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Expander graphs are of much importance in theoretical computer science, and the
construction of expander graphs involves different areas of mathematics. It has at-
tracted mathematicians and theoretical computer scientists alike and continues to be
a flourishing area of research [14].

In this essay we discuss the Alon-Roichman theorem which states that for any
finite group G, if S is a randomly picked multiset of O(log |G|) elements then the
symmetric Cayley graph Cay(G,S) is a spectral expander with high probability. We
explain a proof of this theorem based on Erdős-Rényi sequences, which are interesting
in their own right, and also outline a |G|O(1) time derandomized construction of the
set S.

We also discuss faster, (log |G|)O(1) time, derandomizations of the Alon-Roichman
theorem for finite groups given by small generating sets as input and raise some open
questions.
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1 Introduction

A primary research goal in the study of expander graphs is the construction of
explicit expander graph families. Namely, we want to construct a family of graphs
{Gn}n∈N, where Gn is typically an n vertex graph of small degree d (preferably
constant) and the second largest eigenvalue of its normalized adjacency matrix
AG is bounded by a constant λ < 1. The graph Gn is said to be an (n, d, λ)
spectral expander. It turns out that this spectral condition guarantees “high
connectivity” for Gn as a result of which Gn has small diameter and, moreover,
random walks on Gn converge “rapidly” to the uniform distribution. An excellent
source for basic material, a wide range of applications as well as current research
is the monograph on expander graphs by Hoory, Linial and Wigderson [14].

The usual source for explicit constructions of expanders is finite groups. Let
G be a finite group and let S = {g1, g2, . . . , gk} be a generator set for G. We
form the symmetric Cayley graph Cay(G,S ∪ S−1) whose vertex set is G and
an unordered pair (x, y) is an edge in the graph if and only if x−1y ∈ S ∪
S−1. Clearly, Cay(G,S ∪ S−1) is a 2k-regular multigraph. Suppose the group
G has an explicit description (i.e. the elements of G have small encodings, are
efficiently recognizable and the group operations can be efficiently performed).
Furthermore, suppose the generating set S is explicit and of small size then the
Cayley graph Cay(G,S ∪ S−1) is explicit and has small degree. The best known
explicit constructions of expander graphs are Cayley graphs of a subgroup of
2 × 2 matrices over a finite field Fp. These expander graph families, known as
Ramanujan graphs, have constant degree d and λ = Θ(1/

√
d), which is optimal

to a constant factor, and matches the λ for random d-regular multigraphs [17].
A general aspect in constructing such expander families lies, of course, in

understanding which families of finite groups Gn have small size expanding gen-
erating sets S so that Cay(G,S ∪ S−1) is a λ-spectral expander.

For any finite group G we know that it has a generating set of size log |G|.
Indeed, given G as a multiplication table we can compute a log |G| size generat-
ing set in |G|O(1) time. It is a simple greedy algorithm: having picked i elements
g1, g2, . . . , gi from G into the generating set we list out the elements of the sub-
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group H generated by the set {g1, g2, . . . , gi}. If H 6= G we pick any gi+1 ∈ G\H
as the next element in the generating set. The new subgroup 〈g1, g2, . . . , gi+1〉
obtained contains H properly and its size is at least 2|H| by Lagrange’s theorem
(which states that the size of a finite group is divisible by the size of any subgroup
of it). Hence, log |G| elements suffice to generate G. It turns out that log |G| is
also optimal for certain finite groups. E.g. if G is the additive group Fn2 then a
generating set for it is also a spanning set for the vector space Fn2 and hence has
to have at least n = log |G| elements in it as Fn2 is n-dimensional over F2.

In general, for a finite group G, a natural question that arises is whether G also
has an expanding generating set of size log |G| or at least O(log |G|). Alon and
Roichman in [3] prove the following beautiful result which answers this question
in the affirmative.

Theorem 1 (Alon-Roichman Theorem). [3] Let λ > 0 and G be any finite group.
Then a random multiset S ⊂ G of size c log |G| makes the symmetric Cayley graph
Cay(G,S ∪ S−1) a λ-spectral expander with high probability.

The theorem suggests a simple efficient Las Vegas algorithm for the problem
of computing an O(log |G|) size expanding generating set for G, where G is given
as input by its multiplication table: we sample c log |G| many elements from G
uniformly at random with replacement to obtain the multiset S. We can check in
|G|O(1) time if Cay(G,S ∪ S−1) is a λ-spectral expander by estimating its second
largest eigenvalue and checking that it is bounded in magnitude by λ.

A natural question is whether we can compute such an expanding generating
set in deterministic |G|O(1) time. This is along the lines of constructing explicit
expander families, and it was answered in the affirmative by Wigderson and Xiao
[25] who gave an efficient derandomization of the Alon-Roichman theorem using
a representation-theoretic approach. More precisely, in [25] they use Chernoff
bounds for matrix-valued random variables (due to Ahlswede and Winter [1])
combined with the application of the method of conditional probabilities [21].
This representation-theoretic approach to the Alon-Roichman theorem is based
on alternative proofs of the theorem due to [15, 16]. The original proof of Alon
and Roichman [3] is combinatorial in flavour. Igor Pak [20] gives another combi-
natorial proof for the Alon-Roichman theorem based on Erdős-Rényi sequences
[12]. In this essay we give a somewhat different account of Pak’s proof which is
amenable to a derandomized construction [6]. This actually yields a |G|O(1) time
combinatorial derandomization of Alon-Roichman, which is quite different from
the previously mentioned one [25]. In the second part of this article we consider
finite groups G given by small generating sets as input and address the question
of (log |G|)O(1) time derandomization of the Alon-Roichman theorem for some
interesting classes of groups.
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2 Randomized construction
We now discuss a version of Pak’s proof which is amenable to derandomization
[6]. The connection between mixing times of random walks on a graph and its
spectral expansion is well studied. For undirected graphs we have the following.

Theorem 2. [22, Theorem 1] Let A be the normalized adjacency matrix of an
undirected graph. For every initial distribution, suppose the distribution obtained
after t steps of the random walk following A is ε-close to the uniform distribution
in the L1 norm. Then the spectral gap (1− |λ1|) of A is Ω(1

t
log
(

1
ε

)
).

Even for directed graphs a connection between mixing times of random walks
and the spectral properties of the underlying Markov chain is known.

Theorem 3. [19, Theorem 5.9] Let λmax denote the second largest magnitude
(complex valued) eigenvalue of the normalized adjacency matrix P of a strongly
connected aperiodic Markov Chain. Then the mixing time is lower bounded by
τ(ε) ≥ log(1/2ε)

log(1/|λmax|) , where ε is the difference between the resulting distribution and
the uniform distribution in the L1 norm.

In [20], Pak uses this connection to prove an analogue of the Alon-Roichman
theorem for directed Cayley graphs.

Let D1 and D2 be probability distributions on the set {1, 2, . . . , n}. We use

the L2 norm ‖D1 −D2‖2 =
[∑

x∈[n] |D1(x)−D2(x)|2
] 1

2 to measure the distance
between them.

We say that a distribution D is δ-close to the uniform distribution U , if ‖D−
U‖2 ≤ δ. The collision probability of a distribution D is Coll(D) =

∑
i∈[n] D(i)2.

It is easily seen that Coll(D) ≤ 1/n+ δ if and only if ‖D−U‖2
2 ≤ δ and Coll(D)

attains its minimum value 1/n if and only if D = U .
Let G be an n-element group. For a sequence of group elements J =

〈g1, . . . , gk〉 in G, consider the directed Cayley graph Cay(G, J), which is a multi-
graph with in-degrees and out-degrees of all vertices equal to k. Let A denote
the adjacency matrix of Cay(G, J). Consider the “lazy” random walk defined by
the probability transition matrix (A+ I)/2 where I is the identity matrix. That
is to say, with probability 1/2 the random walk stays at the same vertex and
with probability 1/2 it moves to one of its k out-neighbors (each destination with
probability 1/2k).

Let QJ be the probability distribution after m steps of the lazy random walk.
Strictly speaking, QJ depends on the initial distribution. However, we wish to
bound the worst-case distance ‖QJ − U‖2 of QJ from the uniform. Hence the
initial distribution does not matter. Pak [20] has analyzed QJ and shown that
for a random J of O(log n) size and m = O(log n), QJ is 1/nO(1)-close to the
uniform distribution. Pak works with the L∞ norm. Since our aim is to give a
derandomization of this construction, the L2 norm and the collision probability
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are the right objects to work with since we can compute these quantities exactly
as we fix elements of J one by one in the derandomization.

Pak’s randomized construction is based on Erdős-Rényi sequences for finite
groups introduced by Erdős and Rényi in [12].

Definition 4. Let G be a finite group and J = 〈g1, . . . , gk〉 be a sequence of
elements in G. For δ > 0, J is an Erdős-Rényi sequence for G with closeness
parameter δ, if the probability distribution DJ on G given by gε11 . . . gεkk , where
the εi ∈ {0, 1} are independent unbiased random bits, is δ-close to the uniform
distribution in the L2-norm.

Erdős and Rényi proved the following theorem.

Theorem 5 (Erdős Rényi). ([12]) Let G be a finite group and U be the uniform
distribution on G. Let J = 〈g1, . . . , gk〉 denote a sequence of k elements of G
picked independently and uniformly at random. Then the expected value

EJ‖DJ − U‖2
2 = 1/2k(1− 1/n).

In particular, it implies that a random sequence J of O(log n) elements is an
Erdős-Rényi sequence for G with closeness parameter 1/nO(1).

Consider any m-length sequence I = 〈i1, . . . , im〉 ∈ [k]m, where ij’s are indices
that refer to elements in the sequence J . Let RJ

I be the following probability
distribution onG. For g ∈ G: RJ

I (g) = Prε̄[gε1i1 ·. . .·g
εm
im

= g], where ε̄ = (ε1, . . . , εm)
and the εi ∈ {0, 1} are independent and uniformly random. For each g ∈ G we
have: QJ(g) = 1

km

∑
I∈[k]m R

J
I (g).

Each RJ
I is the distribution defined by the Erdős-Rényi sequence

〈gi1 , gi2 , . . . , gim〉. Hence, the above equation implies that the distribution QJ

is the average of RJ
I over I ∈ [k]m.

The indices in I ∈ [k]m need not be distinct. Let L(I) denote the subsequence
of distinct indices in the order of their first occurrence in I, from left to right.
We refer to L(I) as the L-subsequence of I. The L-subsequence L(I) also defines
a probability distribution RJ

L(I) on the group G.
For analyzing the random walk and the distribution GJ , it is more convenient

to deal with RJ
L(I) rather than RJ

I . Fortunately, we can show that the two are
tied together pretty closely. More precisely, suppose the elements of J are picked
from G independently and uniformly at random. Then we can show for each
I ∈ [k]m that, in expectation, if RJ

L(I) is δ-close to uniform distribution (in L2

norm) then so is RJ
I . We state this in terms of collision probabilities.

Lemma 6. For a fixed I, If EJ [Coll(RJ
L(I))] = EJ [

∑
g∈GR

J
L(I)(g)2] ≤ 1/n+δ then

EJ [Coll(RJ
I )] = EJ [

∑
g∈GR

J
I (g)2] ≤ 1/n+ δ.
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Pak actually proves a similar lemma for the L∞ norm [20]. When elements of
J are picked uniformly and independently from G, by Theorem 5,

EJ [Coll(RJ
L(I))] = EJ [

∑
g∈G

RJ
L(I)(g)2] =

1

n
+

1

2`
(1− 1

n
),

where ` is the length of the L-subsequence. Thus the expectation is small provided
` is large enough. It turns out, with an easy counting argument, that most
I ∈ [k]m have sufficiently long L-subsequences (Lemma 7 below).

Lemma 7. [20] For any k, `, the probability that a sequence of length m over [k]

does not have an L-subsequence of length ` is at most (ae)
k
a

am
where a = k

`−1
.

To ensure the above probability is bounded by 1
2m

, it suffices to choose m =

d (k/a) log(ae)
log(a/2)

e. Here a is a constant so that both m and ` are Θ(k).

Lemma 8. EJ [Coll(QJ)] ≤ 1
n

+ 1
2Θ(m) .

Proof. We call I ∈ [k]m good if it has an L-subsequence of length at least `, else
we call it bad.

EJ [Coll(QJ)] = EJ [
∑
g∈G

Q2
J(g)]

= EJ [
∑
g∈G

(EI(RI(g))2]

≤ EJ [
∑
g∈G

EI(R2
I(g))] By Cauchy-Schwartz inequality (1)

= EI [EJ [Coll(RI)]]

≤ 1

km
EJ [

∑
I∈[k]m

I is good

∑
g∈G

(RJ
L(g))2 +

∑
I∈[k]m

I is bad

1]

≤ PrI [I is good]

(
1

n
+

1

2`

)
+ PrI [I is bad] (2)

The last step follows from Lemma 6 and Theorem 5. Fix m in Lemma 7 to
O(log n) such that PrI [I is bad] ≤ 1

2m
and let ` = Θ(m) to yield EJ [Coll(QJ)] ≤

1
n

+ 1
2Θ(m) . In particular, m is chosen so that PrI [I is bad] ≤ 1

2m
. �

Clearly, 1
2Θ(m) <

1
nc for a given c > 0, by choosing m = O(log n). We also

choose ` = Θ(m) in the proof of Lemma 8. Then, from the relation that m =

d (k/a) log(ae)
log(a/2)

e, we fix k to be O(log n) suitably. Since random walks on Cay(G, J)
mix well, as a consequence of Theorem 3 we obtain the following.
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Theorem 9. [20] Let λ > 0 and G be any finite group. Then, with high proba-
bility, a random multiset J ⊂ G of size c log |G| makes the directed Cayley graph
Cay(G, J) a spectral expander (i.e. its second largest eigenvalue in absolute value
is bounded by ε).

2.1 Derandomizing the construction

We outline a derandomization [6] of the randomized Cayley expanders Cay(G, J)
given by Theorem 9.

Given a group G with n elements, we need to compute in deterministic |G|O(1)

time, a multiset J of k group elements of G such that:

Coll(QJ) =
∑
g∈G

QJ(g)2 ≤ 1/n+ 1/nc, (3)

where c > 0 is a given constant and both k andm are O(log n). By Theorem 9
a random set J satisfies this with high probability. For each J observe, by the
Cauchy-Schwartz inequality, that

Coll(QJ) =
∑
g∈G

QJ(g)2 ≤
∑
g∈G

1

km

∑
I∈[k]m

RJ
I (g)2 =

1

km

∑
I∈[k]m

Coll(RJ
I ). (4)

Thus, it suffices to compute a multiset J of group elements such that the
average collision probability 1

km

∑
I∈[k]m Coll(RJ

I ) ≤ 1/n+ 1/nc.
We start with J = {X1, . . . , Xk} where each Xi is an independent random

variable uniformly distributed in G. By Theorem 9 (in particular from Equation
3), for a given c > 1 there are k and m, both O(log n) such that:

EJ [Coll(QJ)] = EJ [EI∈[k]mColl(RJ
I )] ≤ 1

n
+

1

nc
. (5)

The algorithm is based on the method of conditional probabilities. It fixes
elements in J one by one. Suppose at the jth stage, for j < k, J = Jj =
{x1, x2, . . . , xj, Xj+1, . . . , Xk}, where xr (1 ≤ r ≤ j) are fixed elements of G
and the remaining Xs, s = j + 1, . . . , k are still random variables such that
E[EI∈[k]mColl(RJ

I )] ≤ 1/n + 1/nc , where the outer expectation is over these
Xs.

It suffices to give a polynomial-time procedure that fixes Xj+1 to an
xj+1 ∈ G such that E[EI∈[k]mColl(RJ

I )] ≤ 1/n + 1/nc. Given J = Jj =
{x1, . . . , xj, Xj+1, . . . , Xk} with j fixed elements and k − j random elements, we
partition [k]m into subsets Sr,` where I ∈ Sr,` if and only if there are exactly r
indices in I from {1, . . . , j}, and of the remaining m − r indices of I there are
exactly ` distinct indices.
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An (r, `)-normal sequence for J is a sequence 〈n1, n2, . . . , nr, . . . , nr+`〉 ∈ [k]r+`

such that ns, 1 ≤ s ≤ r are in {1, 2, . . . , j} and the ns, s > r are all distinct and
in {j+ 1, . . . , k}. In other words, the first r indices (possibly with repetition) are
from the fixed part of J and the last ` are all distinct indices from the random
part of J .

It turns out that a sequence I ∈ [k]m can be transformed, by group con-
jugation, into (r, `)-normal form such that the expected collision probability of
the distribution generated by the (r, `)-normal form gives an upper bound on
E[Coll(RJ

I ]. This upper bound plays the role of a pessimistic estimator in the
derandomization.

In order to transform a sequence in Sr,` into (r, `)-normal form we will make
repeated use of the fact that if y ∈ G is picked uniformly at random and x ∈ G
be any element independent of y, then the distribution of xyx−1, namely the
x-conjugate of y, is uniform in G.

Let I = 〈i1, . . . , im〉 ∈ Sr,` be a sequence. Let F = 〈if1 , . . . , ifr〉 be the index
subsequence whose corresponding elements are from the fixed part {x1, x2, . . . , xj}
of J . Let R = 〈is1 , . . . , ism−r〉 be the index subsequence for the random part of
J . Let L = 〈ie1 , . . . , ie`〉 be the L-subsequence in R. More precisely, notice that
R is a sequence in {j + 1, . . . , k}m−r and L is the L-subsequence for R. The
(r, `)-normal sequence Î of I ∈ Sr,` is 〈if1 , . . . , ifr , ie1 , . . . , ie`〉.

Denote the elements of J by gt, 1 ≤ t ≤ k, where gt = xt for t ≤ j and gt = Xt

for t > j. Consider the distribution RJ
I consisting of the products gε1i1 . . . g

εm
im

where εi ∈ {0, 1} are independent and uniformly picked at random. Then, using
repeated conjugation of the group elements to move the fixed part to the left, we
can write

gε1i1 . . . g
εm
im

= g
εf1
if1
. . . g

εfr
ifr
h
εe1
e1 . . . h

εe`
e` y(ε̄),

where y(ε̄) is an element in G that depends on J, I and ε̄, where ε̄ consists
of all the εj for ij ∈ I \ (F ∪ L). Here, (he1 , he2 , . . . , he`) is the sequence of
all independent random elements in the above product

∏m−r
a=1 h

εsa
sa consisting of

conjugates of the original L-subsequence in J .
Let JI denote the multiset of group elements obtained from J by replacing

the subset {gie1
, gie2

, . . . , gie`} in J with {he1 , he2 , . . . , he`}. Note that, in this
substitution, we are replacing a uniformly distributed random variable giej over
G with another uniformly distributed random variable hej over G, where the
later is obtained from the former by a conjugacy transformation. Clearly, JI also
has j fixed elements x1, x2, . . . , xj and k − j uniformly distributed independent
random elements. Recall that Î = 〈if1 , if2 , . . . , ifr , ie1 , ie2 , . . . , ie`〉 is the (r, `)-
normal sequence for I. The probability distributions RJ

I and RJI
Î

are compared
in the following lemma.
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Lemma 10. For each j ≤ k and J = {x1, . . . , xj, Xj+1, . . . , Xk} (where
x1, . . . , xj ∈ G are fixed elements and Xj+1, . . . , Xk are independent uniformly
distributed in G), and for each I ∈ [k]m, E[Coll(RJ

I )] ≤ E[Coll(RJI
Î

)], where
E[Coll(RJ

I )] is computed over random elements in J and E[Coll(RJI
Î

)] over ran-
dom elements in JI .

It follows that EJ [Coll(QJ)] ≤ EJIEI∈[k]m [Coll(RJI
Î

)]. Furthermore,
it turns out that given J = {x1, . . . , xj, Xj+1, . . . , Xk} we can compute
EJIEI∈[k]m [Coll(RJI

Î
)] in deterministic polynomial (in n) time by reducing it to

the problem of counting directed s-t paths in a weighted directed acyclic graph.
This completes the proof outline of the following.

Theorem 11. [6] Let G be a group with n elements, given as its multiplication
table. For any constant c > 1, there is a deterministic poly(n) time algorithm
that computes a generating set J of size O(log n) for the given group G, such
that for any initial distribution on G the lazy random walk of O(log n) steps on
the directed Cayley graph Cay(G, J) yields a distribution that is 1

nc -close (in L2

norm) to the uniform distribution.

Together with Theorem 3 this yields the following corollary.

Corollary 12. [6] Given a finite group G and any ε > 0, there is a deterministic
polynomial-time algorithm to construct an O(log n) size generating set J such
that Cay(G, J) is a spectral expander (i.e. its second largest eigenvalue in absolute
value is bounded by ε).

Undirected Cayley graphs

This approach can be adapted for undirected Cayley graphs as well [6]. The
key point is a suitable generalization of Erdős-Rényi sequences. We consider the
distribution on G defined by gε11 . . . gεkk where εi ∈R {−1, 0, 1}. Using these gener-
alized Erdős-Rényi sequences we can analyze lazy random walks on the undirected
Cayley graph Cay(G, J ∪ J−1) for a random multiset J of O(log |G|) size. More
precisely, we consider the lazy random walk described by the symmetric tran-
sition matrix AJ = 1

3
I + 1

3k
(PJ + PJ−1) where PJ and PJ−1 are the adjacency

matrices of the directed Cayley graphs Cay(G, J) and Cay(G, J−1) respectively.
We obtain the following results.

Theorem 13. [6] Let G be a finite group of order n and c > 1 be any constant.
There is a deterministic poly(n) time algorithm that computes a generating set
J of size O(log n) for G, such that an O(log n) step lazy random walk on G,
governed by the transition matrix AJ described above, is 1

nc -close to the uniform
distribution, for any given initial distribution on G.
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Theorem 13 and the connection between mixing time and spectral expansion
for undirected graphs given by Theorem 2 yields an alternative proof of the
following [6].

Corollary 14. [25] Given a finite group G by its multiplication table, there is a
deterministic polynomial (in |G|) time algorithm to construct a generating set J
such that Cay(G, J ∪ J−1) is a spectral expander.

3 Faster derandomizations

We now explore the question of computing expanding generating sets for finite
groups G in time polynomial in log |G|. Since every finite group G has a gener-
ating set of size log |G|, we can assume that G = 〈S〉 is given as input by a small
generating set S and the goal is to compute an expanding generating set for G
in time polynomial in log |G| and |S|.

For example, let G be any subgroup of the group Sn. Then G has a generating
set S ⊂ Sn of size at most n log n. Furthermore, the group operation is permu-
tation composition, and for two given permutations π, π′ ∈ Sn we can compute
ππ′ in time polynomial in n.

Another example: consider subgroups G = 〈S〉 of the group of invertible
n × n matrices over a finite field Fq under matrix product. Matrix product can
be performed in time polynomial in n and log q and every such group has a
generating set of size n2 log q (as there are at most qn2 many invertible n × n
matrices).

An algorithmic framework for finite groups input by their generating sets is
the notion of black-box groups due to Babai and Szemerédi [10]. The elements of
a finite black-box group G are assumed to be uniformly encoded as binary strings
of some lengthm (wherem would typically be polynomial in log |G|). Each group
operation is performed by a black-box in time polynomial in m. The group G is
given by a generating set S.

In a general result about finite black-box groups Babai has shown [9] that
it is possible to sample nearly uniformly in polynomial time from G = 〈S〉,
where S is an arbitrary generating set. Interestingly, Babai’s sampling algorithm
is based on Erdős-Rényi sequences. The randomized algorithm computes with
high probability an Erdős-Rényi sequence {g1, g2, . . . , gk} for G with closeness
parameter 2−O(m), where k is polynomial in m. Once we have an Erdős-Rényi
sequence the sampling algorithm simply outputs

∏k
i=1 g

εi
i where each εi ∈ {0, 1}

is independently and uniformly picked at random. We can summarize this result
as follows.

Theorem 15 (Babai). [9] Let G = 〈S〉 be a finite black-box group whose ele-
ments uniformly encoded as binary strings length m. Then there is a randomized
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poly(m, |S|) time algorithm that outputs with high probability an Erdős-Rényi se-
quence with closeness parameter 2−O(m). As a consequence, there is a randomized
poly(m, |S|) time algorithm for sampling almost uniformly at random from G.

Therefore, by the Alon-Roichman theorem we have a randomized polynomial-
time algorithm for the problem (although it is not Las Vegas since we do not know
how to certify an expanding generator set in polynomial time). More precisely, we
have the following consequence of Alon-Roichman for general black-box groups.

Proposition 16. Given λ > 0 and a finite black-box group G = 〈S〉 whose
elements uniformly encoded as binary strings length m. There is a randomized
poly(m, |S|, 1/λ) time Monte-Carlo algorithm that outputs with high probability
an expanding generating set T of size (O(log |G|/λ2) for G such that Cay(G, T ∪
T−1) is a λ-spectral expander.

The algorithmic question we now address is to obtain a deterministic polyno-
mial (in log |G| and |S|) time algorithm for computing small expanding generating
sets for G. A precise formulation of the problem is as follows:

Problem 17. Given a finite group G = 〈S〉 by a small generating set S and
a λ > 0 the problem is to compute, in deterministic time polynomial in |S|,
log |G|, and 1/λ, a generating set T for G such that |T | = O(log |G|/λ2) and
Cay(G, T ∪ T−1) is a λ-spectral expander.

In Problem 17, the real challenge seems to be computing an expanding gen-
erating set T of the size O(log |G|/λ2) promised by the Alon-Roichman theorem.
We will discuss deterministic polynomial time algorithms that compute somewhat
larger generating sets.

3.1 Small bias spaces

We will first consider the additive group Fn2 which is the simplest of groups. Its
elements are the 2n binary vectors and the group operation is coordinate-wise
addition modulo 2. The group is abelian and each nonzero element has order 2.
By the Alon-Roichman theorem, for any ε > 0 the group Fn2 has an expanding
generating set T of size O(n/ε2) that makes the Cayley graph ε-spectral.

Although we do not know any polynomial-time deterministic construction of
size O(n/ε2), it turns out that we can compute T of size O(n2/ε2) or of size
O(n/εO(1)). This is because expanding generating sets for Fn2 are precisely ε-bias
spaces in Fn2 whose constructions are well studied in the context of almost k-wise
independent sample spaces [5, 2].

We explain this connection between small bias spaces in Fn2 and expanding
generating sets for Fn2 . We will require some elementary group representation
theory. A character χ of the group Fn2 is a group homomorphism from Fn2 to the
multiplicative group of complex numbers C∗. As all elements of Fn2 are or order
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either 1 or 2, and χ is a group homomorphism, it follows that χ(a) ∈ {−1, 1} for
each a ∈ Fn2 . The trivial character χ0 maps all elements to 1. Each vector b ∈ Fn2
defines a character

χb(a) = (−1)a.b,

where a.b =
∑

i aibi mod 2.
The set of all functions f : Fn2 → C forms a 2n-dimensional vector space over

C and it turns out that the set of characters {χb | b ∈ Fn2} spans the vector space.
This is a consequence of the fact that these 2n characters χb, b ∈ Fn2 are mutually
orthogonal under the inner product 〈f, g〉 = 1

2n

∑
a∈Fn

2
f(a)g(a).

Now, consider a generating set S ⊂ Fn2 for the group Fn2 and the resulting
symmetric Cayley graph Cay(Fn2 , S). Note that any subset S is already symmetric
as S = S−1. Let AS denote its normalized adjacency matrix. The following nice
fact about its eigenvectors suitably generalizes to the setting of all abelian groups.

Claim 18. The vectors {χb | b ∈ Fn2} are the eigenvectors of the symmetric
matrix AS.

Indeed, an easy calculation shows that the vector ASχb =
(1/|S|

∑
s∈S χb(s))χb. Thus the eigenvalues of AS are 1

|S|
∑

s∈S χb(s) for
b ∈ Fn2 . The trivial character χ0 is the eigenvector for eigenvalue 1. We can
summarize the discussion in the following.

Proposition 19 (folklore). The Cayley graph Cay(Fn2 , S) is an ε-spectral ex-
pander if and only if for all nontrivial characters χb

1

|S|
|
∑
s∈S

χb(s)| ≤ ε.

The latter condition is precisely the definition of an ε-bias space. The known
deterministic efficient constructions of Alon et al [4] of size O(n2/ε2) and [5] of
size O(n/εO(1)) fall short of constructing O(n/ε2) size ε-bias spaces promised by
the Alon-Roichman theorem.

3.2 General case: Divide and Conquer Constructions

We now consider deterministic construction of expanding generating sets for more
general groups. Let G = 〈g1, g2, . . . , gk〉 be a finite group given by generators
gi. We will now outline a divide and conquer strategy [7] for the problem of
computing expanding generating sets that works quite well for a large class of
finite groups. The idea is to decomposeG into smaller groups, compute expanding
generating sets for the smaller groups and put these generating sets together
suitably for G.
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Exploiting normal subgroups

Let G be a finite group and N be a normal subgroup of G. I.e. N is a subgroup
such that g−1Ng = N for all g ∈ G. Suppose A ⊂ N is an expanding generating
set for N so that Cay(N,A∪A−1) is a λ-spectral expander. Similarly, consider the
quotient group G/N (which is well defined by virtue of N ’s normality). Suppose
B ⊂ G such that B̂ = {Nx | x ∈ B} is an expanding generating set for the
quotient group G/N and the corresponding Cayley graph Cay(G/N, B̂ ∪ B̂−1) is
also λ-spectral. Then we can prove the following.

Lemma 20. [7] Suppose both Cay(N,A ∪ A−1) and Cay(G/N, B̂ ∪ B̂−1) are
λ-spectral and let C = A ∪ B. Then Cay(G,C ∪ C−1) is a (1 + λ)/2-spectral
expander.

See [7] for proof details. The overall idea is similar in spirit to the analysis
of the zig-zag product construction [24]. There are some additional issues in this
construction that makes C ∪ C−1 an expanding generating set for G which are
taken care of because N is a normal subgroup of G. This theorem provides us a
divide-and-conquer tool in the following sense. Suppose G is a finite group with
a normal series

G = G0 �G1 � · · ·�Gr = {1},

where each Gi is a normal subgroup of G. I.e. G � Gi for each i. Suppose we
are given expanding generating sets for each quotient group Gi/Gi+1. Using the
above theorem we can put them together efficiently to construct an expanding
generator set for G.

Lemma 21. [7] Let G ≤ Sn with normal series {Gi}ri=0 be as above. Further, for
each i let Bi be a generator set for Gi/Gi+1 such that Cay(Gi/Gi+1, Bi) is a 1/4-
spectral expander. Let s = maxi{|Bi|}. Then in deterministic time polynomial
in n and s we can compute a generator set B for G such that Cay(G,B) is a
1/4-spectral expander and |B| = clog rs for some constant c > 0.

The proof of this lemma is essentially based on repeated application of
Lemma 20.

The case of solvable permutation groups

In order to actually apply Lemma 21 we need to compute a normal series for G =
〈S〉 efficiently. Moreover, we will also need to compute expanding generating sets
for the quotient groups Gi/Gi+1. A large class of groups for which this approach
works well is solvable permutation groups. First we recall some definitions.

Let G be a finite group. The commutator subgroup of G is the subgroup G′
generated by elements xyx−1y−1 where x, y ∈ G. The commutator subgroup G′
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is the minimal normal subgroup of G such that the quotient G/G′ is abelian. The
derived series for G is the following chain of subgroups of G:

G = G0 . G1 . · · · . Gk

where, for each i, Gi+1 is the commutator subgroup of Gi.
The group G is said to be solvable if the derived series terminates in Gk = {1}

for some k, where k is the length of the derived series for G. We note that the
derived series for G is a normal series.

A group G is non-solvable if the derived series does not terminate at {1}. For
instance, the group G = A5, consisting of all even permutations on five elements,
is non-solvable because G1 = G.

A permutation group is a subgroup G = 〈S〉 of the group Sn of all permu-
tations on [n]. Given a permutation group G = 〈S〉 by a generating set we can
compute its derived series in deterministic polynomial time [18]. Dixon [11] has
shown that derived series of solvable subgroups of Sn have length bounded by
5 log3 n. The above observations combined with Theorem 21 yields the following
consequence.

Lemma 22. Suppose G ≤ Sn is a solvable group with derived series

G = G0 . G1 . · · · . Gk = {1},

and we have Bi ⊂ Gi/Gi+1 such that Cay(Gi/Gi+1, Bi ∪ B−1
i ) is a 1/4-spectral

expander. Let s = maxi{|Bi|}. Then in deterministic poly(n, s) time we can
compute a subset B of G such that Cay(G,B ∪ B−1) is a 1/4-spectral expander
and |B| = 2O(log k)s = (log n)O(1)s.

In order to compute an expanding generating set for a solvable subgroup G
of Sn we first need to compute an expanding generating set Bi for Gi/Gi+1 such
that Cay(Gi/Gi+1, Bi) is 1/4-spectral and then apply the above lemma.

Abelian quotient groups

We now explain the computation of expanding generating sets for the abelian
quotient groups Gi/Gi+1, where Gi+1 � Gi ≤ Sn. Let p1 < p2 < . . . < pk be the
list of all primes bounded by n. Let e = dlog ne. As Gi/Gi+1 is abelian, there is
an onto group homomorphism φ from the product group Znpe1 × Znpe2 × · · · × Znpek
to Gi/Gi+1. Moreover, this homomorphism is easily computable. It suffices to
compute an expanding generating set for Znpe1×Z

n
pe2
×· · ·×Znpek because its φ-image

will be an expanding generating set for Gi/Gi+1.
It turns out that we can compute an expanding generating set for Znpe1×Znpe2×

· · ·×Znpek of size Õ(n2) in polynomial time [7]. This construction is again a careful
application of Lemma 20 combined with a result of Ajtai et al [2] of expanding
generating sets for cyclic groups ZN .
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Theorem 23. [7] Let G = 〈S〉 be a solvable subgroup of Sn. In deterministic
polynomial time we can compute an expanding generating set of size Õ(n2) such
that the Cayley graph Cay(G,S ∪ S−1) is a 1/4-spectral expander.

For general permutation groups we have the following theorem based on de-
randomized squaring [23] about computing expanding generator sets. Details are
given in [7].

Theorem 24. Given G ≤ Sn by a generator set S ′ and λ > 0, we can determin-
istically compute (in time poly(n, |S ′|)) an expanding generator set T for G such
that Cay(G, T ) is a λ-spectral expander and |T | = O(n16q+10

(
1
λ

)32q
), where q is

a constant.

Small Bias Spaces for Zn
d

In conclusion, we note that the expanding generating set construction for abelian
groups Znpe1 × Znpe2 × · · · × Znpek mentioned above also gives a new construction of
ε-bias spaces for Znd , which we now describe.

In [8] Azar, Motwani, and Naor first considered the construction of ε-bias
spaces for abelian groups, specifically for the group Znd . For arbitrary d and any
ε > 0 they construct ε-bias spaces of size O((d+n2/ε2)C), where C is the constant
in Linnik’s Theorem. The construction involves finding a suitable prime (or prime
power) promised by Linnik’s theorem which can take time up to O((d + n2)C).
The current best known bound for C is ≤ 11/2 (and assuming ERH it is 2).
Their construction yields a polynomial-size ε-bias space for d = nO(1).

It is interesting to compare this result of [8] with the construction described
above. Let d have prime factorization pe11 p

e2
2 · · · p

ek
k . Each pi is O(log d) bit sized

and each ei is bounded by O(log d). Given d in unary, we can efficiently find
the prime factorization of d. Using the result of Wigderson and Xiao [25], we
compute an O(log d) size expanding generator set for Zp1p2...pk in deterministic
time polynomial in d. Then we construct an expanding generator set of size
O((log n)O(1) log d) for Zmp1

× . . .× Zmpk for m = O(log n) based on Lemma 22. It
then follows that we can construct an O(n(log n)O(1) log d) size expanding gener-
ator set for Znp1

× . . . × Znpk in deterministic polynomial time. Finally, it follows
that we can construct an O(n(log n log d)O(1)) size expanding generator set for Znd
(which is isomorphic to Zn

p
e1
1
× . . .Zn

p
ek
k

) since each ei is bounded by log d. Given
ε > 0, the dependence of ε in the size of the generating set that makes the Cayley
graph λ-spectral is (1/ε)32q.

Theorem 25. Let d, n be any positive integers (in unary) and ε > 0. Then, in de-
terministic poly(n, d, 1

ε
) time, we can construct an O(npoly(log n, log d))(1/ε)32q

size ε-bias space for Znd .
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