ

Get the rest by using lowering operators.

Example:
Y11(θ, ϕ) = c eiϕsin θ

where c is a normalization constant.

L−Y11 = e−iϕ(∂θ + icot θ∂ϕ)(ce
iϕsin θ)

⇒
√
2Y10 = −2c cos θ

Y10 = c
√
2cos θ

L−Y10 =
√
2Y1−1 =

√
2 c e−iϕsin θ

⇒ Y1−1 = c e−iϕsin θ

6. Orthogonality: ∫
dΩY ∗

lm(θ, ϕ)Ylm(θ
′, ϕ, ) = δll′δm,m′

Closure:

∞∑
l=0

Ylm(θ, ϕ)Y
∗
lm(θ

′, ϕ′) = δ(cosθ − cosθ′)δ(ϕ− ϕ′)

The delta fns satisfy
∫
dΩδ2 = 1
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7. Explicit expressions:

Y1,±1(θ, ϕ) =

√
3

8π
sinθe±iϕ

Y1,0 =

√
3

4π
cosθ

Cartesian representation x,y,z !!!

Similarly Y2,m(θ, ϕ) are essentially xixj these five.

Check that they satisfy Rψ(r) = ψ(R−1r)

8. Observables transform as A′ = RAR†

[V, Ji] = 0 ⇒ V is a scalar

[Vi, Jj ] = iϵijkVk ⇒ V is a vector.

J itself is therefore a vector.

9. Spin vs Orbital ang momentum. eg. If ψ itself happens to be a
vector, ψ′(Rr) = Rψ(r). Thus ψ′(r) = Rψ(R−1r). The R outside
is implemented by d⃗ϕ × ψ⃗. Which is −id⃗ϕ.S⃗ where S is i times the
matrix that implements the cross product. eg

Sz = i

 0 −1 0
1 0 0
0 0 0

 (16)

implements rotaion about z-axis. (−i.i = 1). The R−1 inside is im-
plemented as already seen by −id⃗ϕ.L⃗. So total generator is S + L. S
is spin.

10. Addition of Angular Momentum - Clebsch Gordan coeff.

The product of two representations must be a representation - in the
sense that the generators will not take you out of that set. But it may
be reducible. Thus:∑

j

c(j) | j,m(= m1 +m2) >=| j1,m1 > ⊗ | j2,m2 >

The max value on RHS is m1 = j1 and m2 = j2. So max on LHS is
mmax = j1 + j2. This must be the max value of m of some jmax Thus
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jmax = j1 + j2. No other (smaller) value of j can give this m. Thus
we have

|j1 + j2, j1 + j2 >= |j1, j1 > ⊗|j2, j2 >

Use J± | j,m >=
√
j(j + 1)−m(m± 1) | j,m± 1 > Get

| j1+j2, j1+j2−1 >=

√
j1

j1 + j2
| j1−1 > ⊗ | j2 > +

√
j2

j1 + j2
| ji > ⊗ | j2−1 >

The orthogonal state is

| j1+j2−1, j1+j2−1 >=

√
j2

j1 + j2
| j1−1 > ⊗ | j2 > −

√
j1

j1 + j2
| ji > ⊗ | j2−1 >

Example: spin 1/2
| 1, 1 >=| ++ >

| 1, 0 >=
√

1

2
[| +− > + | −+ >]

| 1,−1 >=| −− >

The orthogonal combination:

| 0, 0 >=
√

1

2
[| +− > − | −+ >]

The above was an example of calculation of Clebsch-Gordan coeffi-
cients.

11. Clebsch-Gordan:

| J,M >=
∑

m1,m2

| j1,m1; j2,m2 > < j1,m1; j2,m2 | J,M >︸ ︷︷ ︸
Clebsch−Gordan

| j1 − j2 |≤ J ≤ j1 + j2

Recursion reln for C-G:

Act with J− on LHS and J1− + J2− on RHS and apply< m′
1,m

′
2 | to

get √
J(J + 1)−M(M − 1) < m′

1,m
′
2 | J,M − 1 >
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=
√
j1(j1 + 1)−m′

1(m
′
1 + 1) < m′

1 + 1,m′
2 | J,M >

+
√
j2(j2 + 1)−m′

2(m
′
2 + 1) < m′

1,m
′
2 + 1 | J,M >

Another reln where +1 and -1 are interchanged. General procedure:

As in the example above we started with |j1 + j2, j1 + j2 > and got
|j1 + j2, j1 + j2 − 1 >. Then by orthogonality we got |j1 + j2 − 1, j1 +
j2 − 1 >.

Continue: Use these relations to get |j1 + j2, j1 + j2 − 2 >, |j1 + j2 −
1, j1 + j2 − 2 >. Then by orthogonality get |j1 + j2 − 2, j1 + j2 − 2 >.
Keep going and work out all the C-G’s.

12. Wigner-Eckart:

i). Scalar operator A: Using [J2, A] = 0 = [Ji, A] we can show that

< j′,m′ | A | j,m >= δjj′δmm′a(j)

From

< j′,m′|[J2, A]|j,m > = 0 = < j′,m′|[Jz, A]|j,m >

we see that j = j′ and m = m′.

To see that the matrix element doesn’t depend on m:

< j,m|J−AJ+|j,m >= [j(j + 1)−m(m+ 1)] < j,m+ 1|A|j,m+ 1 >

Also:

< j,m|J−AJ+|j,m >=< j,m|AJ−J+|j,m >= [j(j+1)−m(m+1)] < j,m|A|j,m >

Thus the matrix elements do not depend on m. So any two scalars
matrix elements are proportional in the entire (j,m) subspace.

ii) For vectors V⃗ : Can show that:

< j,m′ | V⃗ | j,m >= a(j) < j,m′ | J⃗ | j,m >

i.e. the prop const is ind of m:

Use [V+, J+] = 0 and the fact that V+ has m = 1. Thus

< j,m+ 2|V+J+|j,m >=< j,m+ 2|J+V+|j,m >

37



Insert complete set of states: Only |j,m+ 1 > contribute. so

< j,m+2|V+|j,m+1 >< j,m+1|J+|j,m >=< j,m+2|J+|j,m+1 >< j,m+1|V+|j,m >

Thus

< j,m+ 2|V+|j,m+ 1 >

< j,m+ 2|J+|j,m+ 1 >
=
< j,m+ 1|V+|j,m >

< j,m+ 1|J+|j,m >
= C+(j)

Similarly with V− we get C−.

Finally, using [V+, J−] = 2Vz we find on inserting a complete set of
states, < j,m|Vz|j,m >= C+m. If we use [V−, J+] = −2Vz we get
< j,m|Vz|j,m >= C−m. Thus C+ = C−.

Thus if P is proj operator into j-subspace:

PJ.V P = a(j)PJ.JP = a(j)j(j + 1)P

⇒ a(j) =
J.V

j(j + 1)

in the given subspace.

Useful: iii) spinning electron in a magnetic field: H1 = wl(Lz + 2Sz).

J = L+ S

CSCO:Jz, J
2, L2, S2

Thus if we neglect mixing between different valus of j for small B-field.

< J,M, S, L | H1 | J,M, S, L >= wl
< J.L > +2 < S.L >

J(J + 1)
Jz

= (3/2 +
S(S + 1)− L(L+ 1)

2J(J + 1)
)Mwl

“Lande’s g-factor” - splits the degeneracy.

iv) General Wigner-Eckart: matrix elements of TQ,K are proportional
to clebsch-Gordan:

< j,m | TQ,K | j′,m′ >= a(j, j′)< j,m | Q,K; j′m′ >︸ ︷︷ ︸
C−G

38



Use CG to write

TQ,K | j′,m′ >=
∑
J

NJ | J,M >< J,M | Q,K; j′,m′ >

TQ,K | j′,m′ >=
∑
J

| J,M >< J,M | TQK | j′,m′ >

These two equations are proportional in each J, j′, Q sector. Because
rotaion of coordinate systems will changeM,K,m′ in exactly the same
way in both equations. So the proportionality constant NJ cannot
depend on M .

As a special case consider

TQQ|j′, j′ >= a(Q+ j′, j′)|Q+ j′, Q+ j′ >

Let

TQ,Q−1|j′, j′ >=
√

Q

Q+ j′
a1|Q+j′, Q+j′−1 > −

√
j′

Q+ j′
b1|Q+j′−1, Q+j′−1 >

Take the matrix element:

< Q+ j′, Q+ j′ − 1|TQQ−1|j′, j′ >=
√

Q

Q+ j′
a1

LHS can be written as

1√
2(Q+ j′)

< Q+j′, Q+j′|J+TQQ−1|j′, j′ >=
1√

2(Q+ j′)
< Q+j′, Q+j′|[J+, TQQ−1]|j′, j′ >

=

√
Q

Q+ j′
< Q+ j′, Q+ j′|TQQ|j′, j′ >=

√
Q

Q+ j′
a(Q+ j′, j′)

a1 = a(Q+ j′, j′)

Similarly for the rest, by recursion. The above calculation implements
the idea od rotating the coordinate system.

More general proof (a la Schiff): Want to show that TKQ|j,m >=∑
J |J,M >>< J,M |Q,m >. Here< J,M |Q,m > are the C-G’s. The
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sum is over all allowed values of J. |J,M >> transforms like an angular
momentum state, but its normalization depends on T . Want to show
that this normalization cannot depend on M . So invert the above:

|J,M >>=
∑
Q,m

TKQ|jm >< Q,m|J,M >

Act with J+.

RHS gives:∑
Q,m

√
K(K + 1)−Q(Q+ 1)TKQ+1|j,m >< Q,m|J,M >

+
√
j(j + 1)−m(m+ 1)TKQ|j,m+ 1 >< Q,m|J,M >

Let Q′ = Q+ 1 in the first term and m′ = m+ 1 in the second term.

=
∑
Q′,m

√
K(K + 1)−Q′(Q′ − 1)TKQ′ |j,m >< Q′ − 1,m|J,M >

+
∑
Q,m′

√
j(j + 1)−m′(m′ − 1)TKQ|j,m >< Q,m′ − 1|J,M >

Note that the range of Q′,m′ is the same as Q,m because the extra
term vanishes anyway. Drop the primes.

If you use the recursion relation RHS becomes√
J(J + 1)−M(M + 1)

∑
Q,m

TKQ|j,m >< Q,m|J,M + 1 >

=
√
J(J + 1)−M(M + 1)|J,M + 1 >>

.

The last equality implies that the proprtionality between |J,M > and
J,M >> is the same for all M . In particular if we know one <
j′,m′|TKQ|j,m > we know all the rest (i.e. other values of m,m′, Q
and same j, j′,K) by using C-G relations. This is the Wigner Eckart
Theorem.
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4.4 P,T,C

Motivate by asking the question “ How does one communicate the concept
of left-handed to a Martian?” This is the idea of symmetry. Ans. W−

decay. It decays into left handed electrons!
Parity:
1.

P r⃗ = −r⃗

On the ket:
P |r >= | − r > .

i)As a matrix P has det =-1. Not a rotataion
ii)Mirror Reflection (z → −z) followed bey rotation about z-axis by 180

gives parity.
2.

ψ′(r′) = wψ(r)

Allowed as parity is discrete.

Pψ(r) = wψ(−r)

However for integer spin can require that P 2 = 1 So w2 = 1 and w = ±1.
Thus for the operator r

3. PrP−1 = −r , PpP−1 = −p but PLP−1 = L same for S and J .
In polar coordinates θ → π−θ and ϕ→ ϕ+π. Ylm → (−1)lYl,m. Check.

Current: j⃗ → −j⃗ and ρ→ ρ.
So ϕ(x) → ϕ(−x), A⃗ → −A⃗ Thus photon has intrinsic parity -1. E →

−EB → B (Axial vectors)
4. If parity is conserved PHP−1 = H. This implies PSP−1 = S.
eg π0 → 2γ. What is the intrinsic parity of π0 Does it have defn parity?

If yes : J=0 means the final state wave fn must be a scalar depending on
ϵ⃗1, ϵ⃗2, k.

ϵ⃗1 .⃗ϵ2

or
(⃗ϵ1 × ϵ⃗2).k

It is found that π0 has P=-1 - pseudoscalar.
In terms of helicities ψRR ± ψLL are the two photon states with defn

parity.
5. Parity is violated.eg when a W decays (e−, ν̄) the electron coming out

is always left helicity.
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Charge Conjugation
Supoose the Martian doesn’t know what is +ve and -ve charge. Then

how would he distinguish between theW− decaying into left handed electron
and W+ decaying into right handed positrons? He can’t!

1.e− → e+

CH = HC and so CS = SC. Unitary.
2.

ϕ→ −ϕ

A⃗→ −A⃗

⇒ photon has intrinsic C of -1. Does nothing to r, t.
examples: 3. π0 → 2γ 2 photons state has C =+1. So the pion has

C=+1. Which means π → 3γ is not allowed!
4.Furry’s theorem: No. of external photons must be even. (−1)n =

(−1)m ⇒ n+m is even.
5. Positronium: e+e−. The electron has r, S, C quantum nos and we

interchange electron and positron. Fermions , so overall sign has to be
negative.

(−1)l(−1)s+1C = −1

So C = (−1)l+s. Thus
1S0 → 2γ

(spin =0, l=0)
3S1 → 3γ

(spin 1, l=0) but not 2γ.
6.CP
K0 = sd̄ and K̄0 = s̄d.

K0 − K̄0

√
2

has C=-1 and P=-1 so CP=1

K0 + K̄0

√
2

has C=1 and P=-1 so CP=-1
2π0 has P=1 (S-wave), C=1 So CP=1. 3π0 has P=-1 (S-wave) and C=1

so CP=-1. (It has to be S-wave because the K’s are J=0)
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The K-Kbar goes into 2π and is faster decay - henceKS and the other one
is called KL CP odd and longer lived. These are also the mass eigenstates.

But in fact occasionally KL decays into 2π: violates CP.
So in fact there may be a difference between W+ decay and W− decay!

So the Martian will be able to distinguish between left and right after all!.
Unless he doesn’t know the difference between time going forwards and

backwards!
Time Reversal:
1. Tψ(x, t) = cψ(x,−t) Schroedinger eqn doesn’t have this symmetry!

Because it is first order. Assume T is unitary. If we take a state at t=0 and
propagate to t and then time reverse, or time reverse and then propgate to
-t, we should get the same answer.

Te−iEtu = e−iEtTu

other way
eiEtTu

. Want anti linear: T (aψ(x, t)) = a∗T (ψ(x,−t))
This will solve the problem. So

T = UK

where U is unitary and K is antilinear - “complex conjugation” - i.e Kψ =
ψ∗.

< ϕ | ψ >=< ψ | ϕ >∗=< Tψ | Tϕ >

But in general U,K will depend on the representation.
2.

rT = Tr

pT = −Tp

TL = −LT

TYlm = Y ∗
lm

(T does nothing to θ, ϕ)

ρ→ ρ

j → −j

ϕ→ ϕ
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A(x, t) → −A(x,−t)

E → E

B → −B

3. Spin is like L. Want to reverse. σy is imaginary so K does the job.
σx , σz need to be reversed: e−iπSy will do that. So

T = e−iπSyK

. This argument works for any spin. Sy can always be chosen imaginary.
For spin 1/2 T = −iσyK.
T 2 = e−i2πSy which is +1 on integer spin and -1 on half integer.
4. Application Kramer’s degeneracy. Can electric field lift degeneracy?
Suppose there is no degeneracy due to T. Then Tuk = cuk must be true

for c a number. T 2uk =| c |2 uk. Now if we are talking of a half integer then
| c |2= −1 is a contradiction. So there must be a degeneracy! Regardless
how complicated the electric field.

B breaks the symmetry.
TYlm = cYlm is possible only for m=0 or for states like Ylm±Yl−m. Thus

m is not a good quantum no.

5 Harmonic Oscillator

5.1 Review

1. Importance of harmonic oscillator: Leading Aproximation.

2. Hamiltonian and Lagrandgian.

H =
P 2

2m
+
mω2

2
X2

Rescaling variables.

Let X ′ =
√
mX and P ′ = P√

m
. [X ′, P ′] = ih̄.

H =
1

2
(P ′2 + ω2X ′2)

Rescale again: X̂ = 1√
ω
X ′ and P̂ =

√
ωP ′.
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H =
ω

2
(P̂ 2 + X̂2)

Thus x̂ =
√
ωx′ =

√
mωx. Drop hats from now on.

Creation operator a† = (X − iP )/
√
2h̄ and [a, a†] = i.

3. Eigenstates: | n > : a† | n >=
√
n+ 1 | n + 1 > Number operator

N = a†a , H = h̄ω(N + 1/2).

4. Wave fns.

(x+
∂

∂x
)ψ = 0 ⇒ d(ln ψ) = −1

2
d(x2)

ψ(x) ≈ e−
x2

2 ≈ e
−mωx2

2

We have rescaled from hat variables to ordinary variables.

ϕ0 = (mωπh̄ )
1/4e

−mωx2

2h̄ X Hermite polynomials.

5.2 Path Integral Treatment

1. Doing Gauusian integrals:∫ x(tf )=xf
x(ti)=xi

Dx(t)︸ ︷︷ ︸
sumover paths

exp(+ i
h̄

∫ tf
ti dtL(x(t),

˙x(t))

with L = T − V (x) where V is quadratic.
Let x(t) = xc(t) + y(t). Then Xc satisfies bc. So y is 0 at both ends. So

we get∫ x(tf )=xf
x(ti)=xi

Dx(t)︸ ︷︷ ︸
sumover paths

exp(+ i
h̄

∫ tf
ti dtL(x(t),

˙x(t)) = F (ta, tb)e
i
h̄
Scl

where

F (ta, tb) =

∫
y(ta)=y(tb)=0

Dy(t)ei
∫ tb
ta
dtL(y,ẏ,t)

and of course L is quadratic.
Time independent implies F (ta − tb)
2. Do the calc for SHO. First Sc, then F. Done before.
3. Evaluate ϕ0(x) and ϕ1(x) by expanding kernel.

2 coswt = eiwt(1 + e−2iwt)

2i sinwt = eiwt(1− e−2iwt)
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5.3 1-dim crystal and field theory

1. Want to solve:

L =
N∑
j=1

1/2q̇2j − ν2/2(qj+1 − qj)
2

2. Special case of coupled oscillators:

L =
1

2
[(q̇21 + q̇22) + q21 + q22 + αq1q2]

If we define Q = q1+q2√
2

and q = q1−q2√
2

, then

L =
1

2
[(Q̇2 + (1 + α)Q2 + q̇2 + (1− α)q2].

Gives a decoupled system.

Can get q1(t) =
Q(t)+q(t)√

2
and q2(t) =

Q(t)−q(t)√
2

.

If α = −1, then we have diatomic molecule - centre of mass is free.
The crystal is a generalization of this.

Now general case:

3. Periodic bc qN+1 = q0.

4. Eqn of motion.

d2qn
dt2

= ν2(qn+1 − qn) + (qn−1 − qn)

Solns. Use translation inv. to get the normal modes.

qn = eiβn

are the form of normal modes with β = 2πk
N

eiβn−ωt = ei
β
a
(x−aνt)

vel is

c = aν

w2 = ν2(4sin2
β

2
)
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5. Show that normal modes are decoupled oscillators.

qn =
1√
N

∑
k

ake
iβkn

L = 1/2
∑
k

[ȧkȧ−k − 4ν2sin2βk/2aka−k]

Also need to divide by
√
N to get finite limit.

Reality of qn(t) implies a∗k(t) = a−k(t) But a−k = aN−k. So a∗k =
aN−k. Define

bk = 1/2(ak + a∗k) = 1/2(ak + aN−k)

and
ck = 1/2i(ak − aN−k)

The index on b,c clearly go only to N/2. In terms of b,c:

L = 1/2

N
2∑

k=1

[(ḃk)
2 − 4ν2sin2

βk
2
b2k] + same for c

With time dep

qn(t) = ake
iβkn−iwkt + a∗ke

−iβkn+iwkt

= bk cos(βkn− wkt)− ck sin(βkn− wkt)

What happened to waves in the opp direction: by changing βk →
βk− 2π = βk−N we get waves moving the opposite way! So if we want
we can change all the indices on the c to negative. Thus N − k ≡ −k.
Whichever way you count there are N oscillators.

6. Continuum limit. “ Free Field Theory”. The velocity of light emerges.
qn(t) → q(x, t).

L = 1/2

∫
dx[

q̇2

a
− ν2a(q′)2]

1/2

∫
dx[Q̇2 − c2Q′2]

where q = Q
√
a
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In terms of oscillators ∑
k

ḃ2k − 4ν2sin2(
βk
2
)b2k

In cont. limit 4ν2sin2... = (2πkνN )2 = w2
k. Thus we have harmonic osc

with energy quanta =

h̄w =
h̄2πkν

N
=
h̄2πk

L
c = pc

phonons / photons ...

5.4 Coherent States

1. Rescale √
mwX = x̂

P√
mw

= p̂

.

2. Classical eqns ẋ = ωp and ṗ = −ωx. Can be written as

α̇ = −iωα

Want same eqns qm.for < a >

ih̄d/dt < a >=< [a,H] >= ω < a > (t)

3. Find a state such that < a >= α0 and also < H >= h̄ω | α0 |2 =
classical.

Let
a | α >= α | α >

This will solve the problem.

| α >= e−|α|2/2∑
n

αn√
n
| ϕn >
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4. Props: i) closure

1

π

∫
d{Re α}d {Im α}|α >< α| =

∑
n

|n >< n| = 1.

Note that the measure is dx dp2π .

ii) not ortho. They are over complete:

< α | α′ >= e
−|α|2

2 e
−|α′|2

2

∑
n

(α∗)n√
n

(α′)n√
n

= e
−|α|2

2 e
−|α′|2

2 eα
∗α′

Thus | < α|α′ > |2 = e−|α−α′|2 ̸= 0.

5.

< H >α= h̄w[| α |2 +1/2]

< H2 >α= h̄w[| α |4 +2 | α |2 +1/4]

∆H = αw

∆H

H
= 1/α ≈ 0

Same for X,P

< X >,< P >= Re, Im(α)
√
2

< X2 > − < X >2= 1/2

Find
∆X∆P = 1/2

Minimum uncertainty.

6. Unitary operator D(α) | 0 >=| α >

D = eαa
†−α∗a. DD† = 1.

< x | α >=< x | D | 0 >

αa† − α∗a = (α− α∗)x/
√
2− i(α+ α∗)P/

√
2
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Using eA+B = eAeBe−
1
2
[A,B],

D = e
α∗2−α2

4 e
(α−α∗)x√

2 e
−i(α+α∗)p√

2

It follows that

ψ(x, 0) = eiθei<P>xϕ0(x− < X >)

ϕ0 is the gnd statet wave fn. Width of gaussian is 1/
√
2 for x̂ or

√
h̄

2mw
for x.

7. Time dependences of everything. Coherent states remain coherent.

| α(t) >= e−iwt/2 | α(0)e−iwt >

Wave packet remains a wave packet. So at later times also we get
same wave fn except that < x > and < p > change with time as cos
wt , sin wt etc. and also we get an overall phase.

6 Perturbation Theory

6.1 Stationary Perturbation Theory

1.
H = H0 + V

Matrix elements of V are assumed to be smaller than E0
n−E0

p Let V = λW
where λ is a small number and matrix elements of W are not small.

2.
H(λ) | ψ(λ) >= E(λ) | ψ(λ) >

Let
E(λ) = ϵ0 + λϵ1 + λ2ϵ2 + ...

| ψ(λ) >=| 0 > +λ | 1 > +λ2 | 2 > +...

We get
H0 | 0 >= ϵ0 | 0 >

(H0 − ϵ0) | 1 > +(W − ϵ1) | 0 >= 0

(H0 − ϵ0) | 2 > +(W − ϵ1) | 1 > −ϵ2 | 0 >= 0
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Assume < ψ | ψ >= 1 and phase convention < ψ | 0 > is real.
⇒< 0 | 0 > +λ < 0 | 1 > is real. So < 0 | 1 > is real.
Also < 0 | 0 > +λ < 0 | 1 > + < 1 | 0 >= 1. Plugging in lowest order

solution which is < 0 | 0 >= 1 and using reality get < 1 | 0 >= 0.
Solution:
Zeroeth order gives

| 0 >=| ϕn >

1st order Applying < ϕn |

ϵ1 =< ϕn |W | ϕn >

Applying < ϕp | gives

| 1 >=
∑
p,p ̸=n

< ϕp |W | ϕn >
En − Ep

| ϕp >

2nd order Apply < ϕn| to second order equation:

ϵ2 =
∑
p,p ̸=n

< ϕn |W | ϕp >< ϕp |W | ϕn >
En − Ep

Note sign: decided by En − Ep. eigen value repulsion.
2. Degenerate Perturbation theory
Let | ϕin > : i = 1, .., gn be states degenerate in energy.
first order eqn is modified: get a matrix eqn insted of a single eqn:

Apply< ϕin | to get

< ϕin |W | 0 >= ϵ1 < ϕin | 0 >

Insert complete set of states and use orthogonality to restrict sum to sub-
space. ∑

j

< ϕin |W | ϕjn >︸ ︷︷ ︸
gn×gnmatrix

< ϕjn | 0 >= ϵ1 < ϕin | 0 >

This may or may not split degeneracy. But W has been diagonalized so
need not fear infinite denominators.

Degeneracy is important because it is qualitative and not quantitative.
If due to symmetry, higher orders will not resolve it.
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6.2 Applications

1.Anharmonic oscillator

H0 = 1/2h̄w(P 2 +X2)

V = λh̄wX3

Non zero matrix elements of pert:

< ϕn+3 | V | ϕn >=
h̄w

2
√
2

√
(n+ 1)(n+ 2)(n+ 3)

< ϕn−3 | V | ϕn >=
h̄w

2
√
2

√
n(n− 1)(n− 2)

< ϕn+1 | V | ϕn >=
3h̄w

2
√
2

√
(n+ 1)3

< ϕn−1 | V | ϕn >=
3h̄w

2
√
2

√
n3

ϵ1 =< ϕn | V | ϕn >= 0

2nd order

| < ϕn+3|V |ϕn > |2

−3h̄ω
= − h̄ω

3

(n+ 1)(n+ 2)(n+ 3)

8

| < ϕn−3|V |ϕn > |2

+3h̄ω
=
h̄ω

3

n(n− 1)(n− 2)

8

| < ϕn+1|V |ϕn > |2

−h̄ω
= −9h̄ω

(n+ 1)3

8

h̄w

−24
(n+ 1)(n+ 2)(n+ 3) +

h̄w

24
n(n− 1)(n− 2) + w̄9/8n4 − h̄w9/8(n+ 1)3

= −15/4(n+ 1/2)2h̄w − 15/2nh̄w

×λ2.
Note En−En−1 = h̄w−15/2nλh̄w. The energy difference is not constant.
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Eigenstate is of the form

| ψn >=| ϕn > +O(λ)(| ϕn+3 >, | ϕn−3 >, | ϕn+1 >, | ϕn−1 >)

,
2. Applications : Oscillating dipole normally radiates only Bohr frequen-

cies w. But the anharmonic X connects n with n+2 and also n-2.
This is because < ψ2|X|ψ0 >≈ λ < ϕ1|X|ϕ0 > O(λ) ̸= 0. So we get

frequencies corresponding to E2 − E0 ≈ 2ω. So we get 2w also.
Even < ψn | X | ψn ≯= 0, ≈ O(−λn3/2). This implies at higher n

the dipole stretches. When λ is negative it is easier to move to the right
(+ve x) than to the left. Vice versa when λ is positive. So at higher energy
levels expect that average x will change in the direction which is easier. This
explains the sign in the equation and also explains why materials expand on
heating.

Van der Waal’s force

1. Potential due to a charge = ϕ(r) = q
r . Potential due to a dipole

ϕ(r) =
q

r
− q

r + δr
=
qδr

r2
=
qr⃗D.r̂

r2
=
p⃗.r̂

r2
=
p⃗.r⃗

r3

Electric field due to dipole:

Ei = −∂iϕ(r) = −(
pi

r3
+ p⃗.r⃗

∂

∂i
(
1

r3
))

= −(
pi

r3
+ p⃗.r⃗(

−3ri

r5
))

Ei = −pj [δij
r3

− 3rirj

r5
]

Energy −E⃗1.p⃗2:

W = pi1p
j
2[
δij
r3

− 3rirj

r5
]

2. We are considering force between two neutral atoms, that have no
dipole moments. Say, hydrogen atoms in their ground states. The
state is |ψ0 >= |1 > ⊗|2 > orψ0(r1)ψ0(r2). We are given that <
1|p1|1 >=< 2|p2|2 >= 0. Therefore < ψ|W |ψ >= 0.

No first order correction.
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3. Second order: ∑
n̸=0 < ψn|W |ψ0 > |2

E0 − En

Note the sign: it is negative (E0 < En) : ⇒ attractive.

Since W ≈ 1
r3
, the van der Waal correction is ≈ 1

r6
. ∆E = − c

r6
. Let

us estimate c.

4. E0 = E1
0 + E2

0 . For each atom, |En| = |E0
n2 | << |E0|. So we drop En.

Then

∆E =
∑
n

| < n|W |0 > |2

E0

=
< 0|W 2|0 >

E0

Choose the direction between the atoms to be ẑ. So we get

W ≈ p1xp2x + p1yp2y − 2p1zp2z

W 2 = e4(x1x2 + y1y2 − 2z1z2)
2

We need < 0|W 2|0 > so all cross terms can be dropped.

< W >=< x1x1 >< x2x2 > + < y1y1 >< y2y2 > +4 < z1z1 >< z2z2 >

By symmetry they are all equal to < r2

3 >< r2

3 > . For the hydrogen

atom < r2

3 >= a20. Also E0 = 2 e2

2a20
- the factor of 2 because there are

two atoms. Thus we get c = 6e2a50.

5. Physical mechanism: QMec fluctuation produces a dipole moment in
one atom, which induces a dipole in the second atom and they attract.
These two dipoles are correlated because one is induced by the other.
The uncorrelated fluctuations average out.

Because one dipole induces the other there is a time lag. So when the
time taken for influence is of the order of Bohr frequency, this approx
breaks down. Thus r < c

ν = λ. Also R should be large enough that
the independent wave function approx holds.So r >> a0.
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6.3 Time dependent pert theory

We ask for transition prob from some initial state i to some final state f
usually during the perturbation or after. Usually i and f are eigenstates of
unperturbed H. Special case 1) Adiabatic 2) Sudden.

Otherwise do pert in λ as before.

ih̄d/dt | ψ(t) >= (H0 + λV | ψ(t) >

ψ(0) >=| ϕi >

Reqd:Pfi(t) =|< ϕf | ψ(t) >|2

|ψ(t) >=
∑
k

ck(t)|ϕk >

ck(0) = δki Project < ϕn | to get

ih̄ċn =< ϕn | H0 + λW |
∑
k

ck | ϕk >

Insert complete set of states:

=
∑
m

(Enδnm + λWnm)cm(t)

Redefine cn(t) = bn(t)e
−iEnt to get

ih̄d/dtbn(t) = λ
∑

Wnme
iwnmtbm

Now expand
bn = b0n + λb1n + ..

Soln
b0n = const = δni

b1n(t) =
1

ih̄

∫ t

0
dtWnie

iwnitdt

Pfi(t) = 1/h̄2 |
∫ t

0
dtWnie

iwnitdt |2

special case i) harmonic perturbation W (t) = Wsinwt or Wcoswt. If
ω = 0 use cos to get:
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|Wfi |2

h̄2
[
sinwfit/2

wfi/2
]2

If w ̸= 0 use 2sin wt and get same formula with wfi → wfi − w.
Coupling to continuum:
Use (sinwt/2/w/2)2 = 2πth̄δ(Ef − Ei).
Derivation: ∫ ∞

−∞
eixtdt = 2πδ(x)

= limT→∞

∫ T

−T
eixtdt =

2i sin xT

ix

⇒ LimT→∞
sin xT

x
= πδ(x)

LimT→∞(
sin xT

x
)2 = πδ(x)

sin xT

x
= πTδ(x).

For the case ω = 0,

dPfi/unittime/dβ =
2π

h̄
|< β,E |W | ϕi >|2 ρ(β,E = Ef = Ei)

Here β represents any other continuous parameter (eg. angle). ρ(β,E)
is the no. of states per unit ∆E, per unit ∆β. (“number density of states”).
This is Fermi Golden Rule

2. Prove Born scattering formula: Take initial state to be | pi > and
final state to be | pf >. Note: < x|p >= eip.r This is different from that in
some books where < x|p >= 1

(2πh̄)
3
2
eip.r.

Calculate ρ(E). ∫
d3p

(2πh̄)3
=

∫
dΩdEρ(E)

(In the other normalization there would be no factors of 2π.)∫
p2dpdΩ

(2πh̄)3
=

∫
pm

(2πh̄)3
dEdΩ =

∫ √
2mEm

(2πh̄)3
dEdΩ

Thus ρ(E) = m
√
2mE

(2πh̄)3
.
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Divide final probability/unit time by flux (= p
m)to get prob /unit flux/unit

time.
m2

4π2h̄4
|
∫
d3rei(pf−pi).rW (r) |2

[If we use the other normalization we also get same. But ρ(E) = m
√
2mE.

The factors of 2π are in the matrix element.]
This is called the “differential scattering cross section”.
The total scattering cross section will now involve integration over dΩ.

6.4 Scattering

1.

dn = σ(θ, ϕ) Fi dΩ

where Fi is the incident flux and σ(θ, ϕ) is the differential scattering
cross ection. It is no. of scattered particles per unit incident particle
per unit solid angle. ∫

dΩσ(θ, ϕ) = σ

is total scattering cross section.

2. Calculation of σ.

Look for stationary states:

[− h̄2

2m
△+ V (r)]ϕ(r⃗) = Eϕ

Let 2mV/h̄2 = U and let h̄2k2 = 2mE, then

[△+ k2]ϕ(r⃗) = U(r)ϕ(r⃗)

Now the soln we want has the asymptotic form

ϕ(r) ≈ eikz + f(θ, ϕ)eikr/r

Because it has the form of incident wave plus outgoing scattered wave.
and eikr/r is also a soln to the homogeneous eqn as long as r > 0. To
see that:
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△(1/r) = 4πδ(r⃗)

- from electrostatics. Note that this is the three-dimensional delta
function. Can check that − e±ikr

4πr = G±(r) is the Green fn [Do they

know what it is?] for Scattering eqn above. [Use △ = ∂2

∂r2
+ 2∂

r∂r ]

The incident flux is h̄k
m and scattered flux is |f |2

r2
h̄k
m .This is flux per

unit area. Multiply by r2dΩ to get : no. of particles per unit time
dn = |f |2dΩ h̄k

m . Thus from the definition of σ, σ(θ, ϕ) = |f |2. So we
need f .

3. There will be interference in forward direction between scattered and
incident flux. This follows from unitarity - conservation of particles.
Thus we can expect total scattering probability (∝ |f |2) to be related
to this interference term (∝ f). This is the content of the optical
theorem -which is done later.

4. Actually the interference should not be only in the forward direction,
because we have an infinite plane wave front. Resolution: The infinite
front is an idealization. Actually it is a narrow beam. So we really
should be taking a superposition of several k⃗i with small amounts of
kx, ky. Rotated ki has the effect of changing θ, ϕ in f . Thus it is as if
one has to take f and average over a small range of θ, ϕ. However if
f is a smooth function (which it is) this makes very little difference.
So we can pretend there is only one k⃗i = kz ẑ and inspite of having an
infinite wave front, pretend there is a small beam, and therefore ignore
interference in all but the forward direction. It is like having the cake
and eating it too! The idealization should be such that it simplifies
the calculation but doesn’t change the answer.

5. So we get soln

ϕ(r) = ϕ0(r) +

∫
d3r′G+(r − r′)U(r′)ϕ(r′)

where ϕ0 solves the hom eqn.

Iterate by plugging in for ϕ back into the eqn:

ϕ(r) = ϕ0(r)+

∫
d3r′G+(r−r′)U(r′)ϕ0(r

′)+

∫
d3r′

∫
d3r′′G+(r−r′)U(r′)G+(r

′−r′′)U(r′′)ϕ(r′′)
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Hopefully each term is smaller than the other. Keep leading term and
get “Born approx” with ϕ0 = eikz

Using (for large r) | r⃗− r⃗′ |≈ r− û.r⃗′ where û is the unit vector in the
direction of r⃗ which is also the direction of scattered particle. Thus
ûk = k⃗f

we get

ϕ(r) ≈ eikz − eikr/4πr

∫
d3r′e−ikûr⃗

′
U(r′)eik⃗i.r⃗

′

for large r.

So

f(θ, ϕ) = −1/4π

∫
d3r′e−ik⃗f r⃗

′
U(r′)eik⃗i.r⃗

′

.

= − 2m

h̄24π

∫
d3r′e−ik⃗f r⃗

′
V (r′)eik⃗i.r⃗

′

And so we get σ also. This is Born (differential) scattering cross sec-
tion.

6. Path integral approach

K(b, a) = K(xf , tf ;xi, ti) =
∫ x(tf )=xf
x(ti)=xi

Dx(t)︸ ︷︷ ︸
sumover paths

exp(+ i
h̄

∫ tf
ti dtL(x(t),

˙x(t))

L=T-V. So expand in powers of V:

K(b, a) =

∫ x(tf )=xf

x(ti)=xi

Dx(t)︸ ︷︷ ︸
sumover paths

exp(+
i

h̄

∫ tf

ti

dtT (x(t), ˙x(t))[1− i

h̄

∫ tf

ti

dt′V (x(t′))+

+
1

2!

i

h̄

∫ tf

ti

dt′V (x(t′))
i

h̄

∫ tf

ti

dt′′V (x(t′′)) + ...]

= K0(b, a)−
i

h̄

∫ ∫
K0(b, c)V (x(tc))K0(c, a)dtcdx(tc) + ...

Only diff with other series: This has t - the other is in energy variable.
So do FT. Thus (T = tf − ti)∫ ∞

−∞
dteiωtK(x, t;x′, 0) = −iG(x− x′, ω)
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where G satisfies (− h̄2

2m
∂2

∂x2
− ω)G(x− x′, E) = δ(x− x′).

(Note that K is zero if tf < ti). To see this∫ ∞

0
dteiωtK(x, t;x′, 0) =

∑
n

ψn(x)ψ
∗
n(x

′)

∫ ∞

0
dte−iEnt+iωt

=
∑
n

ψn(x)ψ
∗
n(x

′)

i(En − ω)

Thus acting with Schroedinger equation cancels En − ω and we get
−iδ(x− x′).

If we let h̄k = p and h̄ω = E in G+ defined earlier we get G
2m .

Also multiply by ϕ(x, 0) to get in terms of wave fns.

−iG =

∫ ∞

0
dt eiωt

∫
d3p

(2π)3
e−i

p2

2m
teip⃗.r⃗

= −
∫ ∞

0

p2dp

8π3

∫ 2π

0
dϕ

∫ 1

−1
d cosθeipr cosθ

1

i( p
2

2m − k2

2m)

(Note the sign from : d cosθ = −d sin θdθ)

= − 2π

8π3ir

∫ ∞

0
pdp

eipr

i( p
2

2m − k2

2m)
− cc

We have set ω = k2

2m . Extend range −∞ to +∞ by combining cc. and
do contour int. The iϵ prescription is ω+ iϵ. So (p−k− iϵ)(p+k+ iϵ).
Pick p = +k since r > 0, to get 2me+ikr

i4πr = i2mG+. Thus G = −2mG+.

This is a series for K. Act on initial state ψi(x
′, t):

ψf (x, t) =

∫
d3x′K(x, t;x′, t′)ψi(x

′, t′)

Take t′ → −∞ so that ψi is a plane wave state =ψ0(x) = eikz. It

has definite energy Ek = h̄2k2

2m . The integral over tc from −∞,+∞
guarantees energy conservation in all interacting terms.
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7. Eikonal approx Instead of eikz for ϕ(r) use eiS0(r). whose eqn is

(∇S0)2 = 2m(E − V (r))

If ∂S0
∂z is much larger than other variations then,

∂S0
∂z

≈ h̄k − V (x, y, z)

v

Approx soln is

S0 = h̄kz − 1/vel

∫ z

−∞
V (x, y, z′)dz′

Thus momentum depends on V - better approx.

F (θ, ϕ) = − 1

4π

∫
ei(k⃗i−k⃗f ).r⃗

′
U(r′) e

[− i
h̄v

∫ z

−∞ V (x,y,z′)dz′]︸ ︷︷ ︸
extra factor

d3r′

Clearly when velocity is very small or
∫
V dz′ is large (not V) this term

cannot be neglected. Better than Born. Born requires large vel and
weak potentials.

8. Yukawa ∫
ei(ki−kf ).rV0

e−αr

r
d3r

Straightforward integration (and multiplication by 2m
h̄24π

) gives:

f = V0
2m

h̄2(k2 + α2)

where k = |⃗ki − k⃗f | = 2kisin θ/2

Also set α = 0 to get Rutherford scatterin:

Z2
1Z

2
2e

4

h̄216E2sin4θ/2

9. Partial Wave method

This is for central potentials, where L⃗ is conserved.
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i) Expand eikz in partial waves ϕ0kl(r, θ, ϕ) which are solns of free eqn.

ϕ0klm = Rk,l,mYlm(r)(θ, ϕ)

where

h̄2

2m
(−d2/dr2 + 2

r

d

dr︸ ︷︷ ︸
1
r

d2

dr2
r

+
l(l + 1)

r2
)Rkl(r) = Ek,lRkl(r)

Set rRkl(r) = ukl(r). For large r: u = e±ikr

r . For general r

ϕklm(r, θ, ϕ) =
√
2k2/πjl(kr)Ylm(θ, ϕ)

The boundary condition used is that u(0) = 0.

jl(ρ) ≈ ρl/(2l + 1)!! for small ρ. So the fn is negligible for ρ < l.
⇒ kr > l or if the range of the potential is small only very small l’s
will contribute. r = l/k is the analog of the classical impact parameter.

Without any potential we have incoming plane waves, which can be
decomposed as:

eikz =
∞∑
l=0

eilπ/2
√
4π(2l + 1)jl(kr)Yl0(θ)

Note: m=0 because eikz = eikrcosθ has no ϕ dependence.

For large r

jl(kr) ≈ sin (kr − lπ/2)/kr = (eikre−ilπ/2 − e−ikreilπ/2)/2ikr

ii) Now turn on the potential. The only effect can be to change the
relative phase of the ingoing and outgoing waves. Magnitudes cannot
change because ingoing flux has to equal outgoing flux. Also since
Hamiltonian does not mix different values of l, the magnitude of each
l- component must not change - it is unitary evolution.

[
h̄2

2m
(−d2/dr2 ++

l(l + 1)

r2
) + V (r)]ukl(r) = Ek,lukl(r)

For large r:

u =
Aeikr +Be−ikr

r
≈ Csin (kr − βl)
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(Since |A| = |B|) Thus when V = 0, βl =
lπ
2 . We can thus assume

that phase changes by an amount δl (β → β + δ), when V ̸= 0. Total
change is 2δl. Thus we try

−
∑
l

il
√
4π(2l + 1)Yl0(θ)

(e−ikre
ilπ
2 − eikre

−ilπ
2 e2iδl)

2ikr

. [Note: Whenδ = 0 it reduces to eikz.] So e2iδl −1 = 2isin δle
iδl is the

effect of scattering and will produce the f term. If |ηl| = |e2iδl | < 1
then we have lost some particles. This is inelastic scattering.

The rest of it will give eikz. So

fk(θ, ϕ) =
1

k

∑
l

sinδle
iδl
√
4π(2l + 1)Yl0(θ)

σelastic =

∫
dΩ | f |2= 4π

k2

∑
l

sin2δl(2l + 1)

Note also that:

f(0) =
1

k

∑
l

sin δl e
iδl
√
4π(2l + 1)Yl(0)

Imf(0) =
1

k

∑
l

sin2 δl

√
4π(2l + 1)Yl(0)

=
1

k

∑
l

sin2 δl(2l + 1)

(Using Yl(0) =
√

2l+1
4π ).

4π

k
Imf(0) = σel.

This is the Optical theorem.

Do hard sphere. s-wave gives 4πsin2(kr0)/k
2 ≈ 4πr20

fk = 1/ksin δ0e
iδ0

σ(θ) = 1/k2sin2δ0
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Eqn for large r is

(
d2

dr2
+ k2)u = 0

The soln is
≈ sin k(r − r0)

(Using b.c. that u(r0) = 0). β0 = 0 for l − 0.

⇒ δ0 = kr0

Q.E.D.

10. Absorption.

|ηl| =| e2iδl |< 1 ⇒ absorption. Calculate probability current into
target (outgoing - ingoing).

∫
r2dΩ[Rev(r) h̄im∂rv

∗(r)]. ∝ (1− | ηl |2
). σ is ∝| ηl − 1 |2. Add the two to get Re(ηl − 1). But Imf ∝
Im(1/ik (ηl − 1)) ∝ this also. Get

4π

k
Imf(0) = σtotal

Optical theorem.

Landau-Lifshitz define S-matrix and optical theorem in terms of
that.

Simplified analysis:

Define S matrix as evolution operator for scattering problem. Thus
< f |S|i > is amplitude that at t = −∞ a particle with momentum ki
scatters into the state kf at t = +∞.

Let S = I + iT . Then if no potential T = 0. Thus scattering proba-
bility (due to potential) is < f |T |i >. S†S = I ⇒ i(T − T †) = T †T .
Thus < i|i(T − T †)|i >=< i|T †T |i >=

∑
n | < n|T |i > |2. LHS is

Im part of forward scattering amplitude. RHS is total probability of
scattering (into any state).

7 Identical Particles

1. In classical mechanics there is never any ambiguity about which par-
ticle is which because one can always track the trajectory. In QM
when wavefunctions overlap, this is not possible. Thus |+,− > and
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|−,+ > are both acceptable descriptions for a state with one up and
one down spin. So are α|+,− > +β| − + >. Need a prescription for
α, β. Symmetrization Postulate resolves this.

2. Permutations: Let |1, ui; 2, uj > be basis states of two particles. |ui >
is a basis for one particle states.Then define

P21|1, ui; 2, uj >= |2, ui; 1, uj >

(Pnq means replace 1 by n and 2 by q.) Note that |1, ui; 2, uj >=
|2, uj ; 1, ui >.

3. Action on wave function:

|ψ >=
∑
ϵ,ϵ′

∫
d3r

∫
d3r′ψϵ,ϵ′(r, r

′)|1, r, ϵ; 2, r′, ϵ′ > .

P21|ψ >=
∑
ϵ,ϵ′

∫
d3r

∫
d3r′ψϵ,ϵ′(r, r

′)P21|1, r, ϵ; 2, r′, ϵ′ > .

=
∑
ϵ,ϵ′

∫
d3r

∫
d3r′ψϵ,ϵ′(r, r

′)|2, r, ϵ; 1, r′, ϵ′ > .

=
∑
ϵ,ϵ′

∫
d3r

∫
d3r′ψϵ,ϵ′(r, r

′)|1, r′, ϵ′; 2, r, ϵ > .

=
∑
ϵ,ϵ′

∫
d3r

∫
d3r′ψϵ′,ϵ(r

′, r)|1, r, ϵ; 2, r′, ϵ′ > .

We have exchanged the primed and unprimed variables - being dummy
variables. Thus we can define the action of P21 on the wave function:
P21ψϵ,ϵ′(r, r

′) = ψϵ′,ϵ(r
′, r).

4. Obviously P 2
21 = I. Also P †

21 = P21 Thus P †P = I thus it is unitary.

5. If P21|ψ >= |ψ > then it is a symmetric state. If P21|ψ >= −|ψ >
then it is antisymmetric.

6. Define projection operators S = 1+P21
2 and A = 1−P21

2 .

S2 = S, A2 = A, SA = 0, A + S = 1. Also P21S|ψ >= |ψ >
P21A|ψ >= −A|ψ >
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7. Action of P on observables. P21O(1)P †
21 = O(2). Check by acting

on a state. Assume that |ui > has ev oi for observable O. Similarly

P21O(1, 2)P †
21 = O(2, 1).

Observables can be symmetric or not. Hamiltonian for identical par-
ticles should be symmetric.

8. For three particles: Pnpq|1, ui; 2, uj ; 3, uk >= |n, ui; p, uj ; q, uk >.
There are 3! such permutations. For N-particles :N! permutations.

They form a group: i) Identity=P123 ii)product of two is a perm iii)
Inverse also exists. eg P−1

312 = P231.

9. Any permutation can be expressed as a product of transpositions
whcih are perms that interchange two only. This decomposition is not
unique. However the parity - which is whether it involves even no.
or odd number of transpositions - is. Define ϵα - parity of perm Pα =
+1 if even and = -1 if odd.

Then S = 1
N !

∑
α Pα and A = 1

N !

∑
α ϵαPα

are the projection operators for N -particle wave functions..

Pα0A = ϵα0A. (Proof: Let Pα0Pα = Pβ. Then ϵα0ϵα = ϵβ. Thus

Pα0

∑
α

ϵαPα =
∑
α

ϵαPα0Pα

=
∑
α

ϵα0ϵβPβ = ϵα0

∑
β

ϵβPβ

Summation over α has ben changed to β.)

10. For bosons we get a symmetric state classified by occupation numbers
N1, N2...Nk with N1 +N2 + ..Nk = N .

S|1, u1; 2, u1, N1, u1;N1 + 1, u2;N1 + 2, u2; ...;N1 +N2, u2; ....N, uk >

The number of permutations are now N !
N1!N2!..Nk!

. The normalization
constant will be inverse of the square root of this.

For fermions we get the Slater determinant. 1√
N !
det|i, uj >. Note that

if ui = uj the determinant vanishes - Pauli exclusion.
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11. Amplitude for transition/scattering:

Let initial states be |ϕ > and |χ >. Then the symmetrized state
is 1√

2
(|1, ϕ; 2, χ > ±|2, ϕ; 1, χ >). Let final state be |ui > and |uj >.

Then the symmetrized state is 1√
2
(|1, ui; 2, uj > ±|2, ui; 1, uj >). Thus

amplitude is

A =< ui|ϕ >< uj |χ > ± < uj |ϕ >< ui|χ >. The first term is the
direct term and the second is the exchange term.

Note that when ui = uj for fermions the amplitude vanishes. For
bosons the final state is then |1, ui; 2, ui >. A =

√
2 < ui|ϕ >< ui|χ >.

Prob = |A|2.
Classically we would just add the probabilities for the two. So we
would have | < ui|ϕ >< uj |χ > |2 + | < uj |ϕ >< ui|χ > |2. If they are
identical then | < ui|ϕ >< ui|χ > |2 - which is less than the quantum
one by a factor of 2.

12. When can the effect of symmetrization be neglected: If for some reason
the exchange term is very small. eg if the two one particle states
are spatially very far apart. eg an electron on earth need not be
symmetrized with the electron on the moon.

8 Applications of QM

8.1 Hydrogen atom

1.Pauli’s solution.
H = P 2/2m− c/r

has L⃗ and also M⃗ = (P⃗ × L⃗ − L⃗ × P⃗ )/2m − cr⃗/r Runge Lenz vector as
conserved quantities. Commutation relns

[M,H] = [L,H] = 0 L.M =M.L = 0

M2 =
2H

m
(L2 + h̄2) + c2

[Mi, Lj ] = iϵijkMk

obviously - being a vector.

[Mi,Mj ] = −2i

m
HϵijkLk
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Working on energy eigenfns can redefine M ′ = (−m/2E)1/2M

[M ′
i ,M

′
j ] = iϵijkLk

and it is clear that M,L form SO(4) algebra. Split into SU(2)XSU(2): I =
L+M ′ and K = L−M ′.

In SO(4) notation

[Lij , Lkl] = iδikLjl + iδjlLik − iδilLjk − iδjkLil

where Li4 = M ′
i Also I2 = K2 (from L.M=0). And I2 + K2 = 2k(k + 1)

Also
M ′2 + L2 = −h̄2 − c2m/2E

So

h̄2E =
−c2m

4k(k + 1) + 1
=

−e4m
n2

2. Fine structure and Hyperfine structure (Students work it out
on the board)

8.2 Interaction of an atom with plane waves

1. To calculate transition rate we use Golden rule: dP
dβ = 2π

h̄ |Wfi|2ρ(Ef , β)(with
energy conservation ).

2. W = e(p.A+A.p)
2m . e is charge of electron. We will use semiclassical

treatment whereby A = aêeikX−iωt

3. Normalization : Energy in em fld = 1
2ϵ0E

2 + B2

2µ0
. E = −∂A

∂t ≈ ωA

Thus 1/2ϵ0ω
2a2×2(B−fld)×1/2(time average) is the energy density.

This must be equal to h̄ω (1 photon per unit volume) Thus a2 = 2h̄
ϵ0ω

.
We have assumed that A(t) = acos ωt. The normalization of one
photon per unit volume is arbitrary. That fixes the overall scale only.
If there are two, we get twice the absorbtion or induced emission rate.
For N photons we get a factor of N . When we include spontaneous
emission, N → N + 1.

Thus a =
√

2h̄
ϵ0ω

. If we want the coefficient of eiωt rather than cos then

we get a factor of 1/2’: a =
√

h̄
2ϵ0ω

.

4. Dipole Approximation: Let eikX ≈ 1. Thus W = aê.p⃗
m .
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5.

Wfi =
e

m
< f |p⃗|i > .êa = eωfiX⃗fi.ê

6. phase space :
d3p

(2πh̄)3
δ(Ef − Ei − ω).

Also pc = E.

=
E2dΩ

(2πh̄c)3

=
ω2dΩ

(2πc)3h̄

We have used up the energy delta fn to do dE.

7. Put everything together:

a2e2ω2|X⃗fi.ê|2dΩ
ω2

(2πc)3h̄

2π

h̄

dP =
e2

2ϵ0

ω3

(2πc)3
2π

h̄
|X⃗fi.ê|2dΩ

8. Do the angular integral: Choose z axis along X⃗fi. Then θ is angle

made by k⃗ the direction of the photon. ê is perpendicular to k⃗. Thus
X⃗.ê = |X⃗|sin θ. Thus we have to do

∫ 1
−1 dcos θsin

2 θ
∫
dϕ = 2π 4

3 .

P =
e2

4πϵ0h̄c

4

3

ω3

c2
|Xfi|2

where

X⃗fi =< f |X⃗|i >=
∫
d3zψ∗

f (x)x⃗ψi(x).

If we have n photons then the answer is nP . Actually if we include
spontaneous emission the answer is (n + 1)P . We can also express n
in terms of Intensity of the plane wave.
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8.3 Charge particle in a magnetic field

1. Classical
mv2

r (−r̂) = qv⃗ × B⃗. Thus ω = qB
m . Direction of motion: Current

induced opposes build up of B.

2. Quantum Mechanically

1

2m
(p− eA)2Ψ = EΨ

⇒ 1

2m
[Π2

x +Π2
y]Ψ = EΨ

Πx = (−ih̄ ∂
∂x − eAx) etc.

[Πx,Πy] = ih̄e[
∂Ay
∂x

− ∂Ax
∂y

] = ih̄eBz

Define Π̃x = Πx√
eB

, Π̃y =
Πy√
eB

Then [Π̃x, Π̃y] = ih̄ and

H =
eB

2m
(Π̃2

x + Π̃2
y) =

1

2
ω(P̂ 2 + X̂2)

= (N +
1

2
)h̄ω

Thus we have the energy levels and in principle a wave fn. What about
degeneracy? Classically the centre of the orbit can be anywhere.

3. Simple solution: Choose gauge that separates x, y: Ax = −By

H = (−i∂x + eBy)2 + (−i∂y)2

= −(∂2x + ∂2y) + e2B2y2 − 2ieyB∂x

Choose x−dependence eikxX where kx = 2πn
Lx

.

Then
H = −∂2y + h̄2k2x + e2B2y2 + 2eBh̄kxy

= −∂2y + e2B2(y +
Bh̄kx
eB2

)2

Thus the y dependence is that of a harmonic oscillator with center
h̄kx
eB . Note when h̄kx

eB = Ly we cannot shift any further. Thus we get
2πnmaxh̄ = LyLxBe Thus nmax = Φ

2πh̄
e

= Φ
Φ0

Thus we have a degeneracy of Nϕ = Φ
ϕ0
.
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4. More elegant methoods:

Choose circular gauge: Ax = −By
2 and Ay =

Bx
2 . DefineKx = −ih̄∂x+

eAx and Ky = −ih̄∂y + eAy

Check that the following are true:

[Kx,Πx] = [Kx,Πy] = [Ky,Πy] = [Ky,Πx] = 0

[Kx,Ky] = −ieBh̄

Thus
[H,Kx] = [H,Ky] = 0

. Kx,Ky are symmetry generators. They are like translation operators
: call them “magnetic translation operators”.

If we define Tx = e
i Lx
Nϕ

Kx
Tx = e

i
Ly
Nϕ

Ky
then

TxTy = TyTxe

i2LxLy

N2
ϕ

[Kx,Ky ]

= TyTxe
i2π
Nϕ

This means Tx, Ty can be written as Nϕ ×Nϕ matrices. We can diag-
onalize one of them.

Thus let TxΨn,0 = eiλ0Ψn,0 and HΨn,0 = (n+ 1
2)h̄ωψn,0.

Then it is easy to see that Tmy Ψn,0 ≡ Ψn,m satisfies TxΨn,m = e
i( 2πm

Nϕ
+λ0)

Ψn,m.

Thus clearly m = 0, 1, ..., Nϕ.

5. Even more elegant (!): Choose complex notation:

Define
(Πx + iΠy)

2
= P :

(Πx − iΠy)

2
= P̄

The following can be checked:

P = (∂z̄ +
eBz

4
)

P̄ = (∂z −
eBz̄

4
)
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K = (∂z̄ −
eBz

4
)

K̄ = (∂z +
eBz̄

4
)

where K, K̄ are defined analogously. and z = x+ iy.

Define T = e
iL
Nϕ

K
T̄ = e

iL
Nϕ

K̄

Ψn,0 = z̄ne−
eB
4h̄

|z|2 satisfies HΨn,0 = (n+ 1
2)h̄ωΨn,0.

Elegant way to check this: Find action of P, P̄ :

P̄Ψn,0 = −eB
2
Ψn+1,0

PΨn,0 = h̄nΨn−1,0

and H = −PP̄+P̄P
m .

Also K̄Ψn,0 = 0. Thus T̄Ψn,0 = Ψn,0.

Now act on it with Tm to get Ψn,m.

8.4 Bohm-Aharanov Effect, Monopole etc

1. Aµ = (ϕ, A⃗), Aµ = (−ϕ, A⃗)

Fij = ∂iAj − ∂jAi = ϵijkB
k

F 0i = −F0i = Ei

2. Bohm-Aharanov Effect

Can associate a phase e
i
h̄

∫ x

0
A.dx in the Feynman sum over paths. The

phase depends on the path. However if B = 0 the phase does not de-
pend on path. If we have a solenoid of flux, and electron is not allowed
to see solenoid, then the propagator will have such a factor for each
path in the sum. Depending on whether the path is on one side of the

solenoid or the other there will be a phase difference e
ie
∮

B.ds

h̄ = e
ieΦ
h̄ .

Thus there can be destructive or constructive interference depending
on Φ even if electron never actually sees the magnetic field. Note: if
eΦ = 2πnh̄ the flux tube has no effect!
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3. monopole

Dirac said: Have an infinitely thin tube of flux coming out of the
monopole to satisfy div of B =0. If the flux satisfies eϕ = 2nπh̄,
we see from the discussion of B0hm-Aharanov effect that the tube is
invisible. So if g = ϕ = 2nπ

h̄ monopoles can exist!

8.5 Semi-classical techniques (see Landau-Lifshitz)

1. When system is almost classical, we can assume a form e
i
h̄
Scl for the

particle propagator. Motivated by this try a solution of the form

ψ(x) = e
i
h̄
S and expand S in a power series in h̄:

S = S0 + (
h̄

i
)S1 + (

h̄

i
)2S2 + ...

2. Schrodinger’s eqn is

− h̄2

2m
∂2xψ + V (x)ψ = Eψ

⇒ − h̄2

2m
[
i

h̄
S′′ + (

iS′

h̄
)2] + V (x) = E

1

2m
(S′)2 − ih̄

2m
S′′ = E − V

This is non-linear in S. Substitute above series:

1

2m
[(S′

0)
2 + (

h̄

i
)2(S′

1)
2 + 2

h̄

i
S′
0S

′
1]−

ih̄

2m
S′′
0 − h̄2

2m
S′′
1 = E − V

O(h̄0)
S′2
0 = 2m(E − V ) = p2

S0(x) = ±
∫ x

a

√
2m(E − V (x))dx+ S0(a) = ±

∫ x

p dx

O(h̄)

S′
0S

′
1 +

1

2
S′′
0 = 0

⇒ S′
1 = − p′

2p
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S1 = −1

2
ln p

ψ =
1
√
p
(C1e

i
h̄

∫ x

a
p dx + C2e

− i
h̄

∫ x

a
p dx)

This is the leading non-trivial part of semiclassical (WKB) approxi-
mation for the wave function.

3. Normalization: 1
p ≈ (velocity)−1. This is expected since the prob of

finding a particle betwen x and x+ dx is prop to time it spends there,
which is inversely prop to velocity.

4. Taking the exponent
∫
p dx would be exact if h̄S′′ << S′2.

h̄|d(1/S
′)

dx
| << 1

λ
dλ

dx
<< λ

The change in de-Broglie wavelength over a wavelength should be less
than the wavelength itself. In particular when p → 0 this cannot be
true. These are the classical turning points.

5. If p is imaginary then we have a rising exponential and falling exp.
Can keep the falling one only if rising one is strictly zero. This has to
be imposd as a boundary condition.

6. Thus for a rising potential with x = a as the turning point:

ψ =
1
√
p
(C1e

i
h̄

∫ x

a
p dx + C2e

− i
h̄

∫ x

a
p dx)

for x << a

and
1
√
p
Ce−

1
h̄

∫ x

a
|p| dx

for x >> a.

To find the relation between the coefficients do an analytic continu-
ation of p in a semi circle around x = a. In this region we assume
V (x)− E = V ′(a)(x− a).

74



So p =
√
2mV ′(a)(a− x).

Let x − a = ρeiθ. When θ = 0, x is to the right of a. Here the
exponentially falling solution is assumed. Now let θ increase to π.
Start with x > a and θ = 0,∫ x

a
|p| dx =

∫ x

a

√
(x− a) dx =

∫
ρ i dθ eiθ

√
ρeiθ/2

=
2

3
ρ

3
2 e

i3θ
2

= −i2
3
ρ

3
2 at θ = π

So
e−

1
h̄

∫ x

a

√
x−a dx → e+iϕ

Where ϕ is a positive real number.

Thus we conclude that

e−
1
h̄

∫ x

a
|p| dx → e−

i
h̄

∫ x

a
|p| dx

when we go to the classically allowed region x < a. Note that because
x < a the integral is -ve and so phase is positive as required.

Another way is to see that (x − a)
1
2 → (a − x)

1
2 (+i) when we go on

the upper semi circle. Thus we get exponent of C2 term.

This is the C2 term in the wave function. Also
√
|p| = (x − a)

1
4 →

(a− x)
1
4 e

iπ
4 Thus C2 = Ce

−iπ
4

Similarly we get C1 piece by going on the lower semi circle. C1 = Ce
iπ
4 .

Thus

ψ =
C√
|p|
e−

1
h̄

∫ x

a
|p| dx when x > a

=
1
√
p
(Ce

iπ
4 e

i
h̄

∫ x

a
|p| dx + Ce

−iπ
4 e−

i
h̄

∫ x

a
|p| dx) when x < a

This is the main result. Rest are applications.
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7. Barrier tunnneling

Three regions:

x < a :I to left of barrier where we have incoming and reflected wave.

a < x < b: II - inside barrier, where we have a falling exponential.

x > b: III - to right of barrier where we have only right moving wave.

� Start with right moving soln in III. Analytically continue over a
semi circle to make sure that in II we get a falling exponential.
Now we again analytically continue as in the previous para to get
the C1,2 terms in region I.

� Assume that in region II, we have D√
|p|
e

i
h̄

∫ x

b
|p| dx+ iπ

4 . which is a

wave travelling to right.

Analytically continue as before. x−b = ρeıθ. We have to go from
θ = 0 to θ = ±π depending on whether we go along upper semi
circle or lower one.

θ = π gives :
√
x− b =

√
ρe

iθ
2 → √

ρi

θ = −π gives :
√
x− b =

√
ρe

iθ
2 → √

ρ(−i)

i

∫ x

b
|p| dx→ −

∫ x

b
|p| dx for θ = π

This is positive because x < b and becomes zero at b. So it is a
falling exponential, which is what we want. Also since (x−b)

1
4 →

ρ
1
4 e

iπ
4 we get

D√
|p|
e−

1
h̄

∫ x

b
|p| dx for x < b.

(Note: Exponent is 0 at x = b and +ve for x < b so it is a faling
exp as reqd.)

=
D√
|p|
e+

1
h̄

∫ b

a
|p| dx−

∫ x

a
|p| dx

Thus comparing with the WKB expresion we get C = De
∫ b

a
|p| dx.

Thus tunnelling probability is |D/C|2 = e−2
∫ b

a
|p| dx.

8. Energy Splitting due to tunneling
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Given a double well with a barrier. In lowest order approx there are
two degenerate eigenstates: If x = 0 is the symmetric point (V (x) =
V (−x)) then ψ0(x) is a wave fn mainly in well I, the ψ0(−x) is the
solution in the other well, II.

ψ1(x) =
1√
2
[ψ0(x) + ψ0(−x)]

ψ2(x) =
1√
2
[ψ0(x)− ψ0(−x)]

Thus, to lowest order these have same energy as ψ0, but in next order
they don’t.

Assume that ψ0(x)ψ0(−x) << 1 because the wave fns are strongly
damped outside the well.

ψ′′
0 + 2m(E0 − V )ψ0 = 0

ψ′′
1 + 2m(E1 − V )ψ1 = 0

Multiply first by ψ1 and second by ψ0 and subtract and integrate from
0−∞: ∫ ∞

0
(ψ1ψ

′′
0 − ψ0ψ

′′
1) dx+

2m

h̄2
(E0 − E1)

∫ ∞

0
dx ψ0ψ1

Integrate by parts: first term is ψ1ψ
′
0|∞0 − ψ0ψ

′
1|∞0 At x = ∞, ψ1 =

ψ0 = 0. At x = 0, ψ′
1 = 0. Thus we get −ψ1ψ

′
0(0) = −

√
2ψ0ψ

′
0(0).

Second term:
∫∞
0 dx ψ0ψ1 =

∫
dx

ψ2
0√
2
= 1√

2
So eqn becomes

−
√
2ψ0ψ

′
0(0) +

√
2m

h̄2
(E0 − E1) = 0

⇒ E1 − E0 = − h̄
2

m
ψ0ψ

′
0(0)

Similarly E2 − E0 is the opposite sign. Thus

E2 − E1 =
2h̄2

m
ψ0ψ

′
0(0)
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Using ψ0(x) =
C√
|p|
e
∫ x

a
|p| dx for x < a

ψ0(0) =
C√
|p|
e−

1
h̄

∫ a

0
|p| dx

and
ψ′
0(0) =

p

h̄
ψ0(0)

Thus

E2 − E1 =
2h̄p

m
ψ0(0)

2.

The normalization C is fixed by assuming the cosine soln ( 2C√pcos..)

inside the well:
∫
dx 4C2

2p = 1 (Average of cos is 1/2). Using p = mdx
dt

we get
∫ dx

p =
∫ b
a
dt
m = T

2m where T is time period T = 2π
ω . Thus

C22π
mω = 1. C2 = mω

2π .
C√
p =

√
ω

2πv .

Thus ∆E = h̄ω
π e

−2
∫ a

0
|p| dx = h̄ω

π e
−
∫ a

−a
|p| dx

.

8.6 Dirac Equation

We want a Lorentz covariant version of Schrodinger equation to describe
relativistic quantum particles. Klein Gordon eqn has problems with square
root etc. Try for an equation linear in derivatives.

1.

ih̄
∂ψ

∂t
= ih̄αi

∂ψ

∂xi
+mβψ

Or better still

ih̄γµ
∂ψ

∂xµ
= mψ

Conventions: ηµν = (−,+++). xµ = (t, x⃗). p0 = E = −p0, pi = p⃗.
pµpµ = −p0p0 + pipi = −E2 + p⃗.p⃗ = −m2

pµ = −ih̄ ∂
∂xµ = −ih̄( ∂∂t ,

∂
∂xi

) E = p0 = −p0 = ih̄ ∂
∂t

If we act again with ih̄γµpµ we get

−h̄2γµγν ∂2

∂xµ∂xν
ψ = m2ψ
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If we require {γµ, γν} = −2ηµν then the above equation will become

h̄2[− ∂2

∂t2
+

∂2

∂xi2
]ψ = m2ψ

So (γ0)2 = 1 and the eigenvalues are ±1. γ0 is Hermitian. (γi)2 = −1
and γi are anti Hermitian, with eigenvalues ±i.
Explicitly

γ0 =

(
I 0
0 −I

)
γi =

(
0 σi

−σi 0

)
(17)

Note γ0γi is Hermitian.

Thus

ih̄
∂ψ

∂t
+ ih̄γ0γi

∂ψ

∂xi
= mγ0ψ

is Dirac equation in its original form, with α, β matrices.

2. Solutions in the rest frame:

ih̄
∂ψ

∂t
= mγ0ψ

ψ =


e−imtψ1(0)
e−imtψ2(0)
e+imtψ3(0)
e+imtψ4(0)


Why shouldn’t a positive energy particle fall into the negative energy
state with emission of photon? Dirac postulated a “sea” of filled neg-
ative energy states. Pauli exclusion ensures that positive energy elec-
tron will not fall into these states. Also this means that a photon can
knock an electron from a filled negative energy state to a higher energy
positive state. Effectively creating an electron and a hole (positron).
This was the theoretical discovery of anti-particle.

3. Reduction to nrSE with spin (Pauli eqn):

Couple to em : pµ → pµ − eAµ. A0 = Φ, Ai = A⃗

−ih̄γ0∂ψ
∂t

− ih̄γi
∂ψ

∂xi
+ eγ0Φ− eγiAiψ = −mψ
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Negative energy solutions need an interpretation. For the moment
assume ψ3,4 = 0.

Assume:

ψ =

[
ϕ
χ

]

γ0ψ =

[
ϕ
−χ

]

γiψ =

[
σiχ
−σiϕ

]

−ih̄∂ϕ
∂t

− ih̄σi
∂χ

∂xi
+ eΦϕ− eσiAiχ = −mϕ

+ih̄
∂χ

∂t
+ ih̄σi

∂ϕ

∂xi
− eΦχ+ eσiAiϕ = −mχ

Set ϕ = e−imtϕ and χ = e−imtχ - take out the main time dependence.

−mϕ− ih̄
∂ϕ

∂t
− ih̄σi

∂χ

∂xi
+ eΦϕ− eσiAiχ = −mϕ

+mχ+ ih̄
∂χ

∂t
+ ih̄σi

∂ϕ

∂xi
− eΦχ+ eσiAiϕ = −mχ

−ih̄∂ϕ
∂t

= ih̄σi
∂χ

∂xi
− eΦϕ+ eσiAiχ

+ih̄
∂χ

∂t
= −ih̄σi ∂ϕ

∂xi
+ eΦχ− eσiAiϕ− 2mχ

The dominant term involving χ is −2mχ. Thus

ih̄σi
∂ϕ

∂xi
+ eσiAiϕ = −2mχ

χ =
(ih̄σi ∂

∂xi
+ eAi)ϕ

−2m
=

Πiϕ

2m

Thus χ << ϕ is called the small component and ϕ is the large compo-
nent. Eqn for ϕ:
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ih̄
∂ϕ

∂t
=
σiσjΠiΠjϕ

2m
+ eΦϕ

where Π = p− eA.

Using σiσj = δij + iϵijkσk we get

Π2

2m
ϕ− eh̄ϵijk

∂Aj
∂xi

ϕ+ eΦϕ = (
Π2

2m
− eh̄σkBk

2m
+ eΦ)ϕ

Thus we get the Pauli equation. Using σh̄ = 2S we get eh̄S⃗.B⃗
m . This

is the correct gyromagnetic ratio: because e(p.A + A.p) → eL.B in
a uniform magnetic field. So we get the expected − e

2m(L⃗ + 2S⃗).B⃗
coupling.

4. Lorentz Covariance:

Want ψ′(x′) = Sψ(x) or ψ′(x) = Sψ(R−1x). S represents spin.

(γµpµ+m)ψ(x) = 0 ⇒ (γµp′µ+m)ψ′(x′) = (−ih̄γµ ∂

∂x′µ
+m)ψ′(x′) = 0

(−ih̄γµ ∂

∂xµ
+m)ψ(x) = (−ih̄∂x

′ν

∂xµ
∂

∂x′ν
+m)ψ(R−1x′)︸ ︷︷ ︸

S−1ψ′(x′)

= 0

x′µ = Rµ
νx

ν

⇒ (−ih̄γµRν
µ

∂

∂x′ν
+m)S−1ψ′(x′) = 0

Thus we want SγµS−1Rν
µ = γν .

Rµ
ν = δµν + ϵµν with ϵµν = −ϵνµ.

Let S = 1 + iϵµνσµν

We find:
S−1γµS = γµ + ϵµνγ

ν

−iϵρσ[σρσ, γµ] = ϵµνγ
ν

Find σρσ = i
8 [γρ, γσ].
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Note: [γ0, γ1] is Hermitian. [γ2, γ1] is Anti-Hermitian. Srot is Unitary.

But S†
boost = Sboost.

We can check that all S satisfy: γ0S
†γ0 = S−1

Using this can show that ψ†γ0γµψ is a 4-vector.

Define ψ̄ = ψ†γ0. Then the four vector is ψ̄γµψ. Clearly ψ̄ψ is a
scalar.

5. Can define various tensors...HW. Need γ5 = iγ0γ1γ2γ3. γ5
2
= 1.

Under parity :γi → −γi. So γ5 → −γ5. Thus ψ̄γ5ψ is a pseu-
doscalar. Check that it is a scalar under LT.

6. Parity: P−1γµP = Rµ
νγ

ν . WhereR is the diagonal matrix: (1,−1,−1,−1).
γ0 satisfies this property. Thus ψ′(x′) = γ0ψ(x) where x′ = Rx. Thus
we can check that ψ̄γ5ψ is a pseudoscalar.

7. current:

ih̄
∂ψ

∂x0
= −ih̄γ0γi ∂ψ

∂xi
+mγ0ψ

ih̄ψ† ∂ψ

∂x0
= −ih̄ψ†γ0γi

∂ψ

∂xi
+mψ†γ0ψ

−ih̄∂ψ
†

∂x0
= +ih̄

∂ψ†

∂xi
(γ0γi)† +mψ†γ0

−ih̄∂ψ
†

∂x0
ψ = +ih̄

∂ψ†

∂xi
γ0γiψ +mψ†γ0ψ

Subtracting,

⇒ ih̄
∂

∂t
(ψ†ψ) = −ih̄ ∂

∂xi
(ψ†γ0γiψ)

Thus j0 = ψ†ψ and ji = ψ†γ0γiψ. Thus jµ = ψ̄γµψ is a conserved
current.

8. Spin 4-vector: Define sµ = (0, s⃗) in the rest frame of the parti-
cle. This is the usual spin. Then the general 4-vector is defined by
LT of this: s′µ = aµνs

ν . Another way (more formal) Define Wµ =
ϵµνσρPνJσρ. For a massive particle this is m0s

µ where s is a s defined
above. (Note: ϵijkJjk = J i).

Note that pµs
µ = 0 in the rest fram and hence in all frames. It is also

manifest that pµW
µ = 0.
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9. Can construct explicit solutions of Dirac equation corresponding to
moving particles by boosying the rest fram solutions.

Finite S = eiω
µνσµν . We use ω = ω01 for finite LT. What is this

parameter physically? Try on 4-vectors

eiωM =


cosh ω −sinh ω 0 0
−sinh ω cosh ω 0 0

0 0 1 0
0 0 0 1


This is obtained by exponentiating M defined by δx0 = ϵMx = −ϵx1
and δx1 = −ϵx0.

M =


0 −1 0 0
−1 0 0 0
0 0 0 0
0 0 0 0


Thus tanh ω = β = v

c and cosh ω = γ = 1√
1−β2

. Also

σ01 =
i

4

(
0 σ1

σ1 0

)

S = e2iωσ01 . Note: σ201 = I Thus

S = cosh
ω

2


1 0 0 −tanh ω

2
0 1 −tanh ω

2 0
0 −tanhω2 1 0

−tanh ω
2 0 0 1


10. Express in terms of p,E etc: (Note: sin iθ = isinh θ , cos iθ =

cosh θ) Use tanh x =
2tanh x

2
tanh2 x

2
+1

and invert to get tanh ω
2 = tanh ω

1+
√
1−tanh 2ω

=

β
1+ 1

γ

= p
E+m0

. and cosh ω
2 =

√
E+m0
2m0

.

Use this in the matrix and get

ψ(x, t) =

√
E +m0

2m0


1 0 0 −p

E+m0

0 1 −p
E+m0

0

0 −p
E+m0

1 0
−p

E+m0
0 0 1




1
0
0
0

 e−i(Et−px)
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=

√
E +m0

2m0


1
0
0
−p

E+m0

 e−i(Et−px)
Note the presence of large and small components of the spinor. Simi-
lary we get three other solutions including 2 negative energy ones.
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