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Communication complexity is a fundamental sub-area of complexity theory that
studies the amount of communication required between several parties to jointly
perform a computational task. In the basic model, Alice and Bob need to jointly
compute a boolean function f(x, y). Alice holds the input part x and Bob holds
y. The communication cost is the number of bits exchanged between them during
computation. The log-rank conjecture, formulated twenty-five years ago, states
that there is a deterministic protocol for computing f whose communication
cost is polynomial in the logarithm of the rank of the associated communication
matrix Mf .

There has been exciting progress on this long-standing open problem in the
last year. In this timely survey article, Shachar Lovett explains the recent results
with intuitive proof sketches, and points out various future directions for progress.
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Recent advances on the log-rank
conjecture in communication

complexity

Shachar Lovett∗

Abstract

The log-rank conjecture is one of the fundamental open problems
in communication complexity. It speculates that the deterministic
communication complexity of any two-party function is equal to the
log of the rank of its associated matrix, up to polynomial factors.
Despite much research, we still know very little about this conjecture.
Recently, there has been renewed interest in this conjecture and its
relations to other fundamental problems in complexity theory. This
survey describes some of the recent progress, and hints at potential
directions for future research.

1 Introduction
Communication complexity studies the amount of communication needed
in order to evaluate a function, whose output depends on information dis-
tributed amongst two or more parties. Since its first introduction by Yao [35],
communication complexity was extensively studied, to a large extent because
of its applications in diverse fields, such as circuit complexity, VLSI design,
proof complexity, streaming algorithms, data structures and more. Still,
there are many fundamental problems about the communication complex-
ity of functions which are wide open. We refer the reader to the book of
Kushilevitz and Nisan [8] for more details on communication complexity and
its applications, and to the book of Lee and Shraibman [16] for an exposition
of more recent lower bound techniques in communication complexity.

In this survey, we focus on the communication complexity between two
parties. Let f : X × Y → {0, 1} be a boolean function, where one party
holds an inputs x ∈ X, the other party holds an input y ∈ Y , and their
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goal is to evaluate f(x, y) while minimizing their communication. For most
of this survey, we will focus on deterministic protocols, which is the simplest
communication model. The deterministic communication complexity of f
is the minimal number of bits communicated by an optimal deterministic
protocol computing f , and is denoted by CCdet(f).

There is a simple lower bound on the deterministic communication com-
plexity of functions, first observed by Mehlhorn and Schmidt [21], based on
the rank of their associated matrix. Let Mf be the X × Y matrix with
Mx,y = f(x, y). A deterministic protocol computing f in which the players
send c bits of communication, corresponds to a partition of the matrix Mf

to 2c rectangles (a rectangle is a set A × B with A ⊂ X,B ⊂ Y ) such that
the value of Mf is constant on each rectangle. Such rectangles are called
monochromatic. As the rank (as a real matrix) of a monochromatic rectan-
gle is at most one, we get that rank(Mf ) ≤ 2c. Equivalently, if we shorthand
rank(f) = rank(Mf ) then

CCdet(f) ≥ log rank(f).

The log-rank conjecture proposed by Lovász and Saks [15] speculates that
this simple bound is tight for all boolean functions, up to polynomial factors.

Conjecture 1.1 (The log-rank conjecture [15]). There exists a universal
constant C > 0 such that for any boolean function f ,

CCdet(f) ≤ C(log rank(f))C .

Validity of the log-rank conjecture is one of the fundamental open prob-
lems in communication complexity. It is true in all known examples, but still
very little progress has been made towards resolving it. In the special case
where Mf is the adjacency matrix of a graph G, an essentially equivalent
conjecture given by van Nuffelen [34] and Fajtlowicz [4] replaces the commu-
nication complexity by the (weaker notion) of log of the chromatic number
of the graph; equivalently, that χ(G) ≤ exp(logO(1) rank(G)).

A simple upper bound is that CCdet(f) ≤ rank(f), which is exponentially
worse than what is conjectured by the log-rank conjecture. It follows from
the simple observation that if rank(f) = r, then there could be at most 2r

distinct rows in Mf . Hence, one can assume without loss of generality that
|X| ≤ 2r, and consider a protocol in which the first player simply sends its
input x. In the special case of graphs, Kotlov and Lovász [7] proved that if a
graph has rank r, then its chromatic number is at most 2r/2. This was later
improved to (4/3)r by Kotlov [9].

In terms of lower bounds, a sequence of works [1, 23, 25, 28] culminating
in an example due to Kushilevitz (unpublished, cf. [23]) shows that there
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exist functions for which CCdet(f) ≥ (log rank(f))
log3 6 . Hence,the constant

C in Conjecture 1.1, if it exists, must satisfy C ≥ log3 6 ≈ 1.63.
Recently, there was renewed interest in the log-rank conjecture and its

relations to several other problems in complexity theory. Ben-Sasson, Ron-
Zewi and the author [2] studied the relation of the log-rank conjecture to
the approximate duality conjecture of [3], and showed that if one assumes
a number-theoretic conjecture (the polynomial Freiman-Ruzsa conjecture)
then the trivial upper bound can be reduced by a logarithmic factor.

Theorem 1.2 ( [2]). Assuming the polynomial Freiman-Ruzsa conjecture
over Fn2 , for any boolean function f ,

CCdet(f) ≤ O(rank(f)/ log rank(f)).

Gavinsky and the author [5] studied the relation between deterministic
and randomized protocols for low rank matrices, and showed that in order to
prove the log-rank conjecture, it suffices to prove that any low rank matrix has
an efficient randomized protocol. In fact, they show that even weaker notions
of protocols are sufficient, like low information cost protocols or efficient zero-
communication protocols. We will show here the following result.

Theorem 1.3 ( [5]). If a boolean function f has a randomized protocol of
complexity c, then it also has a deterministic protocol of complexity O(c ·
log2(rank(f))).

Finally, the author [14] proved a new (unconditional) upper bound, based
on discrepancy of low rank matrices, which improves the previous upper
bound by nearly a quadratic factor.

Theorem 1.4 ( [14]). For any boolean function f ,

CCdet(f) ≤ O
(√

rank(f) · log rank(f)
)
.

The goal of this survey is to explain these recent works, discuss their
relations to other fundamental problems in complexity theory, and speculate
on what directions seem the most likely to yield further advances for the log-
rank conjecture. This is by no means a comprehensive survey. In particular, a
related line of research which will not be discussed here is the study of the log-
rank conjecture restricted to special families of functions. For example, the
case of XOR functions (functions of the form f(x, y) = F (x⊕y)) and related
problems has received considerable attention recently [10,18–20,30,31,36–38].
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Paper organization. In Section 2 we present a result of Nisan andWigder-
son which allows to reduce the problem of constructing deterministic proto-
cols to the simpler problem of exhibiting a large monochromatic rectangle.
As this result is used repeatedly, we include its proof for completeness. In
Section 3 we discuss the approximate duality conjecture in additive com-
binatorics, its relations to the log-rank conjecture and to constructions of
two-source extractors. In Section 4 we show that low-rank functions with
efficient randomized protocols also have efficient deterministic protocols. In
Section 5 we apply bounds on the discrepancy of low-rank functions to de-
duce better upper bounds on deterministic protocols. In Section 6 we discuss
several directions for further research, including relations to the problem of
matrix rigidity.

2 From monochromatic rectangles to protocols

The log-rank conjecture speculates that if Mf has a low rank, then it can be
partitioned into a small number of monochromatic rectangles. In particular,
it must have a large monochromatic rectangle. A beautiful reduction of Nisan
and Wigderson [23] shows that if one can prove that any low rank boolean
matrix has a large monochromatic rectangle, then it can be bootstrapped to
design a protocol with nearly the same efficiency. As this reduction would be
useful for us, we review it below. We recall that a monochromatic rectangle
is a subset R = A×B ⊂ X×Y such that f(x, y) is constant for all (x, y) ∈ R.

Theorem 2.1 ( [23]). Assume that for any function f : X×Y → {0, 1} with
rank(f) = r, there exists a monochromatic rectangle of size |R| ≥ 2−c(r)|X ×
Y |. Then, any boolean function of rank r is computable by a deterministic
protocol of complexity O(log2 r +

∑log r
i=0 c(r/2

i)).

Before giving the proof, we note that if c(r) = poly log(r) then The-
orem 2.1 implies a protocol with deterministic communication complexity
poly log(r), hence proving the log-rank conjecture. On the other end of the
spectrum, if c(r) = rα for some α < 1 then Theorem 2.1 implies a protocol
with deterministic communication complexity O(rα).

Proof. Let f be a function with rank(Mf ) = r, and let R be the assumed
monochromatic rectangle of size 2−c(r) · |X × Y |. Consider the partition of
the matrix Mf as

Mf =

(
R S
P Q

)
5



As R is monochromatic, rank(R) ≤ 1. Hence, rank(S) + rank(P ) ≤ r +
1. Assume, without loss of generality, that rank(S) ≤ r/2 + 1 (otherwise,
exchange the roles of the rows player and columns player). The row player
sends one bit, indicating whether the input x is in the top part or in the
bottom part of the matrix. If it is in the top part then the rank decreases to
rank(R S) ≤ rank(R) + rank(S) ≤ r/2 + 2. If it is in the bottom part, the
rank might not decrease, but the size of the matrix reduces to at most (1−
2−c(r))|X×Y |. Iterating this process defines a protocol tree. We next bound
the number of leaves of the protocol. By standard techniques, any protocol
tree can be balanced so that the communication complexity is logarithmic in
the number of leaves (cf. [8, Chapter 2, Lemma 2.8]).

Consider the protocol which stops once the rank drops to approximately
r/2. The protocol tree in this case has at most O(2c(r) ·log(|XY |)) leaves, and
hence can be simulated by a protocol sending only O(c(r) + log log(|XY |))
bits. Note that since we can assume f has no repeated rows or columns,
|XY | ≤ 22r and hence log log(|XY |) ≤ log(r) + 1. Next, consider the phase
where the protocol continues until the rank drops to r/4. Again, this protocol
can be simulated by O(c(r/2)+log(r)) bits of communication. Summing over
r/2i for i = 0, . . . , log(r) gives the bound.

3 Approximate duality and the log-rank con-
jecture

Nisan and Wigderson [23] proved another interesting fact: any low rank
boolean matrix contains a large rectangle which is slightly biased. The bias
of f over a rectangle R is defined as

bias(f |R) =
∣∣E(x,y)∈R

[
(−1)f(x,y)

]∣∣ =

∣∣∣∣ Pr
(x,y)∈R

[f(x, y) = 0]− Pr
(x,y)∈R

[f(x, y) = 1]

∣∣∣∣ .
We also define bias(f) to be the bias of f over the full space X ×Y . We will
later see a generalization of this fact, called discrepancy, which is measured
against the worst case distribution of inputs.

Theorem 3.1 ( [23]). Let f : X ×Y → {0, 1} with rank(f) = r. Then there
exists a rectangle R of size |R| ≥ |X × Y |/O(r3/2) such that bias(f |R) ≥
1/O(r3/2).

Let us restrict f to the rectangle R so that we may assume for simplicity
bias(f) ≥ ε = 1/O(r3/2). Thus, we may ask whether it is easier to study the
structure of low rank matrices, if we further assume that they are somewhat
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biased. Recall that Theorem 2.1 requires us to find a large monochromatic
rectangle. This raises the following problem.

Problem 3.2. Let f be a boolean function such that rank(f) = r and
bias(f) ≥ ε. What is the largest monochromatic rectangle that Mf must
contain?

The previous discussion shows that this problem is essentially equivalent
to the log-rank conjecture, as long as the bias is inverse polynomially re-
lated to the rank. The main idea of Ben-Sasson et al. [2] is to consider a
related problem, where instead of considering the matrices over the reals, we
consider them over the binary finite field F2. In the following, we denote by
rankF2(Mf ) the rank of a matrix over F2; note that the rank over F2 is always
at most the rank over the reals, e.g. rankF2(Mf ) ≤ rank(Mf ).

Approximate duality. We now introduce a seemingly unrelated problem.
Let A,B ⊂ Fr2 be subsets. The approximate duality measure of A,B is

ε =
∣∣Ea∈A,b∈B[(−1)〈a,b〉]

∣∣ =

∣∣∣∣ Pr
a∈A,b∈B

[〈a, b〉 = 0]− Pr
a∈A,b∈B

[〈a, b〉 = 1]

∣∣∣∣ .
We say the sets are ε-approximate dual if their approximate duality measure
is at least ε. Note that ε = 1 corresponds to sets which are orthogonal
(possibly after applying an affine shift to one of the sets). The approximate
duality conjecture of Ben-Sasson and Ron-Zewi [3] speculates that any large
sets which are approximate dual, must contain large subsets which are dual.

Conjecture 3.3 (Approximate duality conjecture [3]). Let A,B ⊂ Fr2 be sets
which are ε-approximate dual. Then there exist subsets A′ ⊂ A,B′ ⊂ B and
a value c ∈ F2 such that

〈a, b〉 = c ∀a ∈ A′, b ∈ B′,

where
|A|
|A′|

,
|B|
|B′|
≤ 2

O
(√

r log(1/ε)
)
.

The bound in Conjecture 3.3, if true, is the best possible, as the following
example shows. Let A = B be the set of all vectors in Fr2 of hamming weight√
r/10. Then the probability that a uniformly chosen a ∈ A, b ∈ B intersect

is at most 1/100, and hence A,B are ε-approximate dual for ε ≥ 0.98. On the
other hand, the largest subsets A′ ⊂ A,B′ ⊂ B which are orthogonal come
from choosing A′ = A ∩ ({0, 1}r/2 × 0r/2) to be the set of vectors supported
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on the first half of the coordinates, and B′ = B ∩ (0r/2 × {0, 1}r/2) to be the
vectors supported on the last half of the coordinates. One can then verify
that |A|/|A′| = |B|/|B′| = exp(Ω(

√
r)). The bound for general ε > 0 can be

similarly obtained, by considering A = B to be the vectors in Fr2 of hamming
weight O(

√
r log(1/ε)).

Approximate duality and the log-rank conjecture. Let us now relate
the approximate duality conjecture with the log-rank conjecture. By Theo-
rem 3.1, if rank(Mf ) = r (where the rank is over the reals) we may assume (by
potentially restricting f to a large rectangle) that bias(f) ≥ ε = 1/O(r3/2).
Moreover, rankF2(f) ≤ rank(f) = r. Equivalently put, there are vectors
ax, by ∈ Fr2 such that

〈ax, by〉 = f(x, y).

Let us define A = {ax : x ∈ X}, B = {by : y ∈ Y }. Then by definition,
since bias(f) ≥ ε, the sets A,B are ε-approximate dual. Then, by the
approximate duality conjecture, there are large subsets A′ ⊂ A,B′ ⊂ B
such that 〈a, b〉 is constant for all a ∈ A′, b ∈ B′. That is, the rectangle
A′ × B′ is monochromatic! Working out the parameters, the approximate
duality conjecture implies that Mf contains a monochromatic rectangle R of
size |R| ≥ exp(−O(

√
r log(r)))|X ×Y |. As this holds for any matrix of rank

r, Theorem 2.1 implies that f has a deterministic protocol of complexity at
most O(

√
r log(r)). Thus, we obtain the following corollary.

Corollary 3.4. If Conjecture 3.3 is true, then any boolean function f with
rank(f) = r has a deterministic protocol of complexity O(

√
r log(r)).

Of course, we do not know if Conjecture 3.3 is true or not. Ben-Sasson
and Ron-Zewi proved the following weak version of it, which has no direct
implication for the log-rank conjecture.

Theorem 3.5 ( [3]). For any α > 0 there exist ε > 0 such that the following
holds. Let A,B ⊂ Fr2 be sets which are (1− ε)-approximate dual. Then there
exist subsets A′ ⊂ A,B′ ⊂ B and a value c ∈ F2 such that

〈a, b〉 = c ∀a ∈ A′, b ∈ B′,

where
|A|
|A′|

,
|B|
|B′|
≤ 2αr.

Ben-Sasson, Ron-Zewi and the author [2] proved a slightly stronger
version, assuming a number-theoretic conjecture known as the polynomial
Freiman-Ruzsa conjecture. This conjecture can be defined over arbitrary
Abelian groups, but we only need it for the additive group Fn2 .
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Conjecture 3.6 (The polynomial Freiman-Ruzsa conjecture over Fn2 ). Let
A ⊂ Fn2 be a set, and let A + A = {a1 + a2 : a1, a2 ∈ A} be its sumset. If
|A+A| ≤ K|A| then there exists an affine subspace V ⊂ Fn2 of size |V | ≤ |A|
such that

|A ∩ V | ≥ K−O(1)|A|.

The polynomial Freiman-Ruzsa conjecture is one of the fundamental open
problems in additive combinatorics, see e.g. [6] for a discussion of the conjec-
ture. A quasi-polynomial analog of it was proved by Sanders [29], see also [13]
for an exposition. If one assumes Conjecture 3.6 to hold, Ben-Sasson et al [2]
proved an improved bound on the approximate duality conjecture.

Theorem 3.7 ( [2]). Assume that the polynomial Freiman-Ruzsa conjec-
ture over Fn2 (Conjecture 3.6) is true. Let A,B ⊂ Fr2 be sets which are
ε-approximate dual for ε ≥ 2−

√
r. Then there exist subsets A′ ⊂ A,B′ ⊂ B

and a value c ∈ F2 such that

〈a, b〉 = c ∀a ∈ A′, b ∈ B′,

where
|A|
|A′|

,
|B|
|B′|
≤ 2O(r/ log(r)).

Theorem 1.2 follows as an immediate corollary from the combination of
Theorem 3.7 with Theorem 2.1. We restate it below for the convenience of
the reader.

Theorem 1.2 (restated) Assuming the polynomial Freiman-Ruzsa conjec-
ture over Fn2 , for any boolean function f ,

CCdet(f) ≤ O(rank(f)/ log rank(f)).

Approximate duality and two-source extractors. The original appli-
cation of [3] for the approximate duality conjecture was for the construction
of pseudo-random graphs, specifically construction of two-source extractors
from certain constructions of two-source dispersers. In the following, we fo-
cus for simplicity on the case of dispersers and extractors which output a
single bit, and we somewhat abuse the standard notations in this field. Let
G = (U, V,E) be a bi-partite graph. The graph G is a k-Ramsey graph (also
called a disperser), if it contains no bi-partite clique or independent set of
size k×k. Equivalently, for any subsets A ⊂ U,B ⊂ V of size |A| = |B| = k,
if we denote by E(A,B) the set of induced edges between A and B, then

1 ≤ |E(A,B)| ≤ |A||B| − 1.
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The graph is called a (k, ε) two-source extractor if in fact the number of edges
between A,B is close to what might be expected in a random graph, that is

(1/2− ε)|A||B| ≤ |E(A,B)| ≤ (1/2 + ε)|A||B|.
Ben-Sasson and Ron-Zewi [3] showed that certain constructions of Ramsey
graphs are inherently also two-source extractors for weaker parameters. Con-
sider the following construction of a bi-partite graph G = (U, V,E): U, V ⊂
Fn2 , and for u ∈ U, v ∈ V we have (u, v) ∈ E if 〈u, v〉 = 1. Assume that G is
not a (k, ε) two-source extractor. That is, there are subsets A ⊂ U,B ⊂ V of
size |A| = |B| = k such that (say) |E(A,B)| ≥ (1/2 + ε)|A||B|. This means
that the approximate duality measure between A,B is at least 2ε, which by
the approximate duality conjecture (Conjecture 3.3) implies that we can find
large subsets A′ ⊂ A,B′ ⊂ B such that (say) |E(A′, B′)| = 0. Then, we
conclude that the graph G is not a k′-Ramsey graph for k′ = min(|A′|, |B′|).
Otherwise put, any bi-partite graph, constructed in this way, which is k′-
Ramsey, must also be a (k, ε) two-source extractor, where k is somewhat
larger than k′. For further details we refer the reader to the original pa-
per [3].

4 From randomized to deterministic protocols
The log-rank conjecture speculates that low rank boolean functions have effi-
cient deterministic protocols. We already saw in Theorem 2.1 that a sufficient
condition is that any low rank boolean matrix contains a large monochro-
matic rectangle. Here, we describe another reduction, due to Gavinsky and
the author [5]. We will show that it is also sufficient to construct a random-
ized protocol computing the function.

A randomized protocol computing a function f(x, y) is a protocol, in
which both parties are allowed to use randomized strategies, such that for
every input x, y, the protocol computes the correct value f(x, y) with prob-
ability at least 2/3. Note that a randomized protocol is a distribution over
deterministic protocols. The complexity of a randomized protocol is the max-
imal number of bits that may be sent by the protocol. We recall Theorem 1.3
for the convenience of the reader.
Theorem 1.3 (restated) If a boolean function has a randomized protocol
of complexity c, then it also has a deterministic protocol of complexity O(c ·
log2(rank(f))).

Proof. Let p(x, y) denote the probability that the protocol computes f cor-
rectly on inputs x, y, where by assumption p(x, y) ≥ 2/3. We can in-
crease the success probability by repeating the protocol a few times, and
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computing the majority of the values obtained. Specifically, if we repeat
the protocol O(log 1/ε) times, we obtain a randomized protocol which uses
c′ = O(c log(1/ε)) bits and computes f(x, y) correctly with probability 1− ε.
A randomized protocol is a distribution over deterministic protocols; hence,
if we consider the uniform distribution over inputs, we get by an averaging
argument that there exists a deterministic protocol π(x, y) of complexity c′
such that ∣∣{(x, y) ∈ X × Y : π(x, y) = f(x, y)}

∣∣ ≥ (1− ε) |X × Y |.

A deterministic protocol of complexity c′ corresponds to a partition to N =
2c
′ many rectangles. We next argue that there exists a large rectangle on

which f is nearly fixed. Let R1, . . . , RN denote the rectangles corresponding
to the protocol π. Denote by µ(R) = |R|/|X × Y | the fractional size of a
rectangle, and by α(R) = |{(x, y) ∈ R : π(x, y) 6= f(x, y)}|/|R| the fraction
of elements in R on which the protocol π makes a mistake. By assumption,
we have

N∑
i=1

µ(Ri) = 1;
N∑
i=1

µ(Ri)α(Ri) ≤ ε.

One can verify that these imply that there must be a rectangle R = Ri such
that

µ(R) ≥ 1/2N ; α(R) ≤ 2ε.

As π is fixed on R, we can assume without loss of generality that

|{(x, y) ∈ R : f(x, y) = 1}| ≥ (1− 2ε)|R|.

Let r = rank(f). We next show that by setting ε = 1/8r, there exists a large
sub-rectangle R′ ⊂ R on which f is monochromatic.

Claim 4.1. Let f be a boolean function of rank r, and assume there exists
a rectangle R on which f(x, y) = 1 for at least 1 − 1/4r of the elements in
R. Then, there exists a sub-rectangle R′ ⊂ R of size |R′| ≥ |R|/8 such that
f(x, y) = 1 for all (x, y) ∈ R′.

Proof. Let R = A×B. Let A′ ⊂ A be the set of rows for which at most 1/2r
fraction of the elements are −1,

A′ =
{
x ∈ A : |{y ∈ B : f(x, y) = −1}| ≤ |B|/2r

}
.

By Markov inequality, |A′| ≥ |A|/2. Let x1, . . . , xr ∈ A′ be indices so that
their rows span f restricted to A′ ×B. Let

B′ = {y ∈ B : f(x1, y) = . . . = f(xr, y) = 1}.
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Since each of the rows x1, . . . , xr contain at most 1/2r fraction of elements
which are −1 we have |B′| ≥ |B|/2. Now, this implies that all rows in
A′ × B′ are either the all 1 or all −1. Choosing the largest half gives the
required rectangle. This gives a monochromatic rectangle R′ ⊂ R of size
|R′| ≥ |R|/8.

To conclude, we would like to apply Theorem 2.1 in order to show the
existence of a deterministic protocol. The reader can verify, that although
the conditions of Theorem 2.1 require one to show that any low rank function
has a large monochromatic rectangle, in fact for the proof to go through, it
suffices to assume that this holds only for functions which are restrictions of
f to rectangles. The same argument as above shows that for any rectangle
R ⊂ X × Y , there exists a sub-rectangle R′ ⊂ R of size |R′| ≥ 2−O(c log(r))|R|
on which f is monochromatic. Note that, as the bound c does not improve as
the rank decreases, we incur an additional multiplicative factor of log(r) in
the communication complexity. We deduce that there exists a deterministic
protocol computing f of complexity O(c log2(r)), as claimed.

5 Discrepancy of matrices and the log-rank
conjecture

Let f : X × Y → {−1, 1} be a boolean function. For a distribution µ on
X × Y , the discrepancy of f with respect to µ is the maximal correlation
that f has with rectangles,

disc(f ;µ) = max
R

∣∣∣∣∣∣
∑

(x,y)∈R

f(x, y)µ(x, y)

∣∣∣∣∣∣
where R ranges over all rectangles. The discrepancy of f is its discrepancy
for the worse case distribution,

disc(f) = min
µ

disc(f ;µ).

Discrepancy is a well-studied property in the context of communication com-
plexity lower bounds, see e.g. the survey [12] for details. On the other hand, it
is known that low-rank boolean matrices have noticeable discrepancy [11,17]:
if f has rank r then

disc(f) ≥ 1

8
√
r
. (1)
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A result of the author [14] shows that discrepancy can be used to prove upper
bounds as well. We restate Theorem 1.4 for the convenience of the reader.

Theorem 1.4 (restated) For any boolean function f ,

CCdet(f) ≤ O
(√

rank(f) · log rank(f)
)
.

The following lemma is the main technical tool. It shows that a function
with high discrepancy contains a large rectangle which is almost monochro-
matic. In fact, this is true with respect to any distribution over the inputs.
We make the following definitions: given a distribution µ over X × Y , let
µ(R) =

∑
(x,y)∈R µ(x, y) denote the probability of an input landing in R, and

Eµ[f ] =
∑

(x,y)∈X×Y µ(x, y)f(x, y) the average of f with respect to µ. For a
rectangle R such that µ(R) > 0, let µ|R the distribution µ conditioned on
being in R, that is, (µ|R)(x, y) = 1(x,y)∈R · µ(x, y)/µ(R).

Lemma 5.1. Let f : X×Y → {−1, 1} be a function with disc(f) = δ. Then
for any ε > 0 and any distribution µ over X × Y , there exists a rectangle R
with

µ(R) ≥ 2−O(δ−1·log(1/ε))

such that
∣∣Eµ|R[f ]

∣∣ ≥ 1− ε.

Proof of Theorem 1.4, assuming Lemma 5.1. Let f be any boolean function
of rank r. Apply Lemma 5.1 with µ the uniform distribution over X × Y ,
δ ≥ 1/8

√
r and ε = 1/4r, to deduce the existence of a rectangle R ⊂ X ×

Y of size |R| ≥ 2−O(
√
r log(r))|X × Y | such that f(x, y) = v for 1 − 1/4r

fraction of elements in R. Apply Claim 4.1 to deduce that there exists a
sub-rectangle R′ ⊂ R of size |R′| ≥ |R|/8 on which f is monochromatic. By
Theorem 2.1, this implies that any function of rank r has a deterministic
protocol of complexity O(

√
r log(r)).

We now turn to prove Lemma 5.1. The proof of Lemma 5.1 which we give
below is a simplification of the original proof of [14], which was presented to
us by Salil Vadhan [32].

Proof of Lemma 5.1. Let us assume without loss of generality that Eµ[f ] ≥ 0,
otherwise apply the lemma to −f . Let σ be any distribution over X × Y
such that Eσ[f ] = 0. By assumption, there exists a rectangle R1 such that∣∣∣∣∣∣

∑
(x,y)∈R1

σ(x, y)f(x, y)

∣∣∣∣∣∣ ≥ δ.
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Let R1 = A × B and define A′ = X \ A,B′ = Y \ B. Consider the four
rectangles

R1 = A×B,R2 = A′ ×B,R3 = A×B′, R4 = A′ ×B′.

As
∑

(x,y)∈X×Y σ(x, y)f(x, y) = Eσ[f ] = 0, there must exist a rectangle R ∈
{R1, R2, R3, R4} such that∑

(x,y)∈R

σ(x, y)f(x, y) ≥ δ/3.

This holds for any distribution σ for which Eσ[f ] = 0. Hence, we can apply
von Neumann’s Minimax Theorem [22] and deduce that there exists a distri-
bution ρ over rectangles, such that for any distribution σ for which Eσ[f ] = 0,
we have

ER∼ρ

 ∑
(x,y)∈R

σ(x, y)f(x, y)

 ≥ δ/3.

Equivalently, ∑
(x,y)∈X×Y

Pr
R∼ρ

[(x, y) ∈ R] · σ(x, y)f(x, y) ≥ δ/3.

Fix (x1, y1) ∈ f−1(1) and (x2, y2) ∈ f−1(−1). Let σ be the distribution
given by σ(x1, y1) = σ(x2, y2) = 1/2. As Eσ[f ] = 0 we have

Pr
R∼ρ

[(x1, y1) ∈ R]− Pr
R∼ρ

[(x2, y2) ∈ R] ≥ (2/3)δ.

Let p be the minimal probability that (x1, y1) ∈ R over all (x1, y1) ∈ f−1(1),
where R is sampled according to ρ; and let q be the maximal probability
that (x2, y2) ∈ R over all (x2, y2) ∈ f−1(−1). We established that

p− q ≥ (2/3)δ.

Fix t ≥ 1 and let R1, . . . , Rt ∼ ρ be chosen independently, and let R∗ =
R1 ∩ . . . ∩ Rt be their intersection. We will show that for an appropriate
choice of t, the rectangle R∗ satisfies the requirements of the lemma with
positive probability (and hence such a rectangle exists). We will use the fact
that for any x ∈ X, y ∈ Y ,

Pr[(x, y) ∈ R∗] = Pr
R∼ρ

[(x, y) ∈ R]t.
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Consider the random variable

T = µ(R∗)− (1/ε) · µ(R∗ ∩ f−1(−1)).

By linearity of expectation, we have

E[T ] =
∑

(x,y)∈f−1(1)

µ(x, y) Pr[(x, y) ∈ R∗]−
∑

(x,y)∈f−1(−1)

µ(x, y)((1/ε)− 1) Pr[(x, y) ∈ R∗]

≥ µ(f−1(1)) · pt − µ(f−1(−1)) · qt/ε
≥ 1/2 · (pt − qt/ε),

where we used our initial assumption that Eµ[f ] = µ(f−1(1))−µ(f−1(−1)) ≥
0. Setting t = O(p/δ · log(1/ε)) gives

qt/pt ≤ (1− (2/3)δ/p)t ≤ ε/2.

For this choice of t, we have

E[T ] ≥ pt/4 = 2−O(δ−1·log(1/ε)).

Let R∗ be a rectangle which achieves this average, that is

µ(R∗)− (1/ε) · µ(R∗ ∩ f−1(−1)) ≥ 2−O(δ−1·log(1/ε)).

In particular, we learn that both µ(R∗) ≥ 2−O(δ−1·log(1/ε)) (which satisfies the
first requirement) and furthermore that µ(R∗ ∩ f−1(−1)) ≤ ε · µ(R∗), which
implies that Eµ|R∗ [f ] ≥ 1− ε (which satisfies the second requirement).

6 Further research
There are several directions for further research. We describe a few concrete
ones below.

6.1 Randomized protocols vs approximate rank

The approximate rank of a boolean function f(x, y) is the minimal rank of
an X × Y real matrix M such that

2/3 ≤M(x, y)f(x, y) ≤ 1.

Similar to the log rank lower bound for the deterministic communication
complexity, the log of the approximate rank is a lower bound on the random-
ized communication complexity of a function. The log-rank conjecture for
randomized protocols speculates that it is also an upper bound, up to poly-
nomial factors. As a first step, one can attempt to generalize Theorem 1.4
to approximate rank and randomized protocols.
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Problem 6.1. Let f be a boolean function with approximate rank r. Show
that f has a randomized protocol of complexity

√
r · poly log(r).

6.2 Quantum protocols for low-rank matrices

The work of [5] shows that if low-rank functions have certain types of efficient
protocols (randomized protocols, low information cost protocols, or zero-
communication protocols), then up to a poly-logarithmic factor in the rank,
they also have efficient deterministic protocols. One type of protocol which
they were not able to analyze is quantum protocols. This is interesting on
its own right, but also because to the best of our current knowledge, it may
be that quantum protocols are only polynomially better than randomized
protocols, for any complete boolean function (exponential separations are
known for partial functions, see e.g. [26,27]). Thus, understanding quantum
protocols, even just for low-rank functions, seems like an important step
towards a better understanding of quantum protocols in general.

Problem 6.2. Let f be a boolean function which can be computed by a quan-
tum protocol of complexity c. Show that f can also be computed by a deter-
ministic protocol of complexity c · poly log(rank(f)).

6.3 The structure of low-rank sparse matrices, and ma-
trix rigidity

The proof of Theorem 1.4 applies to boolean matrices. We conjecture in [14]
that it can be generalized to show that any low rank sparse matrix contains
a large zero rectangle.

Conjecture 6.3. Let M be an n×n real matrix with rank(M) = r and such
that Mi,j 6= 0 for at most εn2 entries. Then, there exist A,B ⊂ [n] such that

Ma,b = 0 ∀a ∈ A, b ∈ B

such that |A|, |B| ≥ n · exp(−O(
√
εr)).

The reader can observe the similarities of Conjecture 6.3 to the approxi-
mate duality conjecture (Conjecture 3.3) which we discussed. Note that here
we consider the case where nearly all the elements are zero, while in the
approximate duality conjecture we only assumed a small bias. Nevertheless,
the same construction shows that the bounds in Conjecture 6.3, if true, are
the best possible.

A matrix M is called (r, s)-rigid, if its rank cannot be made smaller than
r by changing at most s entries inM . The problem of explicitly constructing
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rigid matrices was introduced by Valiant [33] in the context of arithmetic
circuits lower bounds, and was also studied by Razborov [24] in the context
of separation of the analogs of PH and PSPACE in communication com-
plexity. Despite much research, the best results to date are achieved by the
so-called "untouched minor" argument, which gives explicit matrices which
are (r, s)-rigid with s = Ω

(
n2

r
log
(
n
r

))
. See e.g. the survey of Lokam [12]

for details. We will prove the following corollary of Conjecture 6.3, which
improves previous bounds by a logarithmic factor.

Corollary 6.4. Assuming Conjecture 6.3, there exists an explicit n× n real
matrix which is (r, s)-rigid for s = Ω

(
n2

r
log2

(
n
r

))
.

Proof. Let M be an n × n matrix of rank r, such that all r × r minors
of M have full rank. For example, such a matrix may be constructed as
M = NN t where N is an n× r matrix such that any r rows of N are linearly
independent. Assume that M is not (r, s)-rigid. Then, we can decompose

M = L+ S, rank(L) < r, S is s-sparse.

Let s = εn2. The matrix S is both s-sparse and low rank, as rank(S) ≤
rank(M) + rank(L) < 2r. Hence, by Conjecture 6.3, there exist A,B ⊂ [n]
of size |A|, |B| ≥ n · exp(−O(

√
εr)) such that Sa,b = 0 for all a ∈ A, b ∈ B.

Hence, Ma,b = La,b. If |A|, |B| ≥ r, we must have that rank(L) ≥ rank(M) =
r. So, n · exp(−O(

√
εr)) < r and the corollary follows by rearranging the

terms.
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