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The mid-1960’s to the early 1980’s marked the early epoch in the field of com-
putational complexity. Several ideas and research directions which shaped the
field at that time originated in recursive function theory. Some of these made a
lasting impact and still have interesting open questions. The notion of lowness
for complexity classes is a prominent example.

Uwe Schöning was the first to study lowness for complexity classes and proved
some striking results. The present article by Johannes Köbler and Jacobo Torán,
written on the occasion of Uwe Schöning’s soon-to-come 60th birthday, is a nice
introductory survey on this intriguing topic. It explains how lowness gives a
unifying perspective on many complexity results, especially about problems that
are of intermediate complexity. The survey also points to the several questions
that still remain open.
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Abstract

Our colleague and friend Uwe Schöning, who has helped to shape
the area of Complexity Theory in many decisive ways is turning 60 this
year. As a little birthday present we survey in this column some of the
newer results related with the concept of lowness, an idea that Uwe
translated from the area of Recursion Theory in the early eighties.
Originally this concept was applied to the complexity classes in the
polynomial time hierarchy. An overview of the many results inspired
by the lowness idea was written by the first author in [25]. We review
here the lowness scene 20 years later, focusing mainly in the classes
out of PH.

1 Introduction

The concept of lowness originated in the area of Recursion Theory (see [30]).
Intuitively a language is low for a computation model (like the Turing ma-
chine) or an operator if it is powerless when used as oracle for the model.
Lowness indicates that a set has low complexity or low information con-
tent since it behaves like the empty set with respect to a certain operator.
Uwe Schöning [37] introduced the notion of lowness to the area of complexity
where this concept really flourished and found many new applications. Schön-
ing also found several natural examples of low sets, most notably the Graph
Isomorphism problem, being low for different complexity classes. Initially
the notion of lowness was applied to the classes in the polynomial hierarchy
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but it was soon realized that it can be very useful to consider lowness for
other complexity classes like ⊕P or PP as well.

Let C be a complexity class. For a language L, we denote by C(L) the
class of languages computed by a computation model of the kind defining C
with additional access to an oracle for L. We say that L is low for C if the
computation model for the class does not get any extra power when querying
L. More formally:

Definition 1. Let C be a complexity class (with a reasonable relativized ver-
sion). A language L is said to be low for C (in symbols: L ∈ Low(C)) if
C(L) = C.

An easy observation is that the class of sets that are low for P is P itself.
The class of low sets for NP is exactly NP ∩ coNP. To see this, observe that
if L is low for any complexity class C, then L as well as L belong to C. This
also shows that a lowness result is in principle stronger than a containment
result. For the other direction, a set L in NP ∩ coNP does not provide any
additional power to an NP computation since the nondeterministic machine
can simulate any query q to L by guessing the answer to q as well as a
certificate for q ∈ L or for q 6∈ L.

Another complexity class whose low sets can be completely characterized
is ⊕P (parity P), the class of languages computed by polynomial time non-
deterministic Turing machines that have an odd number of accepting paths
if and only if the input belongs to the language. Papadimitriou and Zachos
[33] showed that the class of low sets for ⊕P coincides with ⊕P itself. For
many other complexity classes, an exact characterization of the low sets for
the class is not known. In fact, the characterization of the low sets for Σp

2 was
already posted as an open question in Schöning’s original paper [37]. There
are however many interesting lowness results for a large variety of complex-
ity classes. Some of these results strengthen existing containment results or
show that certain sets cannot be complete unless unexpected collapses hap-
pen. The most well-known among results of this kind is the fact that the
Graph Isomorphism problem is low for Σp

2 [38] implying that GI cannot be
NP-complete unless the polynomial hierarchy collapses. Some other lowness
results offer a unified explanation of complexity upper bounds. For exam-
ple, Toda’s Theorem [40] showing that PH is included in PPP follows directly
from several lowness results: First Toda extends the randomized reduction
from SAT to the set of formulas with at most one satisfying assignment from
Valiant and Vazirani [41] (which can be written as NP ⊆ BPP(⊕P)) to a
lowness result stating that NP is low for BPP(⊕P). This implies that the
whole polynomial time hierarchy is included in BPP(⊕P). Then Toda shows



that ⊕P is low for PPP. Since BPP is also low for PP [26] we have that in
fact PH is low for PPP.

The body of results inspired by the concept of lowness is quite large.
We refer the interested reader to the exhaustive overview of the state of
the art regarding lowness at the time, written by the first author in [25].
Twenty years later, we review in this column some of the lowness results that
have been published since then. If originally the lowness result dealt mostly
with the polynomial time hierarchy, most of the later results are related
to probabilistic or to counting complexity classes. We use this fact for the
organisation of the overview in two main sections. To improve readability, we
do not include full proofs and just sketch the ideas behind the main results.
We also skip the definitions of the better known complexity classes. For
this, we refer the interested reader to the books in the area, like [7, 34, 1].
Depending on the context, a computational model C with access to an oracle
A, sometimes will be denoted by C(A) and sometimes by CA.

2 Probabilistic complexity classes
As already explained in the introduction, lowness properties provide a mean-
ingful explanation for many conditional collapse results. An important ex-
ample is the Karp-Lipton Theorem [24] which says that NP is not contained
in P/poly unless PH collapses to its second level ΣP

2 . The lowness prop-
erty implying this theorem was revealed by Balcázar, Book and Schöning
[6] who proved that all self-reducible sets in P/poly are low for the class
ΣP

2 . In [29], the lowness of self-reducible sets in P/poly has been improved
to the probabilistic class ZPP(NP) (we note that it is not hard to show
that Low(ZPP(NP)) ⊆ Low(ΣP

2 )). There are many different types of self-
reducibility. For our purpose, the following one (called also Turing-self-
reducibility) suits best. A language L is self-reducible if there is a polynomial-
time oracle machine M such that L = L(ML) and M on input x asks only
queries y whose length is smaller than that of x.

Theorem 1. [29] Every self-reducible set L ∈ P/poly is low for ZPP(NP).

The idea behind the proof is to compute a collection of polynomially
many advice strings such that the majority of these strings correctly decides
all oracle queries to L in a given ZPPNPL

computation on input x. To be
more specific, let A be a set in P such that for some polynomial p and all m
there exists a string w ∈ {0, 1}p(m) with the property that for all strings y of
length at most m,

y ∈ L ⇔ 〈y, w〉 ∈ A.



Since L is self-reducible, with the help of an NP oracle it is possible to
check for a given collection W = (w1, . . . , wk) of advice strings whether their
majority gives the correct answer to all strings y of length up tom. Moreover,
in case there exists a counterexample y for which the majority of W gives
the wrong answer, such a string y can also be efficiently computed by asking
an NP oracle. In the latter case, the string y together with the information
whether it belongs to L or not is stored in a set S of all counterexamples
encountered so far.

More precisely, the ZPPNPL

computation on a given input x is simulated
as follows by a ZPP(NP) algorithm M . Let m be large enough such that the
length of all queries to L is bounded by m. Then, starting with the empty set
S = ∅,M repeatedly samples a collectionW = (w1, . . . , wk) of advice strings,
where each wi is chosen uniformly at random from the set Correct(S) of all
advice strings w ∈ {0, 1}p(m) that for all strings y ∈ S correctly decide their
membership to L. As long as there is a counterexample y for W , M adds it
to S and repeats the loop. Otherwise M uses the collection W sampled in
the last round to simulate the ZPPNPL

computation by answering all oracle
queries to L according to the majority vote of W .

It remains to argue that M is indeed a ZPP(NP) algorithm. Call a string
y bad for S if including it into S does not reduce the size of Correct(S) by a
factor less than 3/4. The important observation is that a string y can only be
bad for S if at least 3/4 of all advice strings in Correct(S) decide y correctly.
Hence, the probability that there exists a bad string y for which the majority
of w1, . . . , wk takes the wrong decision, becomes exponentially small when k
is chosen large enough. Since adding a counterexample shrinks the size of
Correct(S) in each round with high probability by a factor less than 3/4, the
expected number of rounds is polynomially bounded.

The ZPP(NP) algorithm described in the preceding paragraph is very
similar to the ZPP algorithm of [10] for learning boolean circuits by using
equivalence queries and the help of an NP oracle. A subtle point in both
algorithms is how the sampling from the set Correct(S) can be implemented.
At the time when Bshouty et al. presented their learning algorithm, it was
only known [22] how to achieve almost uniform sampling from an NP witness
set with the help of an NP oracle (which suffices for this application, although
the analysis is more complicated). In the meanwhile, also uniform sampling
from an NP witness set can be performed with an NP oracle [8]. On the
other hand, the proof given in [29] neither uses uniform nor almost uniform
sampling from an NP witness set.

As observed by Sengupta (see [11]), the proof of the Karp-Lipton Theorem
proposed by Hopcroft [21] actually shows a collapse of PH to the symmetric



alternation class SP
2 . This class was introduced in [13, 35] and shown to

lie between the two classes PNP and ΣP
2 ∩ ΠP

2 . Later, Cai [11] showed that
SP
2 is in fact a subclass of ZPP(NP) and hence the collapse of PH to SP

2

might be deeper than to ZPP(NP). This raised the question whether all self-
reducible sets in P/poly are even low for the class SP

2 , which was answered
affirmatively in [12]. Later, it was proved by Chakaravarthy and Roy [14]
that self-reducible sets in P/poly are also low for the oblivious symmetric
alternation class OP

2 ⊆ SP
2 which led to a further improvement of the Karp-

Lipton Theorem.
Another interesting class of problems that are low for ZPP(NP) is AM ∩

coAM. The class AM consists of all languages that have a two-round inter-
active proof system with public coins and has been introduced by Babai; see
[4, 5]. We state the definition of the class AM with one-sided error which is
known to be equivalent to AM with two-sided error.

Definition 2. A language L is in AM if there is a set A ∈ NP and a
polynomial p such that for every string x and a randomly chosen string
y ∈R {0, 1}p(|x|),

x ∈ L ⇒ Prob[〈x, y〉 ∈ A] = 1,

x 6∈ L ⇒ Prob[〈x, y〉 ∈ A] ≤ 1/2.

The class AM∩coAM plays an important role in the context of classifying
several group-theoretic problems. Schöning proved [36] that all sets in AM∩
coAM are low for Σp

2. Since Graph Isomorphism also belongs to this class
[20, 19] it follows that GI cannot be NP-complete unless the polynomial
hierarchy collapses [9]. Later it was shown that AM ∩ coAM is also low for
the classes AM [28] and ZPP(NP) [3].

Theorem 2. [3] AM ∩ coAM is low for ZPP(NP).

The proof of this lowness result provides a way to decide queries to an
AM ∩ coAM oracle by using a random string in a coNP set as advice for
an NP ∩ coNP computation. More specifically, let L ∈ AM ∩ coAM be the
oracle in a given ZPPNPL

computation. By applying standard probability
amplification techniques (cf. [36]) we can assume that there are NP sets A
and B such that for some polynomial p and all m there exists a subset
Sm ⊆ {0, 1}p(m) of size at least 2p(m)−1 with the property that for all strings
y of length at most m,

y ∈ L ⇒ ∀w : 〈y, w〉 ∈ A and ∀w ∈ Sm : 〈y, w〉 6∈ B,
y 6∈ L ⇒ ∀w : 〈y, w〉 ∈ B and ∀w ∈ Sm : 〈y, w〉 6∈ A.



Call a string w ∈ {0, 1}p(m) bad, if it fulfills the following property:

∃y ∈ {0, 1}≤m : 〈y, w〉 ∈ A ∩B.

Since Sm does not contain bad strings, most strings in {0, 1}p(m) are good.
Now, in order to simulate the ZPPNPL

computation on a given input x by a
ZPP oracle machine M with the help of an NP oracle, let m be large enough
such that all the queries to L have length at most m. To decide x, M first
chooses a random string w ∈ {0, 1}p(m) and uses its oracle to check that it is
not bad. Using such a w as advice, M can replace each query to the oracle
L with an NP ∩ coNP computation.

As a consequence we get the following inclusions between lowness classes:

NP∩coNP = Low(NP) ⊆ AM∩coAM = Low(AM) ⊆ Low(ZPP(NP)) ⊆ Low(ΣP
2 ).

3 Counting classes
Extending the definition of Valiant’s #P counting functions, Fenner et al.
[17] defined the class GapP of functions that express the difference between
accepting and rejecting computations of a nondeterministic Turing machine.

Definition 3. For a nondeterministic machineM and an input x, let accM(x)
(rejM(x)) be the number of accepting (rejecting) paths of M on input x. A
function f : Σ∗ → Z belongs to the class GapP if there is a polynomial-time
nondeterministic Turing machine M such that for every input x ∈ Σ∗,

f(x) = accM(x)− rejM(x).

The class of GapP functions allows us to define many counting complexity
classes in a uniform way. For example, PP is the class of languages L for which
there is a GapP function f such that for every x, x ∈ L ⇔ f(x) > 0, and
L ∈ ⊕P if there is a function f ∈ GapP such that for every x, x ∈ L⇔ f(x)
is odd. Also, most of the lowness results for counting classes use in their
proofs the GapP function machinery.

We already mentioned that ⊕P is low for itself. Regarding PP there are
several classes of problems, like for example, BPP or the class of sparse sets in
NP, that are known to be low for this class [26]. Also the Graph Isomorphism
problem is low for PP [27]. It is interesting to observe that all these examples
are also low for Σp

2. As we will see, there are however some other interesting
classes of problems that are low for PP and not known to be low for any
class in the polynomial time hierarchy. These results can be best explained
introducing some new counting classes.



Definition 4. [17] A language L is in SPP if there is a GapP function f
satisfying that for every x,

x ∈ L ⇒ f(x) = 1

x 6∈ L ⇒ f(x) = 0

A language L is in LWPP if there are a GapP function f and polynomial time
computable function g such that 0 6∈ range(g) and for every x

x ∈ L ⇒ f(x) = g(1|x|)

x 6∈ L ⇒ f(x) = 0

In other words, the languages in SPP and LWPP can be computed by
nondeterministic polynomial time machines in which the difference between
accepting and rejecting configurations in the cases of x ∈ L and x 6∈ L are
known. Clearly SPP ⊆ LWPP.

Fenner et al. [17] proved that SPP is low for PP and that in fact SPP is
low for itself, SPP(SPP) = SPP. They also show (citing a private commu-
nication from Toda) that LWPP is low for PP. A method to prove that a
problem is low for PP, based in these results, is to show that it is included
in LWPP. This is exactly what was done in [27] with Graph Isomorphism
and some other related group problems. Carefully computing a generator set
for the automorphism group of a graph by making controlled queries to GI,
the authors proved that GI is contained in LWPP, while the seemingly eas-
ier problem to decide whether a graph has some non-trivial automorphism,
Graph Automorphism, is contained in SPP. Arvind and Kurur [2] improved
the result for GI proving that the problem belongs to the tighter class SPP.

Theorem 3. [2] GI belongs to SPP.

A consequence of this is that GI is also low for ⊕P. They extended the
result to the Hidden Subgroup problem (HSP) which plays an important role
in quantum computation.

Definition 5. HSP: On input a permutation group G (given by a generator
set), and a function f : G→ F for some finite set F , (f given in the form of
a “black box”) with the property that there exists a subgroup H < G such that
f is constant in the right cosets defined by H and different in the distinct
right cosets of H, find a generator set for the hidden subgroup H.

It is not hard to see that the problem of finding a generator set for the
automorphism group of a given graph (a problem that is hard for Graph
Isomorphism) is a particular case of HSP. For a graph X with n vertices, the



group G is in this case the set Sn of permutations acting on {1, . . . , n}. F
is the set of graphs with n vertices and the function f : Sn → F is defined
as f(π) = π(X). If H is the automorphism group of X, then clearly f is
constant and distinct on the different cosets defined by H.

Observe that HSP is a functional problem and therefore it cannot be
included in a class of decisional problems like SPP. Arvind and Kurur show
that HSP can be computed in polynomial time by an algorithm making
queries to SPP.

HSP has received much attention because of its relation to quantum com-
putation. BQP is the class of problems that can be solved in polynomial
time with a quantum computer model with bounded error probability. Sev-
eral problems proven to be in BQP but not known to be in P, are concrete
instances of HSP. In fact it is known that the version of HSP with the ad-
ditional condition that the given group G is commutative, can be solved in
BQP [23]. Unfortunately, for the case of GI, G is the group of all permuta-
tions, which is not commutative. Nevertheless the fact that GI is an instance
of HSP gives some hope to find an efficient quantum algorithm for the graph
isomorphism problem.

HSP being low for PP is not the only connection between lowness and
quantum computation. Fortnow and Rogers [18] proved that the whole class
BQP is low for PP. This is done by proving that BQP is included in yet
another counting class, AWPP, introduced in [39]. AWPP is low for PP as
was shown in [31]. AWPP is the best upper bound known for BQP so far.
We give here a definition of this class, more elegant than the original, due to
Fenner [16]:

Definition 6. A language L is in AWPP if there is a GapP function f and
a polynomial p satisfying that for every x,

x ∈ L ⇒ 2

3
≤ f(x)

2p(|x|) ≤ 1,

x 6∈ L ⇒ 0 ≤ f(x)

2p(|x|) ≤
1

3
.

It follows directly from the definition that AWPP generalizes both SPP
and BPP.

Theorem 4. [18] BQP is low for PP.

This result is proven by showing that the probability of acceptance of a
polynomial time quantum machineM on an input x can be exactly computed
using GapP functions. For this the quantum machine is normalized so that it



has a unique accepting computation and uses only unitary transformations
from a finite basis set. As a consequence, the amplitudes of the quantum
states during the computation range only over a finite set of values. The
graph of all possible reachable configurations of M(x) can be exponentially
large, but the probability of reaching a particular configuration can be com-
puted from the set of computation paths that can reach this configuration
and the probability of the machine taking one of this paths. This can all be
computed with GapP functions.

A different lowness result for the class PP comes from the area of games
with unique winning strategies. Generalizing the class UP of NP problems
with at most one accepting path, Niedermeier and Rossmanith [32] intro-
duced an unambiguous version of an alternating Turing machine and defined
the class UAP.

Definition 7. An alternating Turing machine is unambiguous if every ac-
cepting existential configuration has exactly one move to an accepting config-
uration, and every rejecting universal configuration has exactly one move to
a rejecting configuration. The class UAP consists of all languages accepted
by polynomial-time unambiguous alternating machines.

In [32] it is shown that UAP is contained in SPP and therefore low for
PP. Later it was proved [15] that UAP is low for itself, UAP(UAP) = UAP,
and also that Graph Isomorphism is contained in UAP. This improves the
SPP upper bound for GI proven in [2].

The inclusion relations among the low for PP complexity classes discussed
here can be seen in the diagram of Figure 1.

We have cited several results proving that some complexity class or prob-
lem is low for PP. Is there an exact characterization of the class of sets that
are low for PP? Does this class coincide with AWPP? SPP and UAP contain
GI and are both low for themselves, an interesting question is whether these
two classes coincide.
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