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The design of efficient algorithms for planar graphs, as a field of research, is over forty year
old and continues to be an exciting area. There are several new efficient algorithms for a
variety of graph optimization problems that exploit planarity and, in general, the structure of
low genus graphs and graphs with excluded minors.

Efficient space-bounded computations, on the other hand, involve a different genre of
algorithmic ideas and exploit the planar graph structure somewhat differently. There has been
a flurry of interesting research on this topic in last decade. In this timely and well-written
article, Samir Datta and Raghav Kulkarni focus on planar graphs in the context of space
complexity. They discuss several properties of planar graphs and their precise role in the
design of space efficient algorithms.
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Space complexity:
What makes planar graphs special?

Samir Datta∗ Raghav Kulkarni†

1 Introduction
The purpose of this article is to survey several useful properties of planar graphs that can
be exploited specifically in the context of space bounded computation to obtain efficient
algorithms. For completeness we also point out some situations where planar restrictions
remain computationally as hard as general graphs.

The classes we will encounter in this survey are mostly variants of deterministic log-
arithmic space, L. They include non-deterministic logarithmic space, NL, Unambiguous
Log-space UL, Stoic Probabilistic Log-space SPL and counting classes like GapL,⊕L. For
a definition of these classes see e.g. [32]. We will also have occasion to compute functions
in Log-space. We say that a function is computable in Log-space if there is a Log-space
transducer, i.e. a deterministic logarithmic space machine with a write-only one-way
output tape on which it writes the function value.

Definition 1. A graph is said to be planar if there is a mapping of the vertices on the
plane such that the edges can be drawn as curves in the plane, which do not intersect
except at their end points.

We are going to make repeated use of the following algorithmic version of planarity:

Theorem 2 (Allender,Mahajan[3],see also [15]). There is a Log-space algorithm for con-
structing an embedding of a planar graph on the plane.

We will also make use of the notion of grid embedding of a graph. This is a map which
identifies a graph with a subgraph of a complete rectangular grid (i.e. a rectangular array
of nodes in which a node is connected to the vertices immediately next to it horizontally
and vertically). This is done by a degree reduction step, (by replacing a vertex with a
binary tree or a cycle) followed by embedding the vertices so that that the edges of the
degree reduced graph get elongated into paths. The crucial point is that this preserves
some property of the digraph or graph e.g. reachability [1] or number of perfect matchings
[10] and runs in Log-space.

In the rest of the paper, in every section, we mention a property (or a collection of
properties) of planar graphs and then give a brief description of how the property helps us
develop a bounded space algorithm or hardness result. We should mention at the outset
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that this survey does not aim at completeness of any sort - it aims at providing a taste
of the planarity magic through a number of examples drawn according to our preferences
and experience.

‘

2 Unique Embedding
The first property of planar graphs that we will exploit is the property of unique embed-
dability of 3-connected planar graphs, in the plane. This remarkable property which was
first shown by Whitney, way back in 1933, allows us to give a bounded space algorithm
canonical description for such highly connected planar graphs. We should point out it is
notoriously difficult to prove good upper bounds or lower bounds for the general graph
isomorphism problem. In contrast, planarity enables us to prove matching upper and
lower space complexity bounds.

The first bounded space algorithm that made use of Whitney’s theorem for planar iso-
morphism was by Thierauf, Wagner [29] based on distance computation in planar graphs.
This was soon followed up by an algorithm [13] (which we describe below) that achieved
the optimal Log-space bound by replacing the distance computation by an exploration
from Reingold’s seminal paper[26]. The result was later extended [14] to arbitrary planar
graphs through a careful application of Lindell’s Log-space Tree Canonization algorithm
to the tree decomposition of the given planar graph into its 2-connected and 3-connected
components.

Whitney’s Unique Embedability Theorem

We will make crucial use of the following theorem by Whitney

Theorem 3. (Whitney[33]) A 3-connected1 planar graph has exactly one combinatorial
embedding on the plane (up to reflection).

The theorem can be rephrased as: in any planar drawing - the cyclic order of the
edges leaving a vertex in, say, the clockwise order, is identical (except, of course that we
may reflect the graph and get another one in which the order of edges is reversed). As
an example consider the 3-connected planar graph Figure 2 (a) with its two embeddings.
Figure 2 (b) illustrates the necessity of 3-connectivity for unique embeddability.

Unique Embedding and 3-connected Planar Graph Isomorphism

Given a planar graph, we will compute, using a Log-space transducer, a binary string that
is independent of the presentation of the graph (in terms of the vertex and edge names)
and uniquely characterizes the graph. Thus, if can(G) denotes the canonical string forG,
G1
∼= G2 if and only if, can(G1) = can(G2). Testing for isomorphism is then easy - just

go through the canonical descriptions bit by bit and verify that they match.
The rough idea behind the algorithm is to construct a canonical ordered spanning

tree - a rooted tree that does not depend on the presentation of the graph and where the
1removing any two vertices from the graph does not disconnect it
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Figure 1: A Directed Grid Graph

(a) A 3-connected graph and its reflection (b) Distinct embeddings of a 2-connected graph

Figure 2: Embeddings of planar graphs

children of a node are ordered. Now it is easy to describe the graph in terms of the tree.
First the vertices of the graph can be canonically labeled by the pre-order numbering
of the tree. Next the edges can be listed in lexicographic order of the numbers of their
endpoints (with,say, the smaller endpoint first).

Thus we have to show how to produce a canonical spanning tree. We show something
slightly weaker, that is, we produce a collection of spanning trees which depends only
on the choice of the “root edge” and the choice of one of the two embeddings. We can
“canonize” the graph relative to each of the trees as described above and then pick the
minimum description as our final canon.

For simplicity assume that the graph has degree exactly 3 - this is easy to ensure by
a simple degree reduction step.

We will need to introduce the concept of universal exploration sequence UXS to de-
scribe how to obtain the tree above. A UXS σn is a string (of length polynomial in n)
from {0, 1, 2}∗ which encodes a way to explore a cubic graph which is equipped with a
cyclic ordering on the neighbours of each vertex. We will explore the graph one edge at
a time. At the ith-step we will be sitting on an (directed) edge (u, v), having just visited
u and being about to visit v. The next edge will be some (v, w) depending on the letter
σn[i] which tells us the offset of the next edge relative to the current one : an offset of
zero means w = u and offsets 1, 2 indicate the the first/second neighbours of v after u in
the prescribed cyclic order. Somewhat mysteriously the universality of σn implies that
given any cubic graph of size n with an ordering on its vertices, an exploration guided
by σn will lead us to visit every vertex in the graph. It is easy to construct UXS’s using
randomization. The magic of Reingold’s construction [26] is that

• a UXS can in fact be constructed in Log-space!
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A planar embedding of a cubic graph naturally induces a cyclic ordering on the neigh-
bours of a vertex - say the clockwise order. Whitney’s theorem tells us there are exactly
two such cyclic orders. The magic of planarity meets that of Reingold, at this point.
Thus, given a fixed UXS churned out by Reingold’s algorithm and two choices:

• the directed edge to start the exploration from, and

• one of the two possible embeddings,

there is a fixed way to visit each vertex in the graph. By considering the edge of first
visit to a vertex we can produce a spanning tree from this exploration. It is important
to note that:

• the tree produced is canonical relative to the two choices above (and a fixed UXS)

• it can be computed in Log-space since a transducer can output the parent edge of
each vertex by repeating the exploration multiple times

This is all that is needed to prove the following:

Theorem 4. Isomorphism in 3-connected planar graphs can be tested in L.

3 Duality and Flows in Planar Graphs

The next property which we will consider is duality. For this we need to define the
dual of a graph G. Informally, the nodes of the dual consist of the faces of G and two
nodes are joined by an edge whenever the corresponding faces share an edge. We use this
correspondence crucially in our next application viz. computing flows in planar networks.

We consider the problem of determining if there is a feasible flow in a network where
there are both demands at nodes (i.e. the amount of flow that the vertex needs - this may
be positive or negative) and capacity constraints at edges (i.e. the maximum amount of
flow possible through an edge). Notice that the graph is bidirected i.e. there is an edge
in either direction for every undirected edge and each of these edges have capacities of
their own.

Many graph theory problems can be recast in this framework, e.g. bipartite matching.
We will of course restrict our attention to the case when the network is planar. The
approach we are going to delineate is based on a paper by Miller and Naor [23] which
proposes a parallel algorithm for the problem.

Cut-Cycle duality in Planar Graphs and Miller-Naor’s Algorithm

We first reduce the problem with edge capacities and vertex demands to one in which the
vertex demands are all zero and edge capacities are appropriately modified. Zero demands
imply that the flow across any cut is zero. Thus if the sum of capacities of edges in any
directed cut are strictly negative we have a contradiction to the actual flow being zero
i.e. the flow is infeasible. It is not too hard to prove that this sufficient condition for
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infeasibility is also necessary. But finding if a graph has negative cuts seems to be a hard
problem. We can of course reduce the problem to finding a minimal cut2 that is negative.

This is where the planarity magic comes into play:

• Minimal cuts in the primal graph correspond to cycles in the dual.

Thus with appropriately weighed dual edges, the problem reduces to detecting a negative
cycle in the dual. But there exists a negative cycle in a graph if and only if there exists a
negative closed walk. And detecting the existence of a negative closed walk is easy in NL
- just start from a vertex keeping and non-deterministically walk along the graph keeping
track of only the current vertex and the sum of weights encountered so far (along with
the initial vertex). If the initial vertex is reached with a negative sum within polynomial
number of steps then accept else reject.

The idea can be refined to find the flow if indeed the dual graph has no negative
cycles. The intuitive idea being that since there are no negative cycles shortest distance
between any pair of dual nodes is well defined. Miller and Naor [23] show these dual
shortest distances can in fact be converted to a primal feasible flow.

Space Complexity of Miller-Naor’s algorithm

The basic ingredients needed in the proof are:

• a planar embedding of the graph

• a spanning tree algorithm (for reduction to the zero-demand case)

• an algorithm to detect a negative cycle in a (planar) digraph

• a directed shortest path algorithm in a (planar) digraph with no negative cycles

The first two are known to be in deterministic Log-space through non-trivial algorithms
[3, 15, 26] while the latter two are easily seen to be reducible to reachability i.e. in NL.

4 Duality and Deterministic Isolation in Planar Graphs

Mulmuley, Vazirani and Vazirani’s isolation lemma informally states that a uniform ran-
dom assignment of small weights to the elements of a universe makes the weight of the
minimum weight set of any given set system, unique. Derandomizing the lemma in gen-
eral is not possible [2] but for several set systems arising from planar graphs, there exists
a simple deterministic weighing scheme that isolates the min weight set [1, 7, 12]. This
deterministic isolation can then be translated to a space efficient algorithm for finding the
min-weight set using known extraction procedures like [25, 4]. Our focus in this article
will be on the isolation rather than the extraction part of the algorithm, since it is the
former that makes crucial use of planarity.

In describing these algorithms it is often convenient for the purposes of visualization
to first embed the graph in a a 2-d rectangular grid, after a degree reduction step. This

2a minimal set of edges removing which disconnects the graph
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is how the algorithms [7, 12] historically came about. But it is possible to work directly
on the graph (and its dual) rather than invoke grid embedding [28, 8]. In this survey we
will stick to grid embedding for the ease of exposition.

Deterministic Isolation in Planar Structures

We will consider two important set systems in this article:

• the system of directed s, t-paths in a grid-digraph G, where s, t are vertices of G

• the system of perfect matchings in a grid-graph G.

A path or matching will be regarded as a set of edges.
We want to prescribe a weighing scheme for the grid edges such that the min-weight

set is unique. For technical reasons we will insist that the weighing scheme in the first
case is skew-symmetric i.e. reversing an edge just flips the sign of the weight.

By definition, if we have two distinct min-weight sets S1, S2 then their weights must
be equal. Let us first consider the case of s, t-reachability. If we reverse the edges of,say
S2 we get a closed walk of zero weight. An easy substitution argument shows that every
simple cycle C contained in this closed walk must have zero total weight.

We follow a similar argument in the case of perfect matchings. The symmetric differ-
ence S1 ⊕ S2, of two perfect matchings is exactly a collection of disjoint cycles. Thus an
easy substitution argument again shows that the difference w(S1 ∩ C) − w(S2 ∩ C) = 0
for any of these cycles C. Because there is strict alternation between edges of S1, S2 in
C this is equivalent to saying that the alternating sum of each cycle C is zero.

As a notational convenience we have the following definitions of circulation for reach-
ability and matching. Let circulation of a simple cycle be

• the sum of weights of the (directed) edges of the cycle in case of reachability

• the alternating sum (which is well-defined up to its sign) of weights of an undirected
simple cycle in the case of matching

Thus the two paragraphs prior to the definition can be summarized as: distinct min-
weight sets imply zero circulation for some simple cycle. Contrapositively, if we can
produce a weighing scheme such that all simple cycles in the complete grid have non-zero
circulations then the min-weight set for any grid graph will be unique. We now proceed
to construct such a weighing scheme.

In order to do so we again invoke planarity magic and ensure that:

• the circulation of a (simple) cycle equal in magnitude to the area enclosed by the
cycle.

This is easy to argue for reachability, suppose we could assign skew symmetric weights
to the edges of a unit square such that they sum to 1 in the clockwise orientation. Then
if we consider two adjacent unit squares both oriented clockwise, skew symmetry ensures
that their circulations adds up to 2 since the common edge cancels out. Inductively,
it is easy to see that any clockwise cycle will get a circulation equal to its area (and
counter-clockwise cycle will have a circulation equal to the negative of its area).
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▽Deterministically Isolating a Perfect Matching in Bipartite Planar Graphs – p.1/1Figure 3: The weighing scheme and signs for isolating perfect matching in grid graphs

By a somewhat more complicated argument we can ensure that the (matching) circu-
lation of a cycle in the grid equals the signed sum of circulations of the squares enclosed
by it. The sign of square being a quantity that flips between adjacent squares and the
bipartiteness of the dual grid permits us such a function. Now we need to make sure
that the circulation of every square equals its sign which ensures that the circulation of
a simple cycle equals its signed area.

Two simple sets of linear equations reveal what assignments of weights will work - we
illustrate this for perfect matchings in Figure 4.

Isolation and Extraction in Planar Graphs

We have sketched the proof of the following result by Bourke, Tewari and Vinodchandran
[7]: Let G be a sub-digraph of the n×n square grid. There is a constant c and a Log-space
computable weighing function w : E → [−cn, cn] under which the min-weight s, t-path
is unique (if it exists) for any two vertices s, t ∈ V (G). As a consequence, due to the
extraction procedure in Reinhardt and Allender [25], s, t-reachability in planar digraphs
is in UL ∩ co− UL.

The following result by Datta, Kulkarni and Roy [12] mirrors the previous one for
planar bipartite perfect matchings: Let G be a sub-graph of the n×n square grid. There
is a constant c′ Log-space computable weighing function w′ : E → [−c′n, c′n] under which
the min-weight perfect matching of G is unique (if it exists). As a consequence, due to
the extraction procedure in Allender, Reinhardt and Zhou [4], finding a perfect matching
in planar bipartite graphs is in SPL.

5 Bounded Local Tree Width

The concept of tree-width of graphs has turned out to be very useful for designing efficient
algorithms. See for instance [17]. Although the tree-width of planar graphs could be
arbitrarily large, they enjoy a weaker property that is equally useful, namely that of
having bounded local tree width, i.e., if we do breadth first search (BFS) on a planar
graph starting from any given vertex then the tree-width of any constant number of
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BFS layers is bounded above by a constant. This weaker property suffices to obtain fast
algorithms for several problems.

Baker’s Algorithm

In a well-known paper [5], Baker first exploited the bounded local tree width property of
planar graphs to give an approximation scheme ((1+ε) approximation algorithm for every
ε > 0) for a variety of problems (for instance Max-Cut) that are hard to approximate in
general graphs. The basic idea of Baker’s algorithm is as follows:

• (Step 1) Remove some edges from the graph so that:

– the optimum solution is not affected by much: say it is affected only by ε
fraction

– the rest of the edges can be partitioned into disjoint union of graphs whose
tree-width is a constant that depends on the approximation guarantee, i.e., ε

• (Step 2) Solve the problem on the bounded tree width graphs using dynamic pro-
gramming and combine the solution on the disjoint pieces to obtain a solution in
the original graph.

Space Complexity of Baker’s Algorithm

In fact, for Step 1, Baker observes that the vertices at any fixed distance from the root
form an outer-planar graph. Thus any k consecutive layers constitute k-outer-planar
graphs, which happen to have tree-width at most O(k).

Thus: the efficiency of Baker’s algorithm relies mainly on the following two compo-
nents:

• (Component 1) distance computation in planar graphs,

• (Component 2) exact solution on bounded tree-width graphs.

The first component is crucial for obtaining the BFS layers, which in turn help in
obtaining the desired decomposition of the planar graph into graphs of bounded tree
width. The second component gives an efficient algorithm for solving the problem exactly
on the bounded tree width graphs. This is achieved via a dynamic programming approach.
The bounded tree-width property guarantees the efficiency of the dynamic programming.

The exact solution on bounded tree-width graphs more or less directly combine to
give an approximate solution in the original graph. In the end, one has to argue that the
solution obtained after Step 2 is good enough, i.e., the removed edges do not affect the
optimal solution by much. This is guaranteed by the delicate choice of edges in Step 1.

In the context of the space complexity, Datta and Kulkarni [9] observe that both these
components are less expensive than their counter-parts in general graphs!

For the first component, we can use an elegant result by Bourke, Tewari, and Vinod-
chandran [7] showing that the directed planar reachability is in UL∩ co− UL as opposed
to the directed reachability in general graphs being NL-complete. As a consequence, BFS
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in planar graphs can be performed in UL ∩ co− UL The exact space complexity of BFS
in planar graphs is still not known. It is still possible that in fact BFS in planar graphs
could be performed as efficiently as Log-space! The current best known upper bound in
this context is (deterministic) O(log2 n) space, which follows from the famous Savitch’s
Theorem [27] that the class NL is contained in O(log2 n) space. This means that the
decomposition of planar graphs into bounded tree width graphs can performed in a space
efficient way.

As for the second component in Baker’s algorithm, a recent theorem of Elberfeld et.
al. [17] comes to our help. They show that any optimization problem expressible in
monadic second order logic can be solved in Log-space on bounded tree width graphs. It
turns out that many optimization problems (e.g. Max-Cut) can be expressed in MSO.
Thus the second component of Baker’s algorithm can be made space efficient for problems
like Max-Cut.

This simple combination gives space efficient algorithms for some optimization prob-
lems in planar graphs. The best bound on space complexity that one can currently obtain
via this approach is O(log2 n) space. It is an interesting open question whether this space
bound can be further improved possibly using some other type of decomposition. For
instance: does Max-Cut in planar graph have a Log-space approximation scheme ?

6 Algebraic Properties

The adjacency matrix of an undirected graph G on n vertices is an n × n symmetric
matrix A, i.e., A(i, j) = A(j, i) and whose entries are A(i, j) = 1 if and only if (i, j)
is an edge in G; A(i, j) = 0 otherwise. Similarly one can define the adjacency matrix
of a weighted as well as directed graphs. Let D denote the diagonal matrix whose ith
diagonal entry is the degree of the vertex i. The Laplacian matrix of an undirected graph
is L := D−A. Suppose we have an undirected graph G together with a fixed orientation
of its edges, i.e., every undirected edge {i, j} of G is oriented either (i, j) or (j, i). The
oriented matrix M of G with respect to a fixed orientation is a skew symmetric matrix,
i.e., M(i, j) = −M(j, i) such that M(i, j) = 0 if {i, j} is not an edge in G; otherwise
it is equal to 1 if (i, j) is the orientation of the edge; otherwise it is equal to −1. The
matrices A,L, and M hold some crucial information about graphs. In the context of
planar graphs the algebraic properties of these matrices can be exploited to obtain space
efficient algorithms.

Counting Perfect Matchings in Planar Graphs

An orientation of an undirected graph is called Pfaffian if the determinant of the skew
symmetric matrix M with respect to the orientation is exactly equal to the square of
the number of perfect matchings in the graph. Thus immediately suggests the following
approach for counting perfect matchings in a graph that has a Pfaffian Orientation.

• obtain a Pfaffian Orientation via an efficient algorithm

• compute the determinant of the skew symmetric matrixM associated to the Pfaffian
Orientation; the square root of this determinant is the # perfect matchings.
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In this context, planar graphs have been extremely lucky. Around 1965, Kastelyn [21]
discovered that the planar graphs are endowed with an amazing property:

Theorem 5 (Kastelyn). Every planar graph has a Pfaffian Orientation.

In fact, Kastelyn discovered a simple and elegant criteria for a planar graph to have a
Pfaffian Orientation. This criteria has lead to efficient algorithms for obtaining a Pfaffian
Orientation. We need a definition for further explanation. We call a cycle oddly oriented
if we traverse the cycle in the clockwise direction then we encounter odd number of edges
oriented in the direction of traversal. Kastelyn showed the following:

• an orientation of a planar graph is Pfaffian if every simple cycle is oddly oriented.

• furthermore: there is an oddly oriented simple cycle if and only if there is an oddly
oriented face of the planar graph, i.e., facial cycle

Thus to construct a Pfaffian orientation it suffices to give the orientation to the edges
so that every face is oddly oriented. This local criteria for constructing the Pfaffian
Orientation turns out to be useful in the context of space complexity. In fact, Mahajan
and Vinay [24] observe that using parity tree evaluation techniques one can obtain a
Log-space algorithm for computing such an orientation! A consequence of having a Log-
space computable Pfaffian Orientation is that one can compute the number of perfect
matchings in planar graph in the class NC, and hence in poly-logarithmic space. To note
the contrast, recall that the problem of counting perfect matchings in general graphs is
known to be #P -hard by the classic result of Valiant [30].

Counting Spanning Trees modulo 2k in Planar Graphs

Another setting where planarity works like magic is that of modular counting of span-
ning trees. In particular, Braverman, Kulkarni, and Roy [6] show that for any fixed k,
computing the number of spanning trees modulo 2k in planar graphs can be done in
Log-space! To show the contrast, we note that same problem in general graphs is known
to be ⊕L-complete [6], i.e., as hard as computing the determinant of an integer matrix
modulo 2.

This result uses two interesting connections.

• connection of certain type of knots to the co-rank of Laplacian matrix (mod 2)

• the Matrix-Tree Theorem that connects # spanning trees to the determinant of a
minor of the Laplacian

First we give some explanation on the first connection: There are certain type of knots
that are called left-right walks (cf. Godsil and Royle [20]) that one can associate to a
planar graph. These knots can be constructed in Log-space. The number of these knots
is exactly equal to the co-rank of the Laplacian matrix (modulo 2) of the planar graph.
Counting the number of these knots can be done by a simple reduction to undirected
connectivity problem, which is known to be in Log-space; thanks to the celebrated result
of Reingold [26]. Now the magic is handed over to the Kirchoff’s Matrix-Tree Theorem:
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(a) Planarizing Gadget for Determinant (b) Planarizing Gadget for Permanent

Theorem 6 (Kirchoff). Let L be the Laplacian matrix of graph G and let L′ denote the
matrix obtained from L by deleting the first row and the first column. Then: determinant
of L′ is exactly equal to the number of spanning trees in G.

Thus the number of spanning trees is odd if and only if determinant of L′ modulo 2
is odd. This happens if and only if the co-rank of L is at most 1. This immediately gives
a Log-space algorithm for counting (modulo 2) the spanning trees in planar graphs. In
fact, Braverman, Kulkarni, and Roy extend this result to mod 2k setting for any fixed k
using somewhat sophisticated techniques from Algebraic Topology.

7 Planarizing Gadgets
Every graph can be drawn on plane. One can represent the nodes of the graph by some
points in the plane and one can represent the edges of the graph by curves joining the
points. We say that two edges cross if the curves representing the two edges intersect in a
point other than the end points of the edges. A graph is planar if and only if one can draw
the graph on plane so that no two edges cross. Hence the only (and the big) difference
between planar graphs and arbitrary graphs is that planar graph has no crossings while
arbitrary graph might have many crossings.

A planarizing gadgets is loosely speaking a local replacement for crossings to obtain
a planar graph. The replacement is done in order to maintain certain properties. Such
gadgets can be used in two ways:

• to obtain an efficient algorithm for a problem in general graphs

• to obtain a hardness result for problems planar graphs.

Below we illustrate the two with some examples.

Upper Bounds using Planarizing Gadgets

A perfect example of the power of planarizing gadgets for obtaining upper bounds is given
by the framework of so called Holographic Algorithms. This framework was introduced by
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Valiant [31] and was further developed by Cai et. al. [34]. It exploits the fact that perfect
matchings in planar graphs can be computed efficiently, to obtain non-trivial polynomial
time algorithms for several seemingly hard problems. The key to this framework is the
construction of so calledMatch-Gates, which are the planarizing gadgets satisfying certain
properties. It is a beautiful piece of art to construct such Match-gates, see for instance a
survey by Cai [34].

The framework works as follows:

• model a counting problem in general graphs in terms of Match-Gate circuits

• design appropriate Match-Gates and replace the crossings by these Match-Gates

In fact the only computationally expensive step in these algorithms is the computation
of determinant. This step can be performed in NC, and hence in poly-logarithmic space.
So all these algorithms can be considered space efficient.

Hardness Results using Planarizing Gadgets

One of the main uses of planarizing gadgets is to obtain hardness results. The basic
strategy for proving hardness results for problems in planar graphs is as follows:

• start with a hard instance of the problem in general graphs

• replace each crossing by a suitable planar graph such that the solution is preserved
under this replacement

Classically several hardness results are known for planar graphs via such gadgets: for
instance Hamiltonian Cycle in planar graph is NP-hard [18]. Oftentimes the gadgets are
simple once they are discovered but could be challenging to construct. In the context of
space bounded computation (and this article) we would like to mention the following:

Datta, Kulkarni, Limaye, and Mahajan [10] study the Determinant and Permanent
when restricted to adjacency matrices of planar graphs. They show that planar restric-
tions of Determinant and Permanent remain as hard as general graph.

Using an interesting use of the gadgets developed by Datta, Kulkarni, Limaye, and
Mahajan together with some additional gadgets, Kulkarni [22] shows that the extension
of Datta, Kulkarni, and Roy’s [11] method of isolation from bipartite to non-bipartite
planar graphs is hard; in the sense that such an extension would imply several strong
results such as Bipartite Matching is in NC, NL ⊆ ⊕L, and NP ⊆ ⊕P.

Using the result of Kulkarni [22], recently Datta and Kulkarni [9] show that Max-Cut
in planar graphs is NL hard.

Recently there have been some results on proving that certain type of planarizing
gadgets do not exist (see for instance [19]).

8 Conclusion and Open Ends
We have shown several examples where studying the space complexity of problems in
planar graphs could be fruitful. Several useful properties of planar graphs naturally lead
to space efficient algorithms. We list some open questions that could be further explored:
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Space Complexity of Recognizing Bounded Genus Graphs

It is known that one can recognize planar graph and in fact construct a combinatorial
embedding of it in Log-space [3]. It is still open whether or not one can generalize it for
constant-genus graphs. The best known bound is NC [16].

Space Complexity of Reachability in Planar Graphs

Is reachability in directed planar graphs in Log-space ? A related question is whether or
not the distance computation in undirected planar graphs is in Log-space?

Isolation in Non-bipartite Planar Graphs

Can one extend the method of non-vanishing circulation of Datta, Kulkarni, and Roy [11]
to non-bipartite planar graphs ? Such an extension would have non-trivial consequences
such as NL ⊆ ⊕L [22].

Space Complexity of Max-Cut in Planar Graphs

We have observed that Max-Cut in planar graphs admits UL ∩ co − UL approximation
scheme. Furthermore: we have shown that Max-Cut in planar graphs is NL hard. A
natural question is whether or not there is a Log-space approximation scheme for Max-
Cut in planar graphs.

Space Complexity of Matching in Planar Graphs

Perfect Matching in bipartite planar graphs is known to have space efficient algorithms
[11] but non-bipartite case remains open for long time. Kulkarni [22] shows that Minimum
Weight Perfect Matching in planar graphs is NL hard even when the weights are 0 or 1.
Can one show NL hardness for Perfect Matching or Maximum Matching in planar graphs?
Does Perfect Matching in planar graphs have poly-log space algorithm?
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