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1 Introduction
Model checking refers to the task to verify automatically that a given software
or hardware system fulfills certain specifications. The system is typically a
finite state system, for example a hardware system or a concurrent program
given in a restricted programming language (in general, the problem is of
course undecidable), and the specification is given as a logical formula in some
temporal logic [6]; typically properties that one wants to verify are safety
properties such as livelihood or deadlock-freeness. The history of model
checking is a remarkable success story, see, e.g., [7] or the other contributions
in [14], and many tools exist and are used in practice.

In theoretical studies, the system is a Kripke model, i.e., a labelled tran-
sition graph, and the logical languages are variants of modal logics (basic
modal logic, different temporal logics, modal dependence logic, etc.). That
is, the following problem is studied:

Problem: L-MC
Description: the model checking problem for logical language L.

Input: An L-formula φ, a Kripke modelM, and an initial
state w0 inM.

Question: Does φ hold in w0?

This paper addresses the computational complexity of model checking.
This issue is covered in a very substantial survey paper by Philippe Schnoe-
belen [32], where upper bounds in form of algorithms and lower bounds in
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terms of hardness results for some basic complexity classes for the maybe
most important temporal logics LTL, CTL, and CTL∗.

It is well-known that the computational hardness of logical problems does
not always depend on formulas of the full language but appears already for
fragments. For example, the propositional satisfiability problem was shown
to be NP-hard for formulas that use the negation of implication as only
operator, i.e., as only logical connective [19]. More abstractly, Lewis [19]
showed that the satisfiability problem for formulas with arbitrary Boolean
operators is NP-complete if and only if the used operators allow to express
the negation of implication. Corollaries of this are the well-known facts that
satisfiability for monotone or for affine formulas is efficiently solvable.

As another example let us consider the maybe most basic model checking
problem, namely for propositional logic. A model here is simply an assign-
ment, and model checking is the problem to check if a given assignment
satisfies a given formula—hence propositional model checking is the formula
value problem. It is well-known that this problem is NC1-complete for unre-
stricted formulas [4]. Henning Schnoor proved that it remains complete when
restricted to monotone formulas, more generally he showed that propositional
model checking is NC1-complete if and only if the used operators allow to
express ∧ and ∨ [33].

In the present paper we will survey the computational complexity of
model checking for modal logic and extensions like hybrid logic, intuitionistic
logic, temporal logics (LTL, CTL, CTL∗), and modal dependence logic. We
will put particular emphasis on the study of the complexity of fragments of
the logical language. After a preliminary section, where we lay the ground
for a systematic study of fragments and introduce a basic propositional lan-
guage, we treat the different modal logics in the above order in the subsequent
sections. The results on basic modal logic are new (but easily obtained from
the corresponding results for CTL, treating 2 like AX and 3 like EX). The
classification for CTL fragments with exactly one temporal operator is new.
The result on CTL∗ is new. All other results can be found already in the
literature and we provide complete references.

2 Preliminaries

The structure of the Boolean clones. As explained before, the present
paper will survey complexity classifications for fragments of modal logic and
extensions, where the fragments are defined by restricting the set of allowed
propositional connectives and modal operators. Post [28] classified the lattice
of all relevant sets of Boolean operators—called clones—and found a finite



base for each clone. The definitions of all clones as well as the full inclusion
graph can be found, for example, in [3]. Whereas in general there is an in-
finite set of clones, for model checking luckily there are only seven different
clones [1]. This is essentially due to the fact that the constants for false and
true do not need to be part of the language but can be expressed by atoms
that are either nowhere or everywhere satisfied in the model, and there are
only seven clones that contain the constants. This means (and is proved
formally in [37]) that if one wishes to study the computational complexity of
model checking for propositional formulas with logical connectives restricted
to some set B of Boolean functions, it is not necessary to consider all infi-
nite possibilities for such sets B but actually suffices to consider these seven
clones, depicted in Figure 1, where we describe the clones by their standard
bases (we use ⊕ to denote the exclusive or). Notice that even though {∧,⊕}
is not a base for all Boolean functions, it suffices to express all Boolean func-
tions w.r.t. model checking problems because of the “free” existence of the
constant false; e.g., ¬x = x⊕ 1 and x ∨ y = ((x⊕ 1) ∧ (y ⊕ 1))⊕ 1.

To summarize, given any finite set B of Boolean functions/propositional
connectives, the computational complexity of model checking for formulas
(from any of the modal logics in the sequel) using propositional connectives
from B is equivalent to the complexity of model checking for one of the bases
given in Figure 1. To give one further example, a reader might wonder about
formulas involving propositional implication →. From [28] it follows that
with → plus constant false, we can already express all Boolean functions
(this can easily be verified since ¬x ≡ x → 0 and x ∨ y ≡ (x → 0) → y),
hence model checking for formulas over {→} is equivalent to model checking
for formulas over {∧,⊕}.

Hence, in all upcoming results, if we classify the computational com-
plexity of a model checking problem for the bases in Figure 1, we have in
fact achieved a full complexity classification for all finite sets B of Boolean
connectives.

The basic language. A language for a logic is a set of formulas of the
form

ϕ ::= ◦f1(ϕ, . . . , ϕ) | · · · | ◦fk(ϕ, . . . , ϕ) |
g1(a1, . . . , an1) | · · · | g`(a1, . . . , an`

) ,

where ◦fi are operators that are applied on formulas (like ¬, ∧), and gi are
simple operators applied on atoms aj ∈ PROP only (like constants, atoms,
atomic negation, dependence atoms (see Section 8)).

Our basic language is the language of propositional logic with the identity
id as simple operator (this is a little strange way to say that atoms are
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Figure 1: The Boolean clones relevant for model checking, represented by
their standard bases. id denotes the clone represented without operator
(“identity” of an atom).

formulas) and with the operators used in the bases for the relevant clones,
namely the unary operator ¬ and the binary operators ∧,∨,⊕. We use infix
notation for binary operators and we do not write out id, as usual.

Kripke models. We will consider different propositional logics whose
formulas base on a countable set PROP of propositional atoms. A Kripke
model is a tripleM = (U,R, ξ), where U is a nonempty and finite set of states,
R is a binary relation on U—the successor relation—and ξ : PROP→ P(U)
is a function—the valuation function. For any atom it assigns the set of
states in which this atom is satisfied. (U,R) can also be seen as a directed
graph—it is called a frame in this context. A frame (U,R) is reflexive, if
(x, x) ∈ R for all x ∈ U , and it is transitive, if for all a, b, c ∈ W , it follows
from (a, b) ∈ R and (b, c) ∈ R that (a, c) ∈ R. It is total, if for all a ∈ U
exists some b ∈ U with (a, b) ∈ R, i.e. every state has a successor.

We present Kripke models graphically as directed graphs, where atom a
is written into the node that represents state s iff s ∈ ξ(a). As example,
Figure 2 shows a Kripke model KC that has two states to which the atom t
is assigned, and one state that is named out.

The semantics of the basic language and its considered extensions is de-
fined via Kripke models. Given a Kripke model M = (U,R, ξ) and a state
s ∈ U , the satisfaction relation |= is defined as follows.

M, s |= p iff s ∈ ξ(p), p ∈ PROP,

M, s |= ¬ϕ iff M, s 6|= ϕ,

M, s |= ϕ ∧ ψ iff M, s |= ϕ andM, s |= ψ,

M, s |= ϕ ∨ ψ iff M, s |= ϕ orM, s |= ψ,

M, s |= ϕ⊕ ψ iff M, s |= ϕ andM, s 6|= ψ, or
M, s 6|= ϕ andM, s |= ψ.



This definition is made so overly general because we want to define the
languages of modal, temporal, and dependence logics as extensions of the
basic language by more operators and its semantics by adding rules to the
satisfaction relation for the additional operators. For this, we also need a
semantics that is defined on paths through a Kripke model instead on states.
An infinite path π = x1, x2, . . . through a Kripke modelM = (U,R, ξ) is an
infinite sequence of states xi ∈ U such that (xi, xi+1) ∈ R holds for all i ≥ 1.
Whenever we write π[i] we refer to the ith state in π, i.e., π[i] := xi. Further
πi denotes the suffix of π starting at position i, i.e., πi := π[i], π[i+ 1], π[i+
2], . . . . If w ∈ U then Π(w) is the set of all paths starting in w, i.e., for all
π ∈ Π(w) it holds that π[1] = w. For a formula ϕ of the basic language, a
Kripke modelM and a path π throughM, the satisfaction relation is defined
as follows.

M, π |= ϕ iff M, π[1] |= ϕ.

Complexity. We use the following complexity classes and complete prob-
lems.

NC1 is the class of problems decided logspace-uniform families of circuits
consisting of ∧-gates and ∨-gates with fan-in 2 and ¬-gates, that have loga-
rithmic depth. A typical complete problem is the formula evaluation problem
for propositional logic.

NL is the class of problems decided by nondeterministic logarithmically
space bounded Turing machines. The typical complete problem is the graph
accessibility problem for directed graphs REACH (given a directed graph
with two nodes s and t, is there a path form s to t?).

LOGCFL is the class of problems decided by nondeterministic logarithmi-
cally space bounded Turing machines, that are additionally allowed to use a
stack and run in polynomial time. The typical complete problem is the eval-
uation problem for monotone SAC1 circuits. That are circuits of ∧-gates,
∨-gates, 1-gates and 0-gates, where the ∧-gates have indegree 2, the ∨-gates
have arbitrary indegree, and the depth of the circuit is logarithmic in its size.

AC1 is the class of problems decided by alternating logarithmically space
bounded Turing machines with logarithmically bounded number of alterna-
tions. The typical complete problem is the evaluation problem for monotone
AC1 circuits, that are like SAC1 circuits but with ∧-gates having unbounded
indegree.

P is the class of problems decided by polynomially time bounded Turing
machines. A typical complete problem is the evaluation problem for mono-
tone circuits.



NP is the class of problems decided by nondeterministic polynomially
time bounded Turing machines. A typical complete problem is CNF-SAT
that asks whether a given Boolean formula in conjunctive normal form is
satisfiable. 3SAT is the restriction of CNF-SAT to formulas that have at
most three literals in every clause.

PNP[1] is the class of problems decided by deterministic polynomially time
bounded oracle Turing machines that make only one query to an NP-oracle.

ΘP
2 is the class of problems decided by deterministic polynomially time

bounded oracle Turing machines with an NP-oracle, where the number of
oracle queries is logarithmically bounded. A typical complete problem is
ODDS that asks for a given sequence ϕ1, ϕ2, . . . , ϕn of Boolean formulas,
whether there exists an odd i such that ϕ1, . . . , ϕi are satisfiable and ϕi+1 is
not satisfiable [41].

PSPACE is the class of problems decided by polynomially space bounded
Turing machines. A typical complete problem is the value problem for quan-
tified Boolean formulas QBF-VAL. This problem has instances ∃x1∀x2∃x3 . . .
∀xn−1∃xnϕ, where ϕ is an instance of 3SAT with variables x1, . . . , xn for odd
n. An instance belongs to QBF-VAL if there exists z1 ∈ {⊥,>} such that
for all z2 ∈ {⊥,>} . . . ϕ[x1/z1] . . . [xn/zn] evaluates to >, where ⊥ and >
stand for false and true. The formula evaluation problem for first-order logic
is another PSPACE-complete problem.

3 Modal logic and hybrid logic

Modal logic can be seen as the simplest extension of Boolean logic that
allows easily to simulate the behaviour of computer programs in the means
of different program states. It has been firstly introduced by Lewis [18] and
has become very popular since Kripke [16] found its intuitive semantics. One
of the standard textbooks on modal logic is [5].

The language of modal logic extends the basic language by the unary
operators 3 and 2. The semantics of these operators is as follows. Let
M = (W,R, ξ) be a Kripke model with s ∈ W .

M, s |= 3ϕ iff ∃t ∈ W with (s, t) ∈ R : M, t |= ϕ,

M, s |= 2ϕ iff ∀t ∈ W with (s, t) ∈ R : M, t |= ϕ.

The model checking problem for modal logic is defined as follows.



Problem: ML-MC(O)
Description: the model checking problem for modal logic.

Input: A modal formula φ using operators in O ⊆ {3, 2,
∧, ∨, ¬, ⊕}, a Kripke model M = (W,R, ξ), and
an initial state w0 ∈ W .

Question: DoesM, w0 |= φ hold?

Fischer and Ladner [12] showed that model checking for modal logic is
in P. The algorithm essentially uses a dynamic programming approach to
check inductively over all subformulas, in which states of the model they
are satisfied. One can see it as if the states are marked inductively with
the subformulas that they satisfy. Because the modal operators only take
neighboured states into account, the algorithm runs in polynomial time.

Theorem 3.1 [12] ML-MC(3,2,∧,∨,¬,⊕) is in P.

Model checking for the fragments without any modal operator is the same
as evaluating propositional formulas, that is at most NC1-complete (see [33]).
For the full modal logic, the complexity rises to P-completeness, what can
be seen as a folklore result. This hardness is due to the “power” of the modal
operator 2 and its dual 3, and independent of propositional operators.

Theorem 3.2 ML-MC(3,2) is P-complete.

Proof. We give a reduction from the P-complete monotone circuit evaluation
problem. Given a monotone circuit C and an input x. Assume the circuit to
be layered alternatingly having an or-gate out as output gate. Let ` be the
depth (i.e. the number of layers) of C. For simplicity, assume that ` is even.
The Kripke model KC is constructed by reversing all edges of the circuit C
and letting t be satisfied in all input-nodes with input 1. An example of
this construction can be seen in Figure 2. Then it holds that C outputs 1
if and only if KC , out |= (32)

`
2 t. Notice that the use of the atom t can be

omitted, if we have the constant ⊥ (false) in our language. If all input-nodes
with input 0 get an edge to itself, then the formula (32)

`
22⊥ simulates the

evaluation of the circuit.

The complexity of fragments with only one modal operator shows an
interesting structure. If we have one modal operator and negation, then
we can simulate the other modal operator and obtain P-hardness as in the
above proof of Theorem 3.2. Say that 3 has a disjunctive flavour, because
3α is satisfied in a state w if w has some neighbour in which α is satisfied.
Accordingly, 2 has a conjunctive flavour. Combinations of a modal operator
and its in this flavour “dual” operator on the Boolean side (i.e. 3 and ∧,
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Figure 2: A monotone Boolean circuit C (the gates that output 1 are marked
grey), and two Kripke model KC (proof of Theorem 3.2) and K̂C (proof of
Theorem 3.3(2)) constructed from it.

or 2 and ∨) yield a harder model checking problem than combinations of a
modal operator with a Boolean operator of the same flavour.

Theorem 3.3 Let B ⊆ {∧,∨,¬,⊕}. Then ML-MC(3, B) is

1. P-complete if B ⊇ {¬} or B ⊇ {⊕} ,

2. LOGCFL-complete if B = {∧} or B = {∧,∨},

3. NL-complete otherwise.

Proof. 1. Since 2α ≡ ¬3¬α, this follows from the proof of Theorem 3.2.
2. We reduce the evaluation problem for monotone SAC1 circuits to the

modal logic model checking problem for {3,∧}-formulas. This is essentially
the same reduction as for a CTL model checking problem in [2, Prop.3.7].
Assume that the circuit is layered, has an or-gate as output-gate (layer 0),
input gates at layer ` (that are also considered as or-gates), and and-gates
at layer ` − 1. The SAC1 circuits has or-gates with arbitrarily many inputs
and and-gates with 2 inputs each.

The nodes of the corresponding graph consist of the output-gate out, a
node for every and-gate of C, V∧, and a node for every edge into an and-gate
of C. This essentially makes in G as many copies of every or-gate in C as the



or-gate’s out-degree in C is. The edges of G are essentially the reversed edges
of C. In order to be able to distinguish both the inputs to the and-gates, the
corresponding nodes are assigned different atoms l (like left) and r. Nodes
that correspond to 1-input gates are assigned to the atom t. An example of
this construction can be seen as Kripke model K̂C in Figure 2. Now define
recursively {3,∧}-formulas (φi)0≤i≤` by

φi :=


t, if i = `,

3φi+1, if layer i consists of or-gates,
3(l ∧ φi+1) ∧3(r ∧ φi+1), if layer i consists of and-gates.

Since an or-gate outputs 1, if at least one of its inputs equals 1, this can be
simulated with a 3. An and-gate outputs 1, if both of its inputs equal 1.
This is simulated by checking both the left input and the right input in the
Kripke model. Since this doubles the size of the formula, it is essential that
the circuit has logarithmic depths only. Therefore the construction of the
modal model checking instance can be done in logarithmic space. Then it is
not hard to see that circuit C outputs 1 if and only if K̂C , out |= φ0.

For membership in LOGCFL save the subformulas and corresponding
states on the stack. If the outer-most operator is a 3, then guess a successor
state in the Kripke model. If it is a ∨, then guess the subformula to continue
with. If it is an ∧, then push both subformulas plus the recent state on the
stack. If it is a propositional formula, then evaluate it (in NC1 ⊆ L) and
reject if it is not true in this state. Eventually the stack becomes empty and
we accept.

3. NL-hardness is shown for {3}-formulas using a usual reduction from
the NL-complete directed graph accessibility problem. For membership in
NL for {3,∨}-formulas, notice that 3(α ∨ β) ≡ (3α ∨ 3β). Thus simply
guess which subformula is satisfied on which path.

In the same way, we get a complete characterization of fragments with 2.

Theorem 3.4 Let B ⊆ {∧,∨,¬,⊕}. Then ML-MC(2, B) is

1. P-complete if B ⊇ {¬} or B ⊇ {⊕},

2. LOGCFL-complete if B = {∧,∨} or B = {∨},

3. NL-complete otherwise.

Theorems 3.3, 3.4, and 3.2 now yield a complete characterization of the
complexity of the model checking problems for all modal fragments in terms
of completeness for NL, LOGCFL, resp. P—see Figure 3. This is a wonderful
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Figure 3: Overview over the completeness results for the complexity of model
checking for fragments of modal logics from Theorems 3.3, 3.4, and 3.2.

situation that we unfortunately do not reach for the other logics that we
consider here.

Hybrid logics are extensions of modal logic that allow for naming and
accessing states of a model explicitly. As well as the foundations of temporal
logic, it goes back to Prior [30]. We will only consider the hybrid operators ↓,
that allows to give names to states in the Kripke model, and @, that allows to
jump to a state with such a name. Because the notation of hybrid operators
is a little different from the usual notation, we give a full definition of the
language of hybrid logic, that we will use here.

ϕ ::= p | s | ¬ϕ | ϕ∧ϕ | ϕ∨ϕ | ϕ⊕ϕ | 3ϕ | 2ϕ | ↓s.ϕ | @sϕ ,

where p is a propositional atom and s is a state variable. The semantics
uses a Kripke model M = (W,R, ξ) and additionally needs an assignment
function g that maps each state variable to exactly one state—other than ξ,
that maps every atom to an arbitrary set of states. Let gxs be the same as g,
but with g(s) = x.

M, g, w |= s iff g(s) = w, if s is a state variable,
M, g, w |= ↓s.ϕ iff M, gws , w |= ϕ,

M, g, w |= @sϕ iff M, g, g(s) |= ϕ.

The semantics of the modal and Boolean operators and of the proposi-
tional atoms is defined as for modal logic—the g makes no difference. The
model checking problem for modal logic is defined as follows.
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Figure 4: The Kripke model used for the PSPACE-completeness of
HL-MC(↓,3,2,∧,∨) in the proof of Theorem 3.6.

Problem: HL-MC(O)
Description: the model checking problem for hybrid logic.

Input: A hybrid formula φ with operators in O ⊆ {↓, @,
2, 3, ∧, ∨, ¬, ⊕}, a Kripke modelM = (W,R, ξ),
an assignment g, and an initial state w0 ∈ W .

Question: DoesM, g, w0 |= φ hold?

In general, model checking for hybrid logics even with some more hy-
brid operators can be done by a search algorithm that searches through all
possibilities.

Theorem 3.5 [13] HL-MC(↓,@,2,3,∧,∨,¬,⊕) is in PSPACE.

If we only add the @-operator to the modal language and leave out the
↓-operator, it is not hard to see that the model checking problem remains in
P. What makes hybrid logic so powerful is the possibility to give names to
states. The maximal hardness is reached already by adding the binder ↓ to
the monotone fragment of modal logic.

Theorem 3.6 [31] HL-MC(↓,2,3,∧,∨) is PSPACE-complete.

Proof. The PSPACE-hardness follows by a reduction from the validity prob-
lem for quantified Boolean formulas in conjunctive normal form QBF-VAL.
An instance of QBF-VAL is for example ∃a∀b∃c(a ∨ b ∨ ¬c) ∧ (¬a ∨ ¬b ∨ c).
The model checking instance obtained from this has the Kripke model shown
in Figure 4, initial state w0, assignment g that maps every state variable to
w0, and a hybrid formula that is obtained as follows. Each ∀x is replaced by
2↓x, and each ∃x by 3↓x. Each appearance of a positive literal x is replaced
by 3(x ∧ t) and each negative literal ¬x by 3(x ∧ f). The propositional
atoms used here are t and f , all other atoms are state variables. From the
above formula we obtain 3↓a.2↓b.3↓c.(3(a ∧ t) ∨3(b ∧ t) ∨3(c ∧ f)) . . . .
The quantifiers in the quantified Boolean formula, that intuitively set propo-
sitional atoms to true or false, are simulated by the modal operators, that



assign a state variable to a state that satisfies either t or f . At the end,
setting an atom x to true corresponds to assigning state variable x to the
state that satisfies t. This setting is “stored” in the assignment g and can be
checked by 3(x ∧ t).

4 Intuitionistic logic

Intuitionistic propositional logic goes back to Heyting and bases on Brouwer’s
idea of constructivism from the beginning of the 20th century. It can be seen
as the part of propositional logic that goes without the use of the excluded
middle a ∨ ¬a. It lies intermediate between propositional and modal logic.
Whereas its satisfiability is NP-complete as for propositional logic, its validity
problem is PSPACE-complete [36] as for modal logic.

The language of intuitionistic logic is the set of all formulas of the form

ϕ ::= ⊥ | p | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ _ ϕ ,

where p is a propositional atom. Notice that the negation ¬ and the exclusive
or ⊕ do not appear in intuitionistic logic. Moreover, the semantics of _ is
different of the semantics of the implication→ in classical propositional logic.
The semantics is defined via Kripke models (W,R, ξ) that have the following
properties. First, (W,R) is reflexive and transitive—therefore one uses often
≤ as relation symbol. Second, ξ is monotone in the way that if w ∈ ξ(p) and
(w, v) ∈ R then v ∈ ξ(p). We call such a Kripke model intuitionistic. Let
M = (W,≤, ξ) be an intuitionistic model with state s ∈ W . The semantics
of intuitionistic logic extends the semantics of the {∧,∨}-fragment of the
basic language as follows.

M, s 6|= ⊥
M, s |= ϕ _ ψ iff ∀w ≥ s : ifM, w |= ϕ thenM, w |= ψ.

As ¬α ≡ α → ⊥ in classical propositional logic, negation in intuitionistic
logic can be expressed as α _ ⊥ holds and has quite a different meaning.
Other than α → β ≡ ¬α ∨ β in classical propositional logic, we have α _
β 6≡ (α _ ⊥) ∨ β in intuitionistic logic.

The model checking problem for modal logic is defined as follows.

Problem: IPL-MC
Description: the model checking problem for intuitionistic logic.

Input: An intuitionistic formula φ, an intuitionistic Kripke
modelM = (W,≤, ξ), and an initial state w0 ∈ W .

Question: DoesM, w0 |= φ hold?



4 a1,a2,a3,a4 a1, a2,a3,a4 t,a1,a2,a3,a4 t _ a5

3 a1, a2, a3 a1, a2, a3 a1, a2, a3 (t _ a5) _ a4

2 a1, a2 a1, a2 a1, a2 ((t _ a5) _ a4) _ a3

1 a1 a1 a1 (((t _ a5) _ a4) _ a3) _ a2

0

out

((((t _ a5) _ a4) _ a3) _ a2) _ a1

Intuitionistic Kripke model IC

Figure 5: The intuitionistic Kripke model IC constructed from the monotone
Boolean circuit C in Figure 2. The pseudo-transitive edges are not drawn.
The numbers on the left-hand side indicate the layers. Grey states satisfy
the formula on the right-hand side, and white states do not satisfy it.

Gödel-Tarski translations map intuitionistic formulas to modal formulas
in a way that preserves satisfaction and validity in the different logics. We
take a translation from [40], that we call gt and that maps intuitionistic
formulas on modal formulas as follows.

gt(⊥) := ⊥ gt(p) := p for atom p

gt(α ∧ β) := gt(α) ∧ gt(β) gt(α ∨ β) := gt(α) ∨ gt(β)

gt(α _ β) := 2(gt(α)→ gt(β))

For every intuitionistic Kripke modelM with state w and every intuitionistic
formula ϕ it holds thatM, w |= ϕ if and only ifM, w |= gt(ϕ). Therefore,
P as upper bound for the model checking problem follows immediately from
Fisher and Ladner [12].

Theorem 4.1 [12] IPL-MC is in P.

Completeness results were obtained in [23, 24, 25]. In general, the model
checking problem for intuitionistic logic is P-complete. More detailed, P-
hardness is reached already for intuitionistic formulas with _ as only oper-
ator. Figure 5 shows an example for the intuitionistic Kripke model IC and
the formula constructed from the monotone circuit C in Figure 2. The states



of IC are the nodes of C, and the edges of IC include the reversed edges of C.
An intuitionistic Kripke model must be transitive and reflexive. It is straight-
forward to make IC reflexive. But since the reduction from the circuit to the
intuitionistic Kripke model must be computable within logarithmic space,
it is not possible to calculate the correct transitive edges. Instead, we take
advantage that the circuit is layered and add “pseudo-transitive” edges that
connect each node with every node that lies at least two layers above. The
initial node out is in layer 0. The assignment assigns atom ai to all nodes
in all layers ≥ i and the atom t to all 0-input gates of the circuit. In layer
4, the formula t _ a5 is satisfied in the states corresponding to input nodes
with input 1. Formula (t _ a5) _ a4 is satisfied by all states in this layer,
because a4 is satisfied everywhere. In layer 3, a4 is not satisfied, and there-
fore (t _ a5) _ a4 is satisfied in all states that don’t satisfy t _ a5. Since
neither t nor a5 is satisfied in layer 3, this depends on whether a state has
a successor that doesn’t satisfy t _ a5—at this point the semantics of the
intuitionistic implication _ comes into play. These successors correspond
to 0-input gates. This means, that in layer 3 exactly those states satisfy
(t _ a5) _ a4, that correspond to ∧-gates in the circuit that output 0. Ac-
cordingly, in this layer states that do not satisfy (t _ a5) _ a4 correspond to
∧-gates in the circuit that output 1. Consequently, in layer 2 exactly those
states satisfy ((t _ a5) _ a4) _ a3, that have a successor that does not sat-
isfy (t _ a5) _ a4—i.e. exactly those states satisfy ((t _ a5) _ a4) _ a3,
that correspond to ∨-gates in the circuit that output 1. This continues down
to the state out in layer 0 that satisfy the corresponding formula if and only
if the circuit outputs 1. The assignment to the atoms is used to “implement”
the repeated negations that—due to the semantics of intuitionistic logic—
simulate the layerwise alternation between ∧-gates and ∨-gates of the circuit.
Moreover, it arranges that we don’t need to care about the pseudo-transitive
edges.

Can we save the use of atoms? Intuitionistic formulas with a bounded
number of atoms and the operators ∧, _, and⊥ have only a bounded number
of equivalence classes [9]. This eventually causes the model checking problem
to be in NC1. Contrary, with only one atom and the operators _ and ∨,
there are infinitely many equivalence classes of intuitionistic formulas that
form a Heyting algebra with one generator [26]. These structural properties
are essential to show that the model checking problem gets AC1-complete
for intuitionistic formulas with one atom. This result is especially interesting
because it is the first “natural” AC1-complete problem. For formulas with
two atoms, the problem gets P-complete and reaches its maximal hardness.



Theorem 4.2 1. [23] IPL-MC is P-complete even for intuitionistic for-
mulas with _ as only operator.

2. [25] IPL-MC is P-complete even for intuitionistic formulas with only
two atoms.

3. [24] IPL-MC is AC1-complete for intuitionistic formulas with only one
atom.

The intuitionistic implication _ is well-defined for modal logic—it can
be seen as the operator 2(· → ·). In Theorem 3.2 we have seen that model
checking is P-hard for the fragment of modal logic with 3 and 2 and without
any Boolean operator or atom. The proof technique of Theorem 4.2(1) can
also be applied to modal logic, where we do not have to deal with transitive
frames. This allows to get P-hardness even without atoms.

The modal logic S4 is the restriction of modal logics to Kripke models
(W,R, ξ) with a reflexive and transitive frame (W,R). S4 is calledmodal com-
panion of intuitionistic logic, since there is a mapping—e.g. the Gödel-Tarski
translation gt—that maps valid intuitionistic formulas to S4-valid modal for-
mulas and non-valid intuitionistic formulas to non-S4-valid modal formulas.
The above hardness results for intuitionistic logic also hold for S4. Other
than for intuitionistic logic, it is open whether the S4 fragments with _ as
only operator and a bounded number of atoms have only a finite number of
equivalence classes. For fragments with unrestricted operators and bounded
number of atoms, it turns out that P-hardness is obtained for S4 with one
atom less than for intuitionistic logic.

Theorem 4.3 [25]

1. ML-MC(2(· → ·)) is P-complete for modal formulas that use constant
symbol ⊥ (“false”) and no atoms.

2. ML-MC(2,3,∧,∨,¬) is P-complete for S4 models even for modal for-
mulas with only one atom.

More results that compare the complexities of model checking for different
intuitionistic logics and their modal companions can be found in [25]. It
seems that if a modal logic has a P-complete model checking problem, then
also its fragment with the intuitionistic implication as only operator has a
P-complete model checking problem. There are only differences between the
fragments in the number of atoms needed to show this hardness.
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Figure 6: Semantics of existential CTL operators.

5 CTL

Computation Tree Logic CTL is an extension of modal logic. If one considers
a Kripke model as a set of states of a computer program with the possible
transitions between these states within one step of time, a modal logic formula
can only express properties of a run of the program for some fixed number of
steps. In CTL, one can express properties of the possibly infinite run of the
program. It can be dated back up to Prior [29, 30]. However, Pnueli built
the basic notion and the framework around it [27], and afterwards Clarke
and Emerson refined it to what is used today [8]. As we will see later, CTL
is a strict subset of the more general full branching time logic CTL∗.

The set of all CTL formulas extends the basic language from Section 2
by the unary operators EX, AX, EG, AG, EF, AF and the binary operators
EU, AU, ER, AR, that can be seen as combined from the path quantifiers E
(“for some path”) and A (“for all paths”) as for CTL∗ and the LTL operators
X (“next”), F (“future”), and G (“globally”), U (“until”) and R (“release”). The
semantics of these temporal operators is defined on states of total Kripke
models.

The semantics of CTL is defined on states, but also uses paths. This
makes model checking easier for CTL than for the path related temporal
logics LTL and CTL∗. LetM = (W,R, ξ) be a total Kripke model. Remind
that Π(w) is the set of infinite paths starting in w throughM. The semantics
of CTL extends the semantics of the basic language as follows.

M, w |= EXϕ iff ∃π ∈ Π(w) : M, π[2] |= ϕ,

M, w |= AXϕ iff ∀π ∈ Π(w) : M, π[2] |= ϕ,

M, w |= EFϕ iff ∃π ∈ Π(w) ∃k ≥ 1 : M, π[k] |= ϕ,

M, w |= AFϕ iff ∀π ∈ Π(w) ∃k ≥ 1 : M, π[k] |= ϕ,

M, w |= EGϕ iff ∃π ∈ Π(w) ∀k ≥ 1 : M, π[k] |= ϕ,

M, w |= AGϕ iff ∀π ∈ Π(w) ∀k ≥ 1 : M, π[k] |= ϕ,



M, w |= ψEUϕ iff ∃π ∈ Π(w) ∃k ≥ 1 :

M, π[k] |= ϕ and ∀i < k :M, π[i] |= ψ,

M, w |= ψAUϕ iff ∀π ∈ Π(w) ∃k ≥ 1 :

M, π[k] |= ϕ and ∀i < k :M, π[i] |= ψ,

M, w |= ψERϕ iff ∃π ∈ Π(w) ∀k ≥ 1 :

M, π[k] |= ϕ or ∃i ≤ k :M, π[i] |= ψ,

M, w |= ψARϕ iff ∀π ∈ Π(w) ∀k ≥ 1 :

M, π[k] |= ϕ or ∃i ≤ k :M, π[i] |= ψ.

We have the equivalences between EXφ ≡ ¬AX¬φ,AFφ ≡ ¬EG¬φ, EFφ ≡
¬AG¬φ, and similarly EU/AU is dual to AR/ER. Moreover, the opera-
tors EX,EG,EU are a minimal set of CTL operators that together with the
Boolean operators suffice to express any from the left overs [17].

Problem: CTL-MC(T )
Description: the model checking problem for CTL.

Input: a CTL formula φ with operators in T ⊆ {EX, AX,
EG, AG, EF, AF, EU, AU, ER, AR, ∧, ∨, ¬, ⊕}, a
total Kripke model M = (W,R, ξ), and an initial
state w0.

Question: DoesM, w0 |= φ hold?

Clarke, Emerson, and Sistla [6] showed that model checking for CTL is in
P. The algorithm is an extension of the model checking algorithm for modal
logic. The marking of the states with EXα subformulas works as for 3 in
modal logic. The marking with EGα subformulas is a little more involved.
At first, every state that has mark α an lies on a cycle of state with mark
α is marked with EGα. After this, all states marked with α that have a
neighbour marked with EGα are marked with EGα, too. The marking with
αEUβ subformulas also works inductively. At first, every state that has mark
β is marked with αEUβ. After this, repeatedly all states with mark α that
have a neighbour with mark αEUβ are marked with αEUβ. The remaining
operators can be expressed using the above operators, and accordingly the
marking can be made.

Theorem 5.1 [6] CTL-MC(EX, . . . ,AR,∧,∨,¬,⊕) is in P.

The proof idea for the P-hardness is similar to that of modal logic (see
Theorem 3.2), where the 3 and 2 operators can be replaced by EX and AX
(see [6, 32]). The only difference to modal logic is that one cannot get rid of
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Figure 7: The completeness results of model checking for CTL with the
Boolean operators ∧ and ∨ (Theorem 5.2).

the only atom used, since the Kripke models for CTL are total. Thus we have
P-hardness for the {EX,AX}-fragment of CTL without Boolean operators.
This hardness does not necessarily apply for other pairs of dual operators.
The only solved case is for the {EU}-fragment (see Theorem 5.5), where one
needs only one temporal and no Boolean operator.

How temporal operators affect the complexity of model checking, was in-
vestigated in [2] for monotone formulas. It came out that some conjunctive
and some disjunctive property of the temporal operators is necessary to ob-
tain P-hardness for a monotone CTL fragment. The conjunctive property
appears for A, G and U, and the disjunctive property appears for E, F and U.
Notice that U has both properties, whereas X has none of these properties.
Thus the CTL operator EG has both properties, because E is disjunctive and
G is conjunctive. Also, both EU and AU have both properties, whereas EX is
only disjunctive. If we take both operators EX and AX together, then they
combine both properties.

Theorem 5.2 [2]

1. CTL-MC(S,∧,∨) is P-complete if and only if S is a set of CTL oper-
ators that has the disjunctive and the conjunctive property.

2. CTL-MC(S,∧,∨) is LOGCFL-complete if S is a set of CTL operators
that are either all disjunctive or all conjunctive.

Below, we will extend the above result by a complete characterization of
the complexity for all fragments that have exactly one of the basic tempo-
ral operators EX, EG, and EU. CTL fragments with EX as only temporal
operator are considered in Theorem 5.3. They are essentially the same as



modal fragments with 3 as only modal operator. In Theorem 5.4 we consider
fragments with EG. This operator deals essentially with paths, other than
EX oder the modal operators. We sketch the proof idea of the P-hardness
for the {EG,∧,∨}-fragment of CTL from [2], that is a typical construction in
the proof of Theorem 5.2. An appropriate modification can be used to show
P-hardness for the {EG,⊕}-fragment. It turns out, that formulas with EG
and exactly one of the Boolean operators ∧, ∨, and ¬ cannot search through
trees in the Kripke models but only through paths. Therefore, the model
checking problem for these fragments is in NL. Theorem 5.5 shows that the
{EU}-fragment is already P-hard, i.e. Boolean operators are not necessary
in this case.

It is interesting to notice that the EX-fragments characterize three com-
plexity classes NL, LOGCFL, and P, whereas the EG-fragments distribute
over two complexity classes, and the EU-fragments fall into one complexity
class only. An overview of these results is shown in Figure 9.

Theorem 5.3 CTL-MC(EX, B) is

1. P-complete for B ⊇ {¬} or B ⊇ {⊕},

2. LOGCFL-complete for B = {∧,∨} or B = {∧} [2], and

3. NL-complete for B ⊆ {∨}.

Proof. Since EX and AX can essentially be seen as the modal operators 3

and 2, the results follow directly from Theorem 3.2.

Thus, EX-fragments reach their maximal hardness only with ¬. This is
due to the fact that with ∧ and ∨ one can “check” only polynomial size trees
in a Kripke model. With EG-fragments instead, exponential size trees can be
“checked” with monotone formulas.

Theorem 5.4 CTL-MC(EG, B) is

1. P-complete for B ⊇ {∧,∨} [2] or B ⊇ {⊕},

2. NL-complete for B ( {∧,∨} or B ⊆ {¬}.

Proof. 1. The complete proof for CTL-MC(EG,∧,∨) can be found in [2]. We
give a rough sketch of the construction for the reduction from the monotone
Boolean circuit evaluation problem to CTL-MC(EG,∧,∨). For simplicity,
we assume that the ∧-gates have indegree 2. At first, from a circuit C we
construct the Kripke model K̂C as in the proof of Theorem 3.3 (see also
Figure 2). Next we switch the inputs to ∧-nodes in series by putting an edge
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Figure 8: Kripke model ĈEG (proof of Theorem 5.4(1)) constructed from the
monotone circuit in Figure 2. The grey shades indicate the tree consisting of
6 paths that show how the formula φ0 is satisfied.

from the left to the right input of every ∧-node and by removing the edge
from a ∧-node to its right input. Intermediate between both the input nodes
we put a node with ti for layer i. Third we add a node marked with ti for
every layer i of the graph. This node has a loop and has incoming edges
from every node of its layer, if the layer consists of inputs to ∨-gates, or
from every right input to a ∧-gate, if the layer consists of inputs to ∧-gates.
The assignment function assigns ti to every node ti, and si to all other nodes
in layer i. The 1-inputs are assigned with t. This yields the Kripke model
ĈEG—see Figure 8 for an example. Finally define recursively (φi)0≤i≤` by

φi :=

{
EG(t ∨ t`+1), if i = `,

EG(si ∨ ti+1 ∨ (si+1 ∧ φi+1)), if i < `.

Then it holds that circuit C outputs 1 if and only if CEG, out |= φ0. The
proof idea is as follows. At first, consider φ0 = EG(s0 ∨ t1 ∨ (s1 ∧ φ1)). The
path through the model that is bounded by the E must go from out to t1 and
intermediately passes a node on which s1 holds and which also satisfies φ1.
This φ1 = EG(s1 ∨ t2 ∨ (s2 ∧ φ2)) forces a path from a s1 node to the right
most t2 node, that passes the s2–t2–s2 node sequence. Remind that the s1
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Figure 9: Complete characterizations of the complexity of model checking
for fragments of CTL with one temporal operator EX, EG, resp. EU.

node origins from an ∧-gate and that the two s2 nodes are both inputs to
this ∧-gate. On both s2 nodes φ2 must be satisfied. This is the way in which
an ∧-gate is simulated. An ∨-gate is simulated just by forcing the path to
go immediately to a node in the next layer and to the ti node of this layer
afterwards. It turns out that the tree of paths that witnesses the satisfaction
of φ0 corresponds to the substructure of the monotone circuit that witnesses
that its output equals 1.

Notice that the ∨s we use are essentially used like ⊕. The P-hardness of
CTL-MC(EG,⊕) is therefore obtained by an appropriate modification of this
construction, that makes it possible to avoid the use of the ∧.

2. The NL-completeness results follow with usual arguments.

Eventually we consider EU. The model checking problem is P-complete
for the {EU}-fragment without any further Boolean operators. One of the
reasons for this hardness is that EU is a two-place operator and cannot be ex-
pressed by any Boolean combination of the other temporal operators. There-
fore, there may be some “Boolean power” hidden in EU.

Theorem 5.5 CTL-MC(EU) is P-complete.

Proof. In order to show P-hardness, we use a similar construction of a Kripke
model from a monotone Boolean circuit as in the proof of Theorem 5.4(1). Let
ĈEG be the Kripke model constructed from a circuit C as defined above. In
order to obtain CEU, change the assignment to every right input of an ∧-gate
from si to s′i, and remove the intermediate nodes. Let ui be a node corre-
sponding to the left input of an ∧-gate, and let u′i be the node corresponding
to the right input of the same ∧-gate, that is now the “right” neighbour of ui.
The ui satisfies si, and u′i satisfies s′i. Let α be not satisfied neither in ui nor



in u′i. Then ui |= s′iEU (siEUα) iff ui has an “upper” neighbour that satisfies
α. And u′i |= s′iEU (siEUα) iff u′i has an “upper” neighbour that satisfies α.
Thus ui |= (s′iEU (siEUα))EUti iff both ui and u′i have “upper” neighbours
that satisfy α. This is the way in which an ∧-gate can be simulated using EU
as only operator and leads to the following recursive definition of (φi)0≤i≤`.

φi :=


tEU t`+1, if i = `,
si EUφi+1, if layer i consists of or-gates,
si EU ((s′i+1 EU (si+1 EUφi+1))EU ti+1), if layer i cons. of and-gates.

Then it holds that circuit C outputs 1 if and only if CEU, out |= φ0.

A complete characterization for fragments e.g. with EF as only temporal
operator or for many combinations with two temporal operators is open.

6 LTL

Linear Temporal Logic (LTL) has been proposed by [27] as a formalism to
specify properties of parallel programs and concurrent systems, as well as
to reason about their behaviour. The language of LTL extends the basic
propositional language with the unary operators X (“next”), F (“future”),
and G (“globally”), and the binary operators U (“until”) and R (“release”).
The semantics of these temporal operators is defined on total Kripke models
M = (W,R, ξ) and infinite paths π through it, as follows.
M, π |= Xϕ iff M, π2 |= ϕ

M, π |= Fϕ iff ∃j ≥ 1 : M, πj |= ϕ

M, π |= Gϕ iff ∀j ≥ 1 : M, πj |= ϕ

M, π |= ϕUψ iff ∃` ≥ 1 : M, π` |= ψ and ∀j, 1 ≤ j < ` :M, πj |= ϕ

M, π |= ϕRψ iff ∀` ≥ 1 : M, π` |= ψ or ∃j, 1 ≤ j < ` :M, πj |= ϕ

Notice the dualities Fϕ ≡ ¬G¬ϕ and ϕUψ ≡ ¬(¬ϕR¬ψ). Moreover,
Fϕ ≡ >Uϕ. Therefore, the temporal operators X and U together with the
Boolean operator ¬ suffice to express all temporal operators used here.

The model checking problem for LTL asks, whether there exists some
infinite path through a given Kripke model that satisfies the given formula.

This problem statement is also called existential model checking. There is
also a universal model checking problem considered in the literature, where
the question is “Does for all paths π throughM that start in w holdM, π |=
φ?”. The results are dual, and therefore we only talk about existential model
checking in this section.



Problem: LTL-MC(T )
Description: the model checking problem for LTL.

Input: an LTL formula φ using only operators in T ⊆ {X,
F, G, U, R, ∧, ∨, ¬, ⊕}, a total Kripke model
M = (W,R, ξ), and an initial state w0.

Question: Is there an infinite path π through M that starts
in π[1] = w0, such thatM, π |= φ holds?

Sistla and Clarke [35] have shown that model checking for LTL is in
PSPACE. Other than with the CTL model checking algorithm, that consid-
ers for every state and every subformula, whether the subformula is satisfied
in that state, for LTL we additionally would have to take paths into account.
This makes it impossible to use a dynamic programming approach as for
CTL and modal logic. Instead, one copies every state s of the Kripke for all
non-contradictory assignments of truth values to the subformulas of ϕ that
extend the assignment to the atoms of the state. For example, if s ∈ ξ(a),
then a is assigned to true. Consequently, ¬a must be assigned to false. If
α and β are assigned to false, then αUβ must also be assigned to false, and
so on. The edges of this graph are according to the edges of the Kripke
model, but must additionally respect a consistency of the assignments to the
subformulas. For example, if Xα is assigned to true, all edges go to states in
which α is assigned to true. The size of the graph is exponential in the size
of the formula and the Kripke model. In [35] the model checking algorithm
uses this graph as follows. For simplicity, we only consider formulas with
temporal operators X and U. In order to check whether ϕ is satisfied for
some path π that starts in s, the algorithm guesses a copy of s in which ϕ is
assigned to true. It then guesses a path to some node t and a loop that again
leads to t, such that in this loop for every subformula αUβ of ϕ some state
appears that assigns true to β. Because one could loop forever now, this is
an infinite path. Such a path—that corresponds to an infinite path through
the Kripke model—exists if and only if ϕ is satisfied for some path π through
the Kripke model that starts in s. Since the size of the graph is exponential
but is uniquely described by the Kripke model and the formula, this search
can be (nondeterministically) done in polynomial space. Later on, Vardi and
Wolper [39] developed a connection with the theory of automata over infinite
words.

Theorem 6.1 [35] LTL-MC(X,F,G,U,R,∧,∨,¬,⊕) is in PSPACE.

Sistla and Clarke [35] also considered the hardness of fragments of LTL
w.r.t. the temporal operators and showed that LTL-MC(U,∧,⊕) is PSPACE-
hard. This shows that the until operator makes LTL formulas hard to check,



whereas the full expressive power of LTL is not reached only with U, but
with X and U. Markey [20] improved this result for the fragment where
the until operators do not appear within the scope of a negation. Whereas
Gα ≡ ¬(>U¬α), in this fragment the G operator cannot be expressed. In
[1] it is shown that negations are not necessary for PSPACE-hardness in the
fragment with U. Moreover, model checking is intractable for formulas that
have U as only temporal operator and have no Boolean operators at all.

Theorem 6.2 [1]

1. LTL-MC(U,∧,∨) and LTL-MC(R,∧,∨) are PSPACE-complete (cf. [35,
20]).

2. LTL-MC(U) and LTL-MC(R) are NP-hard.

The PSPACE-hardness proof of LTL-MC(U,∧,∨) can be done by a re-
duction from a tiling problem. As an example how this works in general, we
consider model checking for the {G,X,∧,∨}-fragment of LTL. The proof for
the {U,∧,∨}-fragment is similar but technically more involved.

Theorem 6.3 [20, 1] LTL-MC(G,X,∧,∨) is PSPACE-complete.

Proof. Due to Theorem 6.1 it suffices to show PSPACE-hardness. We give
a reduction from a PSPACE-hard tiling problem as in [20]. A domino type
is a 4-tuple (west , north, east , south) of colours. For a finite set T of domino
types, a tiling of a rectangle with breadth b and height h is an arrange-
ment that puts dominoes of the given type on every point of the rectan-
gle such that horizontally or vertically neighboured dominos have the same
color at the adjoining sides. Formally, this can be expressed as a function
f : {1, 2, . . . , b}× {1, 2, . . . , h} → T that fulfills the following properties. Let
f(i, j).south denote the south color of domino type f(i, j) etc.

1. f(i, j).east = f(i+ 1, j).west , for i = 1, 2, . . . , b− 1 and j = 1, 2, . . . , h

2. f(i, j).north = f(i, j+1).south, for i = 1, 2, . . . , b and j = 1, 2, . . . , h−1.

The PSPACE-complete corridor tiling problem that we will use is defined
as follows. Given a finite set T of domino types, two types q, r ∈ T and a
string 1b of b ones, does the corridor of breadth b has a tiling with domino
q = f(1, 1) in the left lower corner and domino r = f(b, h) in the right upper
corner?

Given an instance τ = (T, q, r, 1b) of the tiling problem, the construc-
tion of a LTL-MC(G,X)M instance (K,w0, ϕ) works as follows. Let T =
{t0, t1, . . . , tk} be the finite set of domino types. The frame of the Kripke
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Figure 10: A corridor tiling instance and a sketch of the Kripke model con-
structed from it.

model is a graph such that paths through this graph represent sequences
of horizontally correctly tiled rows—the vertical correctness will be checked
by the LTL formula. The graph has nodes {tji | 0 ≤ i ≤ k, 1 ≤ j ≤ b}
where each tji represents a copy of domino type ti in column j of a row. The
edges in the graph are between two domino types in neighboured columns
whose east resp. west colour are equal (according to property 2 above), i.e.
{(tjl , tj+1

r ) | 1 ≤ l < b, tl.east = tr.west}. The nodes at the right end of a row
have edges to all nodes at the left end of a row, if the node’s type is not r. If
it is r, then the only edge from it goes to a sink node, that only has an edge
to itself. Figure 10 shows an example.

Let C = {c1, . . . , c`} be the colours that appear in T . The atoms used in
our Kripke model represent the colours at the different sides of the domino
types and are {n-ci, e-ci, s-ci, w-ci | 1 ≤ i ≤ `}. The assignment ξ maps state
tji having north colour cnorth and so on to {n-cnorth , e-ceast , s-csouth , w-cwest}.
The sink node does not satisfy any atom. Now we have constructed Kripke
model Kτ from a tiling problem τ given by T, q, r, 1b.

The formula must check that in every state of the path a north colour
exists—this guarantees that the sink state is not reached—and that it equals
the south colour in the state reached b steps later—this means the domino
in the row above fits.

ϕτ = G
∨
ci∈C

(
n-ci ∧ Xbs-ci

)
It is not hard to see that τ = (T, q, r, 1b) is in the corridor tiling problem if
and only if there exists an infinite path π through Kτ that starts in q1 such
that Kτ , π |= ϕτ .
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Figure 11: A Kripke model from α = (a ∨ ¬b ∨ ¬d) ∧ (¬a ∨ b ∨ d) ∧ (¬b ∨ d)
for the reduction from 3SAT to CTL-MC(F,∧) and to CTL-MC(X,∧,∨).

It is interesting to notice that nesting of the G operator is not necessary
in order to obtain the maximal computational hardness. This is essentially
different from CTL, where nesting of EG operators was necessary in order to
“construct” trees. Similar as for CTL it appears that dealing the G operator
for the F operator decreases the complexity.

Theorem 6.4 [35] LTL-MC(F,X,∧,∨) is NP-complete.

The NP upper bound relies on the fact that {F,X,∧,∨}-formulas can deal
only with a polynomially long prefix of a path through a Kripke model. As
examples for typical NP-hardness proofs, we consider the smallest NP-hard
fragments.

Theorem 6.5 [35, 20, 1] The following problems are NP-hard:
LTL-MC(F,∧), LTL-MC(X,∧,∨), and LTL-MC(G,X,∨).

Proof. We start with the NP-hardness of LTL-MC(F,∧) [35]. The reduction
is from the NP-complete problem CNF-SAT that asks whether a proposi-
tional formula given in conjunctive normal form is satisfiable. Let α be such
a formula with atoms x1, . . . , xn. The Kripke model Kα constructed from
this formula has an initial state w, a sink state, and in between one state for
each literal x1,¬x1, . . . , xn,¬xn that are connected in a way that every infi-
nite path starting at w corresponds to exactly one assignment to the atoms
in α—see Figure 11 for an example. Let c1, . . . , cm be the clauses of α. The
assignment function assigns ci to every state that corresponds to a literal
that appears in clause ci. This means, that a path through the model cor-
responds to a satisfying assignment if and only if it passes states in which
eventually all cis are satisfied. The satisfiability of α is the expressed by the
LTL formula ϕ = Fc1 ∧ Fc2 ∧ · · · ∧ Fcm .
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Figure 12: A Kripke model from the CNF formula α = (a∨¬b∨¬d)∧ (¬a∨
b ∨ d) ∧ (¬b ∨ d) for the reduction from 3SAT to CTL-MC(G,X,∨).

In the same way one can prove the NP-hardness of LTL-MC(X,∧,∨)
[10, 20]. The reduction from CNF-SAT uses the same Kripke model as above
and the LTL formula (Xc1∨XXc1∨. . .∨Xnc1)∧. . .∧(Xcm∨XXcm∨. . .∨Xncm),

for short
m∧
i=1

n∨
j=1

Xjci.

One can get rid of the ∧s by adding a G. For this, we modify the Kripke
model from the above proof by making as follows. Each state (excepted the
sink state) is replaced by a chain of as many copies as the CNF-SAT formulas
has clauses. The assignment to the new copies is s, if the state corresponds
to the assignment to the CNF-SAT formula, or empty otherwise. Figure 12
shows an example. Notice that ψ1 = X3c1 ∨X6c1 ∨X9c1 can only be satisfied
in state w1. Accordingly, ψ2 = X2c2 ∨ X5c2 ∨ X8c2 can only be satisfied in
state w2, and ψ3 =

∨
i=1,4,7 X

ic3 can only be satisfied in state w3. Since s is
satisfied in the remaining states, G(ψ1∨ψ2∨ψ3∨s) is satisfied on exactly the
paths through the Kripke model that correspond to satisfying assignments to
the CNF-SAT formula. This is the idea for the proof that LTL-MC(G,X,∨)
is NP-hard [1].

Whereas LTL-MC(F,∧) and LTL-MC(X,∧,∨) are in NP by Theorem 6.4,
it is open, whether LTL-MC(G,X,∨) is in NP.

In general, there is no easy rule for the hardness of model checking LTL
fragments. The hardest cases—PSPACE-completeness—are reached with
both G and X, or with U (resp. R). There are many NP-hard cases with
G or with U (resp.R), where an upper bound below PSPACE is open. All
cases that are not NP-hard have an NL-complete model checking problem.
An overview over some results is given in Figure 13.
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Figure 13: Overview over the complexity of model checking for LTL frag-
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(see [35, 20, 1, 15]).

7 CTL*
The full branching time logic CTL∗ is a more general version of CTL and
LTL in the sense that one may require properties holding over several compu-
tation paths. Therefore the syntax extends the LTL language by the unary
operators E and A. LetM be a Kripke model, w be a state inM and π be
an infinite path through M. The semantics of LTL is extended as follows.
The E and A operators switch from state to path semantics.

M, w |= Eϕ iff ∃π ∈ Π(w) : M, π |= ϕ,

M, w |= Aϕ iff ∀π ∈ Π(w) : M, π |= ϕ,

M, π |= Eϕ iff ∃π′ ∈ Π(π[1]) : M, π′ |= ϕ,

M, π |= Aϕ iff ∀π′ ∈ Π(π[1]) : M, π′ |= ϕ.

The model checking problem for CTL∗ asks, whether a formula is satisfied
in a given state of a Kripke model.

Problem: CTL∗-MC(T )
Description: the model checking problem for CTL∗.

Input: a CTL∗ formula φ using only operators in T ⊆ {E,
A, X, F, G, U, R, ∧, ∨, ¬, ⊕}, a total Kripke model
M = (W,R, ξ), and an initial state w0.

Question: DoesM, w0 |= φ hold?



The model checking task for CTL∗ is PSPACE-complete which has been
shown by Clarke et al in 1986 [6]. Given a formula φ, one translates the
formula into a form such that it does not contain any A’s. Then the main
idea is to recursively evaluate subformulas Eψ (s.t. ψ contains no E) in φ
with the LTL algorithm (see Theorem 6.1) to check in which states they
are fulfilled. In the corresponding states a fresh proposition is labelled and
the subformula of φ is replaced by this proposition. The PSPACE-hardness
carries over from LTL model checking as well.

Fragments of this problem overlap on the one hand with parts of the LTL
model checking problem (and its investigated restrictions in Section 6) and
on the other hand with versions of the propositional model checking problem
(i.e., Boolean formula evaluation). For the first part the relevant fragments
are all those containing only operator subsets of {X,F,G,U,R} and for the
latter subsets of {A,E}. Hence these types of fragments are not considered
any more. Further a complete classification of every relevant fragment is not
available yet. In this survey we will present a ΘP

2 -hardness result for the
monotone fragment with operators {E,A,X}. Furthermore an initial step of
the classification is done in [21]. There, several known implications from LTL
results are transferred to the CTL∗ case.

Theorem 7.1 CTL∗-MC(E,A,X,∧,∨) is ΘP
2 -hard.

Proof. We give a reduction from ODDS. Let (ϕ1, . . . , ϕ`) be a tuple of for-
mulas in 3CNF. The construction of of a Kripke model from a 3CNF formula
used in the NP-hardness for LTL-MC(X,∧,∨) (see Figure 11) can be ex-
tended here. Let x1, . . . , xn be the atoms used in all formulas, and w.l.o.g.
each formula has m clauses. Let Kϕi

be the Kripke model constructed for ϕi
as in Figure 11, where wϕi

is the initial state. Figure 14 shows, how these
parts are put together. For our new Kripke model K, we take all the Kϕi

and
add a new initial state s that has edges to all initial states wϕ1 , wϕ2 , . . . , wϕ` .
The assignment ξ of K is obtained from all assignments of the Kϕi

and ad-
ditionally assigns the new atom wi to {wϕi} for all i. Every path π starting

in wϕi
with K, π |=

m∧
i=1

n∨
j=1

Xjci corresponds to a satisfying assignment for ϕi.

Accordingly, every path π starting in wϕi
with K, π |= ¬

m∧
i=1

n∨
j=1

Xjci corre-

sponds to a non-satisfying assignment for ϕi. In order to be able to express
the latter without using ¬, we extend the assignment function ξ, that assigns
atom ci to states that correspond to an assignment that satisfies the ith clause
in the formula, to additional atoms c̄i, that are assigned to states that do not
satisfy the ith clause in the formula. Notice that every state satisfies either ci
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Figure 14: Excerpt of the Kripke model K for Theorem 7.1.

or c̄i. Then every path π starting in wϕi
with K, π |=

m∨
i=1

n∧
j=1

Xj c̄i corresponds

to a non-satisfying assignment for ϕi.
In order to state that (ϕ1, . . . , ϕ`) is in ODDS, we must say that for some

odd i < ` holds ϕ1, ϕ2, . . . , ϕi ∈ SAT and ϕi+1 6∈ SAT. This is done as
follows.

ψ =
∨

i odd,i<`

[( i∧
r=1

E X(wr ∧
m∧
q=1

n∨
j=1

Xjcq)
)
∧
(
E X(wi+1 ∧ A

m∨
q=1

n∧
j=1

Xj c̄q)
)]

It now holds that (ϕ1, . . . , ϕ`) ∈ ODDS if and only if K, s |= ψ.

Now, in contrast to CTL, we have seen how powerful the logic CTL∗ is.
The syntactical separation of path quantifiers E and A from the temporal
operators X, F, G, R, U makes the model checking problem computationally
harder (unless some collapses within the polynomial hierarchy happen).

For the next section we will finally leave the area of temporal logics and
will visit one very young logic that is able to talk about dependencies of
atomic propositions.

8 Modal Dependence Logic

The language of modal dependence logic (MDL) extends the language of
modal logic by the dependence atom dep(p1, . . . , pn), which intuitively states
that the value of the atom pn depends only on the values of p1, . . . , pn−1, i.e.,
pn is functionally determined by p1, . . . , pn−1. Modal dependence logic was
first introduced 2007 by Väänänen [38]. Unlike in usual modal logic, an MDL



formula is typically evaluated not in a single state but in a set of states (in
this context called team), and this is different from evaluating the formula in
each state separately. Therefore we generalize the definition of modal logic
semantics as follows. Let M = (W,R, ξ) be a Kripke model and T ⊆ W a
team.

M, T |= p iff ∀s ∈ T : s ∈ ξ(p), p ∈ PROP,

M, T |= p iff ∀s ∈ T : s 6∈ ξ(p), p ∈ PROP,

M, T |= dep(~p, q) iff ∀s1, s2 ∈ T :
if ξ−1(s1) ∩ {~p} = ξ−1(s2) ∩ {~p}
then s1 ∈ ξ(q)⇔ s2 ∈ ξ(q),

M, T |= dep(~p, q) iff T = ∅,
M, T |= ¬ϕ iff M, T 6|= ϕ,

M, T |= ϕ1 ∧ ϕ2 iff M, T |= ϕ1 andM, T |= ϕ2,

M, T |= ϕ1 ∨ ϕ2 iff ∃T1 ∪ T2 = T :M, T1 |= ϕ1 andM, T2 |= ϕ2.

The semantics of the operator ∨ (in dependence logic terms called split-
junction) may look strange at first sight. However, when restricted to single-
ton teams T we coincide with the definition of usual disjunction. Note that
the usual duality between ∧ and ∨ is not given here. Instead we define the
dual operator to ∧ by introducing 6.

ϕ1 6 ϕ2 := ¬(¬ϕ1 ∧ ¬ϕ2).

ThenM, T |= ϕ1 6 ϕ2 if and only ifM, T |= ϕ1 orM, T |= ϕ2.
Before we define the MDL semantics for the modal operators we have to

look at what a successor of a team is. On the way towards a definition of the
modality 2 the set of all successors of T ⊆ W inM = (W,R, ξ) formally is
written as

R(T ) := {s ∈ W | ∃s′ ∈ T : (s′, s) ∈ R}.

For defining the modality 3, we will consider subsets of the team of all
successors of the given team, hence this is:

R〈T 〉 := {T ′ ⊆ R(T ) | ∀s ∈ T ∃s′ ∈ T ′ : (s, s′) ∈ R}.

Now we are ready to state the MDL semantics for the modal operators as
follows.

M, T |= 3ϕ iff ∃T ′ ∈ R〈T 〉 :M, T ′ |= ϕ

M, T |= 2ϕ iff M, R(T ) |= ϕ



Similar to the above, the usual duality between 3 and 2 does not hold
in MDL. We define a dual operator to 3 as follows.

2· ϕ := ¬3¬ϕ.

The definition of the semantics of MDL is a direct generalization (more
formally, a conservative extension) of the semantics of modal logic. For
formula ϕ over the operator fragment {3,2,∧,∨, ·}, we have

M, T |= ϕ⇔ ∀s ∈ T :M, s |= ϕ.

In dependence logic, this property of ϕ is called flatness. The power of
dependence logic appears when additionally the dependence atom is used.

We illustrate the expressive power of modal dependence logic compared
to modal logic. Consider the following Kripke modelM.

s1

s2 s3 s4

p, r

s5

p, q, r

s6

q, r

s7

p

s8

q, r

s9

p, q

s10

We want to evaluate the formula

23dep(p, q, r)

inM on the starting team T = {s1}. By evaluating the 2 operator we have
to check 3dep(p, q, r) on {s2, s3, s4}, the team R({s1}) of all successor of
{s1}. This subformula is satisfied if and only if there exists a valid successor
team of {s2, s3, s4} on which the proposition r is functionally determined by
the propositions p and q, i.e., r = f(p, q) for some binary Boolean function
f . Such a function exists if we choose the successor team {s5, s8, s9}. On this
team the dependence holds by picking f to be the exclusive or, i.e., r = p⊕q.

For the MDL operator fragment {2,3, ·,∨,∧, dep} Sevenster [34] showed
that MDL formulas are expressible in modal logic with exponentially larger
formulas. He also showed that this exponential blowup is necessary. We illus-
trate this blowup for the example MDL formula 23dep(p, q, r) from above.
As we have seen, the dependence atom is true if there exists a function which
determines r by p and q. We can simulate this by a disjunction over all pos-
sible Boolean functions



∨
f∈B2

23(f(p, q)↔ r) .

Because the number of all possible Boolean functions with arity n is
22n , this formula is exponentially larger. At last step we can transform this
formula directly into the modal logic formula

23(p ∧ q ↔ r) ∨23(p ∧ q ↔ r) ∨23(p ∧ q ↔ r)∨
23(p ∧ q ↔ r) ∨23(p ∨ q ↔ r) ∨23(p ∨ q ↔ r)∨
23(p ∨ q ↔ r) ∨23(p ∨ q ↔ r) ∨23(p = q ↔ r)∨
23(p⊕ q ↔ r) ∨23(p↔ r) ∨23(p↔ r) ∨23(q ↔ r)∨
23(q ↔ r) ∨23(⊥ ↔ r) ∨23(> ↔ r).

The model checking problem for modal dependence logic is defined as
follows.

Problem: MDL-MC(O)
Description: the model checking problem for MDL.

Input: A modal formula ϕ using operators in O ⊆ {2,
3, 2· , 6, ∨, ∧, ·, ¬, dep(·)}, a Kripke modelM =
(W,R, ξ), and an initial team T ⊆ W .

Question: DoesM, T |= ϕ hold?

The computational complexity of model checking for the MDL fragment
{2,3,2· ,6,∨,∧, ·,¬, dep(·)} and some subfragments were studied by Ebbing
and Lohmann in [11] and by Müller in [22]. Figure 15 illustrates some of
their results. Note that, in difference to the complexity classifications in
the previous sections, here we do not have the full lattice of all clones that
contain constants, but ⊕ is missing. This logical connective has not been
studied in dependence logic so far, and in fact there are several different
sensible ways to define its semantics. Therefore, Figure 15 is not understood
in the lattice-sense as before, but just as a summary of complexity results for
some important sets of operators. For the remaining fragments a complete
classification is pending.

In the rest of this section, we briefly sketch the general upper bound and
then turn to two hardness proofs.

Theorem 8.1 [22] MDL-MC(3,2· ,2,∧,6,∨, ·,¬, dep(·)) is in PSPACE.

The model checking algorithm for MDL uses an alternating polynomial-
time Turing machine that evaluates an MDL formula by using existential
guesses to simulate 3 and splitjunction, and universal guesses to simulate 2· .
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Figure 15: Complexity results for model checking modal dependence logics
[11, 22]. On the left/right side the tractable/intractable fragments are shown.

Theorem 8.2 [22] MDL-MC(3,∧,¬) is PSPACE-complete.

Proof. The proof consists of a reduction from the value problem for quantified
Boolean formulas QBF-VAL to the modal dependence logic model checking
problem. Intuitively we will express the existential and universal quantifica-
tions of QBF-VAL formulas by the alternation of the modal operators “3”
and “2· ”. Teams are used to represent the propositional assignments, under
which the formula part of the QBF-VAL instance has to be evaluated. As
an interesting fact we will see that we do not need the dependence atom to
obtain the hardness result.

For this purpose let ϕ = ∃x1∀x2 . . . ∃xn
∧m
i=1(li1∨ li2∨ li3) be a QBF-VAL

instance, where all literals lij are over the quantified variables x1, . . . , xn
and w.l.o.g. n is assumed to be odd. The reduction function maps ϕ to a
MTL-MC instance 〈M, T0, δ1〉, where M = (W,R, ξ). At first we give the
construction ofM, see Figure 16 for an example. For each quantifier we will
construct one connected component. In these connected components we will
simulate the nesting of the quantified variable xi by delay states di and the
quantified value of the variable by value states xi and ¬xi:

W :=
n⋃
i=1

(
{dji | 1 ≤ j ≤ i} ∪ {xi,¬xi}

)
.
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Figure 16: Kripke model for the QBF formula ∃x1∀x2∃x3(x1 ∨ ¬x2 ∨ x3).

For the quantified variable xi the decision for the variables value will be made
at point i. Before these decision points all delay nodes and all value nodes
are connected in natural order. At the decision point i the delay state will
branch to the two possible value states.

R :=
n⋃
i=1

(
{(dji , d

j+1
i ) | 1 ≤ j < i} ∪ {(dii, xi), (dii,¬xi), (xi, xi), (¬xi,¬xi)}

)
.

At last we define the assignment for the atoms p0i and p1i (for 1 ≤ i ≤ n),
that stand for “xi is assigned value 0 resp. 1”. The idea is that in any team
T ⊆ W , if xi ∈ T then T |= p1i and T 6|= p0i , and accordingly if ¬xi ∈ T then
T 6|= p1i and T |= p0i .

ξ(p1i ) := {x1,¬x1, . . . , xn,¬xn} − {¬xi}
ξ(p0i ) := {x1,¬x1, . . . , xn,¬xn} − {xi}
ξ(dji ) := {x1,¬x1, . . . , xn,¬xn}

The starting team T0 is the set of starting points of all components.

T0 := {d1i | 1 ≤ i ≤ n}.

We define the MDL formula inductively. Let us begin from the end, where
a “final” team consists of non-contradictory value states, e.g. {x1,¬x2, x3}.
Now the CNF has to be evaluated under the propositional assignment cor-
responding to such a team. By the properties of the assignment, (p1a 6 p0b)
is satisfied by a final team T iff xa ∈ T or ¬xb ∈ T , what means that the
assignment according to T satisfies (xa ∨ ¬xb). This shows how the clauses
of the QBF-VAL instance have to be transformed.

Now for the quantifiers of the QBF-VAL instance. In our example, a
formula 3α is satisfied by the initial team T0 = {d11, d12, d13} iff α is satisfied by



{x1, d22, d23} or by {¬x1, d22, d23} or by {x1,¬x1, d22, d23}. The latter team cannot
be “continued” to a final team and should be excluded. It is the only of the
three teams that does not satisfy p116p01. Therefore, 3((p116p01)∧α) is satisfied
by T0 iff it is satisfied on one of the first two above teams. This construction
can be used to simulate an existential quantifier in the QBF-VAL instance.
The construction for the universal quantifier is accordingly. This yields the
following inductive definition of the formulas δi.

δi :=


3((p1i 6 p0i ) ∧ δi+1) if i ≤ n odd,
2· (¬(p1i 6 p0i ) 6 δi+1) if i ≤ n even,∧m
i=1(l̂i1 6 l̂i2 6 l̂i3) if i = n+ 1.

where l̂ij = p1` if lij = x`, and l̂ij = p0` if lij = ¬x`.
Then we have that ϕ ∈ QBF-VAL if and only ofM, T0 |= δ1.

For an example suppose that ∃x1∀x2∃x3(x1 ∨ x2 ∨ x3) is a QBF-VAL
instance. The corresponding Kripke model is that of Figure 16, on which the
following must be checked.

{d11, d12, d13} |= 3((p11 6 p01) ∧ 2· (¬(p12 6 p02) 6 3((p13 6 p03) ∧ [p11 6 p02 6 p13]))).

The role of negation ¬ in modal dependence logic is different from that in
modal or temporal logics. This is a reason why negation and atomic negation
are dealt as different operations. Whereas for the other logics considered in
this survey, model checking for fragments with ¬ can be reduced to model
checking for other fragments without ¬—e.g. for modal logic model checking
for the {3,¬}-fragment can be reduced to model checking for the {3,2}-
fragment—this is not possible for modal dependence logic. Eventually, we
consider a fragment of modal dependence logic with atomic negation only.
The combination of 3 and the dependence atom makes model checking in-
tractable.

Theorem 8.3 [11] Let {3, dep(·)} ⊆ O ⊆ {3,2,∧,6,∨, ·, dep(·)} be a set
of modal dependence operators. Then MDL-MC(O) is NP-complete.

Proof. For the hardness proof, we will reduce 3SAT to MDL-MC(3, dep(·)).
Consider an instance ϕ =

∧m
i=1(li1∨li2∨li3) of 3CNF with variables x1, . . . , xn.

It is transformed to an MDL model checking instance as follows. The Kripke
modelMϕ = (W,R, ξ) has one state for each clause of ϕ, and one state for
each literal over x1, . . . , xn:

W := {Ci | 1 ≤ i ≤ m} ∪ {xi,¬xi | 1 ≤ i ≤ n}.



C1 C2 C3

p1, q

x1

p1

¬x1

p2, q

x2

p2

¬x2

p3, q

x3

p3

¬x3

Figure 17: Kripke model Mϕ for the CNF formula ϕ = (x1 ∨ ¬x2 ∨ x3) ∧
(¬x1 ∨ x2 ∨ ¬x3) ∧ (x1 ∨ x2 ∨ ¬x3).

Edges go from each clause states Ci to literal state lj, if literal lj appears in
clause Ci:

R := {(Ci, lj) | li appears in Cj}.
The assignment maps atom pi to states xi and ¬xi, and atom q to each xi:

ξ(pi) := {xi,¬xi} for 1 ≤ i ≤ n,

ξ(q) := {xi | 1 ≤ i ≤ n}.

Figure 17 shows an example of the constructed modelMϕ. Notice that, e.g.,
on team T = {x1,¬x1} the dependence atom dep(p1, q) is not satisfied, since
p1 is satisfied in both states of T , but q is satisfied only in one state. This
can be generalized to the observation, that a team T ⊆ {x1,¬x1, . . . , xn,¬xn}
satisfies dep(p1, . . . , pn, q) only if the team does not contain two states that
stand for contrary literals xi and ¬xi. Such a dep(p1, . . . , pn, q) satisfying
team clearly defines an assignment to the atoms x1,¬x1, . . . , xn,¬xn. If such
a satisfying team is a successor set of the clause states {C1, . . . , Cm}, then
every clause is satisfied by the corresponding assignment. Therefore, ϕ is
satisfiable if and only ifM, {C1, . . . , Cm} |= 3dep(p1, . . . , pn, q).

The upper bound NP follows from the fact that existential quantifiers in
the semantics of3 and ∨ can straightforwardly be “implemented” by guessing
the right teams.
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