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The 1980's was a golden period for Boolean circuit complexity lower bounds.

There were major breakthroughs. For example, Razborov's exponential size lower

bound for monotone Boolean circuits computing the Clique function and the

Razborov-Smolensky superpolynomial size lower bounds for constant-depth cir-

cuits with MODp gates for prime p. These results made researchers optimistic of

progress on big lower bound questions and complexity class separations. How-

ever, in the last two decades, this optimism gradually turned into despair. We

still do not know how to prove superpolynomial lower bounds for constant-depth

circuits with MOD6 gates for a function computable in exponential time.

Ryan Williams' exciting lower bound result of 2011, that nondeterministic

exponential time does not have polynomial-size unbounded fanin constant-depth

circuits with MODm gates for any composite m, has renewed optimism in the

area. The best part is that his approach is potentially applicable to other lower

bound questions.

In this wonderful article, Rahul Santhanam explores this theme of connections

between improved SAT algorithms and circuit lower bounds.
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Abstract

I discuss recent progress in developing and exploiting connections
between SAT algorithms and circuit lower bounds. The centrepiece
of the article is Williams' proof that NEXP 6⊆ ACC0, which proceeds
via a new algorithm for ACC0-SAT beating brute-force search. His
result exploits a formal connection from non-trivial SAT algorithms to
circuit lower bounds. I also discuss various connections in the reverse
direction, which have led to improved algorithms for k-SAT, Formula-
SAT and AC0-SAT, among other problems.

1 Introduction

Theoretical computer science su�ers from a dichotomy between the algo-
rithmic endeavour and the complexity-theoretic endeavour. Algorithmists
strive to design the most e�cient algorithms for problems of interest, while
complexity theorists investigate which problems are hard to solve, and why.
Algorithmists focus on concrete problems, while complexity theorists often
work in a more abstract framework, proving general theorems about com-
putation. Algorithmists use constructive methods, while the enterprise of
proving complexity lower bounds seems an inherently non-constructive one.

But is this dichotomy fundamental? At some level, algorithmists and
complexity theorists are studying two sides of the same question: which is
the most e�cient solution for a problem? A priori, one would imagine that a
deep understanding of the structure of a computational problem would assist
both in designing the most e�cient solution possible, as well as proving that
no more e�cient solution exists. In part because the theory of computation
is still at a fairly early stage in its development, and in part because the
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basic questions seem to be very di�cult, this has not often been the case so
far. The algorithms community and the complexity theory community have
pursued their research programs more or less independently.

Recent developments have the potential to change this, opening the pos-
sibility of greater interaction and accelerated progress in both areas. These
developments hint at a complicity between algorithms and lower bounds,
which is ironic in that these endeavours seem super�cially to be in opposi-
tion.

The most signi�cant such development is the recent work of Williams
[37, 38] proving that NEXP 6⊆ ACC0. This work has attracted a great deal
of interest, since lower bound breakthroughs are rare. Though the result is
interesting in itself, what is more interesting is the conceptual message of
Williams' work, which is that algorithms for Satis�ability (SAT) can be used
to prove lower bounds, and that there are strong connections between the
two endeavours.

In this article, I give a sampler of work in the past couple of decades
which shares this message. I make no claim that this is an exhaustive survey
of the connections between SAT algorithms and lower bounds. Rather, I aim
to give illustrations of the various connections that exist, and an indication
of what the most promising research directions might be. This is a very
actively growing area, and my hope is that this article could serve as a rough
�road-map� for researchers wishing to work in this area, or else as a quick
digest for those who are curious about the recent developments.

1.1 Historical Context

The connection between lower bounds and algorithms can be traced back to
the pioneering work of Yao [39] and Blum & Micali [8] on pseudo-random
generators. They showed how to construct cryptographic pseudo-random
generators based on strong average-case circuit lower bounds. Cryptographic
pseudo-random generators can be used to de�ne sub-exponential time algo-
rithms for problems in BPP, beating the trivial brute-force bound. Indeed,
this implication was explicitly noted in Yao's paper [39].

Yao's connection is in a sense a byproduct of a conceptual machinery de-
signed for cryptographic problems. In an in�uential paper, Nisan & Wigder-
son [28] adapted the notion of a pseudo-random generator to the context of
complexity theory, and gave tighter implications from circuit lower bounds to
pseudo-random generators, and vice versa. Since then, a sequence of papers
[23, 26, 20], have established progressively tighter and more re�ned versions of
these implications, and it is now known that circuit lower bounds for E (linear
exponential time) against a class C of circuits are more or less equivalent to
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pseudo-random generators which are resilient to statistical tests from C, for
essentially any natural class C of circuits. While pseudo-random generators
imply improved deterministic simulations for problems in BPP, the converse
is not the case. However, Kabanets & Impagliazzo [24] have shown that
sub-exponential time algorithms for the Polynomial Identity Testing (PIT)
problem actually imply circuit lower bounds against arithmetic circuits. A
weak converse of this result is known as well, showing a deep connection
between algorithms and circuit lower bounds in this setting.

Though these results in the theory of pseudo-randomness are fairly strong,
the connections haven't led to much progress either on lower bounds or on al-
gorithms. The reason is that the known algorithmic ideas for solving PIT fall
well short of having implications for pseudo-random generators, and hence
for lower bounds. We won't discuss the pseudo-randomness literature further
in this survey, but we note that it heavily in�uenced the formation of the
connections we will discuss both historically, as well as methodologically.

There are other areas of theoretical computer science where progress on
hardness results has gone hand-in-hand with new algorithms. This is the
case, for example, with the recent work on semi-de�nite programming algo-
rithms and the Unique Games conjecture [31], with the caveat that the notion
of hardness there is conditional, i.e., based on reductions from presumed hard
problems rather than on proven lower bounds. There is also the sophisticated
and ambitious Geometric Complexity Theory (GCT) approach of Mulmuley
& Sohoni [27] towards proving complexity lower bounds, which relies ulti-
mately on algorithmic conjectures. We do not discuss these other examples
of complicity between algorithms and lower bounds, but they do add to the
evidence that there is something fundamental about this phenomenon.

1.2 Plan of the Article

Following on a short section establishing relevant notation, there are three
main sections to this article discussing recent work, and a �nal section spec-
ulating on future research directions. The �rst section discusses a series of
papers by Paturi, Zane and others proving structural theorems about CNF
formulas which were then exploited both in an algorithmic context and to
prove lower bounds. These were the earliest papers showing connections
between exact algorithms for Satis�ability and circuit lower bounds. The
middle section discusses the breakthroughs of Williams, which demonstrate
and use a formal connection from SAT algorithms to lower bounds. The �nal
section discusses various subsequent works which exploit connections in the
reverse direction to give new and improved algorithms for variants of SAT
such as Formula-SAT and AC0-SAT.
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Throughout this article, I will favour heuristic arguments over precise
ones in cases where the former are more helpful in establishing intuition.

2 Preliminaries

I assume knowledge of the basic concepts of complexity theory. The book
by Arora and Barak [1] and the Complexity Zoo (which can be found at
http://qwiki.caltech.edu/wiki/ComplexityZoo) are good references.

I will be dealing with several variants of Satis�ability. For a positive inte-
ger k, k-SAT is the satis�ability problem for k-CNFs. CNF-SAT is the satis�-
ability problem for CNFs without any restriction on clause size. Formula-SAT
is the satis�ability problem for formulas over the De Morgan basis. Circuit-
SAT is the satis�ability problem for Boolean circuits. In general, given a
class C of circuits, C-SAT is the satis�ability problem for circuits in C. I
will refer simply to �SAT� when I wish to speak of the Satis�ability problem
generally rather than of a speci�c variant.

De�nition 1. A parametric problem p-L consists of a language L ⊆ {0, 1}∗
together with a parameter function n : {0, 1}∗ → N. Given a function t :
N × N → N, we say that p-L is solvable (resp. probabilistically solvable) in
time t if there is a deterministic (resp. probabilistic) algorithm which decides
L correctly and runs in time t(|x|, n(x)) on all inputs x.

I will only be considering parametric versions of SAT variants, and for
these problems there is a very natural notion of parameter: the number of
variables in the formula. For any SAT variant L, p-L is the parametric
problem corresponding to L.

The notion of �non-trivial� solvability of SAT can now be de�ned.

De�nition 2. A SAT variant L is said to have a non-trivial algorithm if
p-L is solvable in time t, where t(m,n) = O(poly(m)2n−ω(log(n))).

There is a natural notion of the "savings" an algorithm for SAT achieves
over brute-force search. Note that the brute-force search algorithm operates
in time 2npoly(m).

De�nition 3. Given a function c : N × N → N, a SAT variant L is said
to have savings (resp. probabilistic savings) c if p-L is solvable (resp. proba-
bilistically solvable) in time t, where t(m,n) = O(poly(m)2n−c(m,n)).

Thus a non-trivial algorithm achieves savings ω(log(n)), and NP = P i�
3-SAT has savings n−O(log(n)).
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For information on the best known upper bounds for variants of SAT,
refer to the survey by Dantsin and Hirsch [11]. Here I only discuss upper
bound techniques and results which connect in some way to lower bounds.

However, it might be useful to say something about the common algorith-
mic paradigms for SAT. There are essentially two commonly used paradigms:
the DLL paradigm and the local search paradigm. Algorithms belonging to
the DLL paradigm operate as follows. At each stage in the algorithm, a
�xed rule is used to select a variable in the formula and a value to assign to
it. With the variable set accordingly, the formula is simpli�ed according to
standard simpli�cation rules, and the algorithm proceeds to the next stage.
If at any stage, the formula simpli�es to �true�, the algorithm halts, since
a satisfying assignment has been found. If it simpli�es to �false�, the algo-
rithm �backtracks� by re-setting the most recently set variable to the other
possible value and recursing. Intuitively, a DLL procedure explores a tree of
candidate satisfying assignments, where nodes correspond to variables and
edges to values which can be assigned to a given variable, with leaves being
labelled �true� or �false�. The procedure aims to construct and explore this
tree in the most e�cient possible manner, and the number of leaves of the
tree gives a bound on the running time.

Algorithms belonging to the local search paradigm operate as follows. An
initial assignment is chosen, and if this assignment is not already satisfying,
the algorithm explores the space of assignments by changing the value of one
variable at a time, with the variable whose value is to be changed determined
by using some local measure of �progress�. This exploration continues for a
�xed number of steps, unless a satisfying assignment is found in the process.
�Re-starts� are also allowed, with the algorithm choosing a new assignment
and starting its exploration from scratch.

It seems as though other kinds of algorithmic ideas could potentially be
useful as well, but there has been little rigorous analysis of alternatives to
DLL and local search. One exception, jumping ahead, is Williams' algorithm
for ACC0-SAT [38], which uses dynamic programming.

3 Algorithms for k-SAT and Lower Bounds for

Depth-3 Circuits

To the best of my knowledge, the �rst instance in the literature where a
connection is explicitly drawn between upper bounds for SAT and circuit
lower bounds is a paper by Paturi, Pudlak and Zane [30] giving probabilistic
savings n/k for k-SAT. They also derandomize their algorithm to achieve
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savings n/2k. The inspiration for their algorithm and analysis is a lemma
which they call the "Satis�ability Coding Lemma". This lemma is then used
by them to give tight bounds for the circuit size of unbounded fan-in depth-3
circuits computing Parity.

Before describing their ideas, it might be good to step back a bit and give
some general intuition for why there are connections between non-trivial SAT
algorithms and circuit lower bounds. Suppose we wish to design a non-trivial
algorithm for C-SAT, where C is some natural class of circuits. For example,
k-SAT corresponds to C being the class of depth-2 circuits with bottom fan-
in bounded by k, and CNF-SAT corresponds to C being the class of depth-2
circuits. Intuitively, in order to design and analyze a non-trivial algorithm,
we require some understanding of the structure of instances. Suppose we
are able to isolate some special property that the instances to our problem
share, eg., some property common to all k-CNFs, then we might be able
to exploit this to achieve savings over brute-force search. The point is that
the same property also indicates some limitation of the circuit class C under
consideration, and by identifying a Boolean function f which does not have
this property, we can prove a lower bound against C. Thus, it is fundamental
to this connection between upper bounds and lower bounds that SAT is
a meta-algorithmic problem - the instances to the problem are themselves
computational objects, such as formulas or circuits.

Of course, the key to achieving good upper bounds as well as tight lower
bounds is identifying the right property. The Satis�ability Coding Lemma
shows that isolated solutions to k-CNFs have short descriptions on average,
and hence that there can't be too many of them. Here an isolated solution
is a satisfying assignment such that none of its neighbours in the Hamming
cube are satisfying assignments to the same formula. Note that the property
identi�ed in the Satis�ability Coding Lemma is rather specialized. Parity,
for example, has 2n−1 isolated solutions. Indeed Parity is in a sense the
function that violates the property in the Satis�ability Coding Lemma most
drastically, and intuitively this is why the Lemma is also useful in proving
tight circuit size lower bounds for Parity.

To describe the Lemma more precisely, we need some notation. Given
a formula φ on n variables and an integer j, 0 6 j 6 n, call a satisfying
assignment w to the variables of φ j-isolated if exactly j neighbours of y in
the Hamming cube are not satisfying assignments to φ. An isolated solution
is one that is n-isolated.

Lemma 4. [30] There are polynomial-time computable functions Enc and
Dec such that the following holds. Let φ be a k-CNF formula on n variables,
and w be a j-isolated solution to the variables, where 0 6 j 6 n. Then
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Dec(Enc(φ, π, w)) = w for any permutation π on [n], and moreover, on
average over uniformly random choice of π, |Enc(φ, π, w)| 6 n− n/k.

The intuition behind the proof of Lemma 4 is that isolated solutions lead
to many critical clauses. Given a solution w, a critical clause is one for which
exactly one of the literals is true. An isolated solution w has at least n critical
clauses, one for each assignment to a variable in w. If there were a variable
without a critical clause corresponding to it, then �ipping the value of that
variable would result in a satisfying assignment, contradicting the fact that
w is isolated.

Critical clauses can be used to save on variables when searching the space
of solutions. Let w be an isolated solution. Imagine a process where variables
are chosen in a random order and set in φ to their value in w, excepting when
there's a unit clause containing that variable. If there's a unit clause, the
variable is set to satisfy that clause. The point is that if variables are chosen
in random order, then for a critical clause of length k, there is a probability
at least 1/k that the variable (say x) corresponding to the true literal in that
clause is chosen last. In this case, the clause has already been reduced to a
unit clause by the time x is set, and therefore x is forced rather than having
to be set by w. So we don't need to store the value of x in w - in some sense,
it can be recovered from the formula itself. Since there at least n critical
clauses, on average at least n/k variables are forced in this process, and hence
an isolated solution can be compressed to only store values of variables that
are not forced, which saves n/k bits. In general, for a j-isolated solution, j/k
bits are saved, using the same argument. This essentially gives the proof of
Lemma 4.

It is easy to imagine how Lemma 4 can be used to achieve savings for
Unique-k-SAT, the version of k-SAT where there's a promise that the input
formula has either zero or one satisfying assignments. Clearly, any satisfying
assignment in such a case is isolated, and hence it can be compressed on
average. Intuitively, one just needs to search the compressed representations
to �nd a solution if one exists, and this reduces the size of the search space
to 2n−n/k from 2n.

A variation of this argument actually gives the same upper bound for k-
SAT without any restriction on number of satisfying assignments. Consider
a k-CNF φ. If there is a solution w which is j-isolated for large j, then it can
be compressed by Lemma 4 and hence can be found much more quickly than
brute-force search. If on the other hand, if all solutions are only j-isolated
for small j, then intuitively there are many solutions, which means that a
random solution is likely to work. In the paper by Paturi, Pudlak and Zane,
this tradeo� idea is exploited nicely to prove the following result.
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Theorem 5. [30] k-SAT has probabilistic savings n/k.

This was a huge improvement over the previous best known result for
general k, which only gave savings n/g(k) for some exponential function g.
Because I wished to highlight how the algorithmic result takes advantage
of the Satis�ability Coding Lemma, I focussed on the ideas in the analysis,
and wasn't speci�c about the actual algorithm used. In fact, the algorithm
designed by Paturi, Pudlak and Zane is a very natural and simple DLL
algorithm. The algorithm repeatedly does the following: set the variables in
φ in a random order to random values, except when there is a unit clause
and the current variable is forced. It is no coincidence that this algorithm is
similar to the encoding process used to prove Lemma 4!

Lemma 4 implies that there are at most 2n−n/k isolated solutions to a
k-CNF, and this can be used to give depth-3 circuit size lower bounds for
Parity, where the circuits have bottom fan-in bounded by k. The argument
is very simple: a depth-3 circuit with bottom fan-in bounded by k is an OR
of k-CNFs (the circuit can be assumed to have top gate OR without loss of
generality). Since Parity has 2n−1 isolated solutions but each k-CNF can only
have 2n−n/k isolated solutions, the circuit needs to have at least 2n/k−1 gates.
This bound is tight up to a constant factor. By a slightly more involved
argument, Paturi, Pudlak and Zane show the following for general depth-3
circuits computing Parity.

Theorem 6. [30] The depth-3 circuit size of Parity is θ(n1/42
√
n).

The upper bound in Theorem 6 is given by a very natural divide-and-
conquer strategy: break the variables up into blocks of size

√
n − log(n)/4,

compute the parity within each block, and then compute the parity of the
resulting values.

Paturi, Pudlak, Saks and Zane [29] showed an improvement to Theorem
5 by using Resolution in a pre-processing step before applying the Paturi-
Pudlak-Zane algorithm. Essentially, they try to increase the number of crit-
ical clauses in a formula. Note that if some variable in an isolated solution
occurs in more than one critical clause, then in a random permutation of
variables, the probability that it occurs last in some critical clause is larger
than 1/k, and so better compression of isolated solutions can be achieved
than in Lemma 4. They prove that the repeated use of Resolution to derive
all possible clauses of some bounded width (where the bound is o(log(n)))
from the original formula actually does yield bene�ts.

Theorem 7. [29] For each k > 3, there is a constant µk > 1 such that
k-SAT has probabilistic savings µkn/(k − 1).
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As with the Paturi-Pudlak-Zane result, the proof of this theorem gives
a structural characterization of k-CNFs in terms of the maximum possible
number of su�ciently isolated solutions. Here a su�ciently isolated solution
is one such that there is no other solution within a given distance of it. This
characterization was used to give the �rst depth-3 circuit size lower bound
of the form 2c

√
n for an explicit function, where c > 1.

Theorem 8. [29] There is an explicit Boolean function f in P such that f

does not have depth-3 circuits of size 2π
√
n/
√

6−
√
n/ log(log(n)).

A further example of a structural property of CNFs which is relevant both
to algorithmic questions and to lower bounds is the Sparsi�cation Lemma of
Impagliazzo, Paturi and Zane [22] which says that every k-CNF can be writ-
ten as the disjunction of 2εn linear-sized k-CNFs, for arbitrarily small ε > 0.
I do not discuss this further here because the Sparsi�cation Lemma does not
directly give an improved algorithm for a natural variant of SAT. However,
it has been quite in�uential in the structural theory of SAT, speci�cally with
regard to the robustness of the Exponential Time Hypothesis (ETH), which
states that 3-SAT is not solvable in time 2o(n). It is also useful in proving
certain kinds of depth-3 circuit lower bounds.

4 From Algorithms for Circuit-SAT to Circuit

Lower Bounds

In the previous section, I described an informal connection between SAT
algorithms and lower bounds - the Satis�ability Coding Lemma can be used
both to analyze a natural algorithm for k-SAT and to prove tight lower
bounds on the size of depth-3 circuits solving Parity. In this section, the
spotlight is on the recent breakthroughs of Ryan Williams [37, 38]. Williams
made two major contributions. First, he proved that non-trivial algorithms
for C-SAT imply that NEXP 6⊆ C for a wide range of natural circuit classes
C. This makes the connection between algorithms and circuit lower bounds
formal, and also generic, in the sense that it opens up the possibility of using
the algorithmic approach to prove a variety of new circuit lower bounds.
Second, he gave a �proof-of-concept� for this novel approach by using it to
show that NEXP 6⊆ ACC0, a brand-new circuit lower bound. This involved
designing and analyzing a non-trivial algorithm for ACC0-SAT.

To give intuition for the formal connection from SAT algorithms to circuit
lower bounds, I �rst describe a simpler version of the result, which has an
easy proof. Williams' connection is best understood as a re�nement of this
simpler result.
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Suppose we have a polynomial-time algorithm for SAT. Then it is easy to
see that EXP does not have polynomial-size circuits. If EXP ⊆ SIZE(poly),
then by the classical Karp-Lipton-Meyer theorem [25] relating non-uniform
inclusions of EXP to uniform collapses, EXP ⊆ Σp

2. Now, by our assumption
that SAT is in P, we have that NP = P, and hence that Σp

2 = P. But
these collapses together imply that EXP = P, which is a contradiction to the
deterministic time hierarchy theorem [18, 19]. Hence the assumption that
EXP ⊆ SIZE(poly) must be false.

This is an example of an indirect diagonalization argument. An impli-
cation is proved by showing that its negation implies a contradiction to a
hierarchy theorem. Such arguments have proven very useful in various con-
texts in structural complexity theory, including uniform lower bounds for the
permanent [2], time-space tradeo�s [13, 12], a Karp-Lipton style result for
NEXP [20] and separations against advice [6].

How far can this argument be stretched? If we try and use it to show
that EXP does not have subexpontial-size circuits, we run into the issue that
subexponential functions are not closed under composition. Indeed, if SAT
is in SUBEXP, we have that NP ⊆ SUBEXP, but this does not imply that
Σp

2 ⊆ SUBEXP. The best we can say is that ΣP
2 ⊆ NSUBEXP, by replacing

the inner co-nondeterministic polynomial-time part of a Σp
2 computation with

a deterministic subexponential-time computation. But this is not enough
to derive a contradiction to a hierarchy theorem, as all we get using the
additional assumption that EXP ⊆ SIZE(poly) is that EXP ⊆ NSUBEXP.

Perhaps we can salvage a superpolynomial size circuit lower bound for
NEXP instead? Indeed this is the case. As hinted before, the analogue of
the Karp-Lipton-Meyer theorem for NEXP is known - it was proved by Im-
pagliazzo, Kabanets and Wigderson [20]. Their argument is a clever indirect
one using pseudo-randomness in a critical way (though the statement of the
result itself does not mention randomness!). At this point, we just need the
result, not the proof technique. However, as we shall see, the Impagliazzo-
Kabanets-Wigderson proof technique plays an important role in the deriva-
tion of Williams' connection.

Let us now re-do the old argument to establish a circuit lower bound
from the weaker assumption that there is an algorithm for SAT running in
time 2n

o(1)
. The circuit lower bound we get from this assumption is that

NEXP 6⊆ SIZE(poly). Assume, to the contrary, that NEXP ⊆ SIZE(poly).
Then, by the Impagliazzo-Kabanets-Wigderson result, we have that NEXP =
Σp

2. Now, SAT in time 2n
o(1)

implies that NP ⊆ SUBEXP, and therefore that
Σp

2 ⊆ NSUBEXP. Combining this with the collapse for NEXP, we have that
NEXP ⊆ NSUBEXP, which is a contradiction to the non-deterministic time
hierarchy theorem [10, 35, 41, 14].
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The implication we have just proved is folklore. It wasn't given much
signi�cance because it does not represent a viable route to proving circuit
lower bounds - few believe that SAT can be solved in sub-exponential time.
Indeed, the Exponential-Time Hypothesis of Impagliazzo, Paturi and Zane
[22] stating that 3-SAT cannot be solved in time 2o(n) is widely believed.

On the surface, it doesn't look like there is much hope for getting an
implication for circuit lower bounds from a much weaker algorithmic as-
sumption for SAT, such as solvability in time 2n/2. Such a simulation seems
�fragile� in that it doesn't compose with polynomial-time reductions to give
a non-trivial simulation for all of NP, so it seems unlikely that the method
of indirect diagonalization can be used.

However, it turns out that is is still possible to use the method, and a key
factor in getting things to work is the parametric view of SAT, i.e., making
a distinction between the size of the instance and the number of variables.
Williams [37] proved the following theorem.

Theorem 9. [37] If there is a non-trivial algorithm for Circuit-SAT, then
NEXP 6⊆ SIZE(poly).

It is somewhat surprising that such a weak algorithmic assumption al-
ready yields lower bounds, and just the implication is interesting in itself.
But what makes it more interesting is the possibility of actually proving cir-
cuit lower bounds this way. As per the current state of knowledge, there is no
indication that Circuit-SAT is unlikely to have a non-trivial algorithm. After
all, we are only asking to save over brute-force search by a superpolynomial
factor in the running time. Indeed, as it later turned out, a more general
version of Theorem 9 yielded new lower bounds against ACC0.

The proof of Theorem 9 combines several known facts and ideas in a
clever way, including the completeness of the Succinct-3SAT problem for
NEXP, local checkability and the easy witness method [20].

The high-level idea is still to use indirect diagonalization. Consider an
arbitrary language L ∈ NTIME(2n), and assume that NEXP ⊆ SIZE(poly).
We use the presumed non-trivial algorithm for Circuit-SAT to solve L non-
deterministically in time 2n/ω(1). This contradicts the non-deterministic
time hierarchy theorem, which has as a consequence the existence of a lan-
guage L in NTIME(2n) but not in NTIME(2n/ω(1)).

Let x be an instance for the language L such that |x| = n. We �rst use the
NEXP-completeness of the Succinct-3SAT problem to reduce x in polynomial
time to a circuit C of size poly(n) with n+O(log(n)) input bits. C implicitly
encodes a 3CNF formula φC of size 2npoly(n) such that φC is satis�able i�
x ∈ L. By an implicit encoding here, we mean that given an index i into
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the binary representation of the formula φC , C outputs the i'th bit of the
representation of φC .

We can't apply the presumed Circuit-SAT algorithm directly to φC since
it is too large. Instead, we will work with the implicit encoding. The easy
witness method [20] shows that if NEXP ⊆ SIZE(poly), then every positive
Succinct-SAT instance has a succinct witness, meaning that there is a circuit
C ′ of size poly(n) and with n+O(log(n)) inputs such that C ′ is the implicit
encoding of a satisfying assignment to the formula encoded by the instance.
Applying this to our context, we have that there is a circuit C ′ of size poly(n)
which implicitly encodes a satisfying assignment to φC .

Now we can apply the guess-and-check paradigm: guess a circuit C ′ and
check that the assignment encoded by C ′ indeed satis�es φC . The check
that the assignment satis�es the formula can be done naturally in co-non-
deterministic polynomial time: Universally guess a clause of φC and check
using three calls to the circuit C ′ (each call recovering one bit of the succinct
witness) that the clause is indeed satis�ed by the assignment encoded by C ′.
The key point here is that this is a co-non-deterministic computation with
only n + O(log(n)) guess bits, since that many guess bits su�ce to identify
a clause of φC .

At this point, we use our algorithmic assumption and replace the co-non-
deterministic computation by a deterministic one. Using the non-trivial al-
gorithm for Circuit-SAT, we can implement the co-non-deterministic compu-
tation in time 2n/ω(1), since the co-non-deterministic computation is equiv-
alent to solving a Circuit-SAT instance of size poly(n) with parameter n +
O(log(n)). By putting together the guess of the circuit C ′ with this compu-
tation, we get a non-deterministic algorithm which decides correctly whether
x ∈ L in time 2n/ω(1) as desired, yielding a contradiction to the non-
deterministic hierarchy theorem.

Hopefully, this description clari�es how this argument is a much more
re�ned version of the arguments giving the simpler implications. The Karp-
Lipton-Meyer collapse appears here implicitly in our use of local checkability,
and we use a much tighter version of the non-deterministic time hierarchy
than is required for the simpler implications. The explicit use of the easy
witness method is a new ingredient, though it appeared indirectly in our
earlier argument since it underlies the Karp-Lipton-Meyer style collapse for
NEXP [20].

Though Theorem 9 is interesting, it hasn't yielded any lower bounds yet
as we do not know any non-trivial algorithms for Circuit-SAT. In the follow-
up paper [38] which showed NEXP 6⊆ ACC0, Williams signi�cantly generalized
Theorem 9 to apply to any circuit class satisfying some natural conditions.
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Theorem 10. [38] Let C be any circuit class which is closed under composi-
tion, contains AC0 and is contained in the class of general Boolean circuits. If
C-SAT has a non-trivial algorithm, then NEXP does not have polynomial-size
circuits from C.

Examples of classes C to which Theorem 10 applies include AC0, ACC0

and NC1. Thus it gives a generic approach towards proving circuit lower
bounds of interest.

Why doesn't the proof technique of Theorem 9 su�ce to establish Theo-
rem 10? The reason is that the reduction from x ∈ L to a circuit C doesn't
yield circuits that are structured enough. It is unclear whether the variant
of Succinct-SAT where the circuits encoding the exponential-length formula
are constant-depth circuits is still NEXP-complete. Williams gets around this
by using the assumptions that C-SAT has a non-trivial algorithm and that
NEXP has polynomial-size circuits from C a second time in a clever way.

More speci�cally, assume for the purpose of contradiction that NEXP has
polynomial-size circuits from C, and that C-SAT has a non-trivial algorithm.
Since C is a sub-class of Boolean circuits, we have that NEXP ⊆ SIZE(poly).
As before, we consider an arbitrary language L ∈ NTIME(2n) and reduce a
given instance x of L to a circuit C encoding an exponential-length CNF
such that the CNF is satis�able i� x ∈ L. The circuit C is not in gen-
eral an ACC0 circuit, and this is where the new idea comes in: we guess
an equivalent polynomial-size ACC0 circuit D and check during the co-non-
deterministic computation that D is in fact equivalent to C by using local
checkability together with the non-trivial algorithm for ACC0-SAT. We also
guess a polynomial-size ACC0 circuit D′ representing an �easy witness�. The
point is that since by assumption NEXP ⊆ ACC0, we also have that P ⊆ ACC0

and this implies that the circuits C and C ′ in the old proof have equivalent
ACC0 circuits D and D′. In the case of D, we actually need to check that
it is equivalent to C, but as mentioned, this can be done using the algorith-
mic assumption. The rest of the argument is the same as before - once we
have D and D′ which are ACC0 circuits, the co-non-deterministic computa-
tion checking if the easy witness satis�es the formula encoded by D can be
simulated deterministically in time 2n/ω(1) using the assumption of a non-
trivial algorithm for ACC0-SAT. Note that D and D′ are guessed together,
and the check of whether D is equivalent to C is performed before the check
of whether the assignment encoded by D′ satis�es the 3CNF encoded by D.
What we get in the end is a non-deterministic algorithm for deciding x which
runs in time 2n/ω(1), yielding a contradiction to the non-deterministic time
hierarchy as before.

While Theorem 10, it could have been the case that for some fundamental
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reason, this approach to new lower bounds was not viable. Williams' greatest
contribution was to give a �proof of concept� by using his approach to show
that NEXP 6⊆ ACC0. The biggest circuit class for which super-polynomial
size lower bounds were known for NEXP previously was AC0[p] - the class of
constant-depth circuits with modular counting gates where the modulus is
a prime. In fact, the lower bounds against AC0[p] are for explicit Boolean
functions in P [32, 36], however the full power of NEXP seems necessary to
achieve Williams' lower bound.

Williams' algorithm for ACC0-SAT is innovative even from the algorith-
mic viewpoint, as it uses algorithmic ideas which hadn't been explored before
in the context of algorithms for SAT. The �rst algorithm he came up with
was a rather involved one using a result of Coppersmith about matrix mul-
tiplication. Following on a suggestion of Bjorklund, he later came up with
a much simpler algorithm which uses dynamic programming, and this is the
one I discuss. The algorithm relies on a well-known structural property of
polynomial-size ACC0 circuits [40, 9, 2] - the fact that they can be simulated
by quasi-polynomial-size depth-2 SYM+ circuits. A SYM+ circuit is a circuit
where the bottom layer is composed only of ANDs of small fan-in and the
top gate is a symmetric gate. An additional property that is required is that
these depth-2 SYM+ circuits can be constructed e�ciently from the original
ACC0 circuits, and the top symmetric gate can be e�ciently evaluated.

The algorithm is not non-trivial in the sense we de�ned before, but using
the proof of Theorem 10, it does imply that NEXP ⊆ ACC0 since it runs in
time 2n−ω(log(n)) on circuits of size poly(n).

Theorem 11. [38] There is an algorithm for p-ACC0-SAT running in time

O(2n−n
Ω(1)

) when m = poly(n).

I now sketch the proof. Let C be an ACC0 circuit of size m 6 nc with n
inputs, where c is a constant. Let l < n be a parameter which will be �xed
later. First, convert C to an equivalent circuit C ′ of size m2l on t = n − l
variables by enumerating all possible assignments on the �rst l variables and
taking a big OR of the resulting 2l copies of C. Note that C ′ is still an ACC0

circuit. Let s = m2l. Next, convert C ′ to an equivalent depth-2 circuit C ′′ of
size s′ = slogk(s), where k is a constant. This can be done in time O(slogO(1)(s))
using a result of Allender and Gore [2].

The key lemma is that a SYM+ circuit of size s′ on t variables can be
evaluated on all possible truth assignments to the variables in time O((s′ +
2t)poly(t)). Note that this is superior to brute-force search in that the circuit
size and the 2t term are related additively rather than multiplicatively. This
gives a signi�cant advantage when the circuit size s′ is large, as it is in our
case.
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Given the key lemma, we are done by choosing l = nε for ε su�ciently
small. This is because, by the lemma, the SYM+ circuit can be evaluated on
all possible truth assignments in time O((2n

ε+kε+o(1)
+ 2n−n

ε
)poly(n)), which

is O(2n−n
ε
) when ε = 1/(k + 2).

To prove the key lemma, we use dynamic programming. Essentially, we
need to keep track of which AND gates evaluate to 1, in order to evaluate
the symmetric function. We initialize a look-up table which states for every
subset S of the input variables, the number f(S) of AND gates which have
precisely this subset as input. This initialization can be done in time O((s′+
2t)poly(t)). We then compute the zeta transform g of f using a standard
dynamic programming algorithm, where for any subset T , g(T ) is the sum
over all subsets S ⊆ T of f(T ). For each T , g(T ) is the number of AND
gates evaluating to 1 on the input which is 1 for precisely those input bits in
T . This gives all the information required to evaluate the symmetric gate on
that input. Thus we simultaneously obtain the answers of the circuit for all
candidate assignments in time O((s′ + 2t)poly(t)), proving the key lemma.

The Williams results raise the intriguing question of whether there are
inherent barriers to proving lower bounds in this fashion. Progress on lower
bounds using more traditional techniques has been halted by several barriers,
including the relativization barrier [7], the natural proofs barrier [33] and the
algebrization barrier [4]. None of these barriers seem to apply directly to the
approach via algorithms. This is not necessarily cause for hope, but it is
cause not to be pessimistic!

Of course, the viability of the approach depends on the existence of non-
trivial algorithms (or algorithms at least good enough to be able to apply
Theorem 10 for C-SAT, where C is a broader class of circuits than ACC0.
The jury is still out on this, but there's certainly a strong motivation now
to develop the structural theory of the exact complexity of SAT variants,
with the goal of understanding in which situations non-trivial algorithms are
likely to exist.

5 Improved SAT Algorithms using Lower Bound

Techniques

The results of Williams discussed in the previous section take advantage of
a formal connection from algorithms to lower bounds. It is natural to ask
whether there is a connection in the reverse direction - can lower bound
techniques be used to design and analyze SAT algorithms?

In Section 4, I described structural properties of CNFs which were useful
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both in designing algorithms and proving lower bounds. The results in this
section will have a slightly di�erent �avour. Standard lower bound techniques
will be used as inspiration to design SAT algorithms improving on brute-force
search. No formal connection will be established, but using lower bounds as
inspiration will have signi�cant payo�s nevertheless.

While k-SAT and CNF-SAT have been widely studied, and improvements
over brute-force search are known, until recently nothing non-trivial was
known for Formula-SAT, where there is no restriction on the depth of the
input formula. A year and a half ago, Santhanam [34] gave a simple deter-
ministic algorithm which achieved savings Ω(n3/m2) for Boolean formulae
over the de Morgan basis. Note that the savings is Ω(n) for linear-size for-
mulae. Santhanam also gave a di�erent algorithm which achieved savings
Ω(n2/(m log(n))) on formulae over an arbitrary basis.

Theorem 12. [34] Formula-SAT has savings Ω(n3/m2).

The same savings applies to the problem of counting the number of sat-
isfying assignments of a Boolean formula, using the same analysis.

The proof technique of Theorem 12 also yields a new lower bound conse-
quence.

Corollary 13. [34] Any linear-size sequence of formulae fails to compute
Parity correctly on at least a 1/2− 1/2Ω(n) fraction of inputs of length n, for
all but �nitely many n.

The algorithm underlying the proof of Theorem 12 is very simple indeed.
It is a DLL algorithm where the variable to be set is chosen as the most
frequently occurring variable in the current formula, and the value to which
it is set is chosen arbitrarily. This is a purely deterministic algorithm, however
the analysis is probabilistic and uses the popular random restriction lower
bound method as inspiration.

The random restriction method has been used to prove lower bounds in
various settings, including for constant-depth circuits and Boolean formulae
[3, 15, 16, 5, 17]. The basic idea is as follows. Suppose we are trying to
prove a lower bound against a class C of circuits. We look at what happens
when a circuit from the class is �hit� with a random restriction, meaning
that some of the variables are set in a speci�c way. For the present, we deal
with pure random restrictions. A pure random restriction with parameter p
is a probability distribution on partial assignments to inputs which sets each
variable independently to 1 with probability (1− p)/2, to 0 with probability
(1− p)/2 and leaves it unset with probability p. We try to argue that when
a pure random restriction is applied to the inputs of a circuit from C, the
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circuit �simpli�es� drastically. For constant-depth circuits, this is done using
the Switching Lemma [16], which says that the induced function is constant
with high probability, where the meaning of �high� depends on the choice of
p. For Boolean formulae over the de Morgan basis, this is done by analyze
the shrinkage exponent, which is the largest constant γ so that a formula of
size L shrinks to a formula of size O(pγL) under a restriction with parameter
p. Subbotovskaya [5] proved that the shrinkage exponent is at least 1.5,
and there was a sequence of papers obtaining improvements until Hastad
proved that the shrinkage exponent is exactly 2 [17]. Indeed, the current
best formula size lower bound of n3−O(1) for an explicit function is based on
Hastad's result.

How do random restrictions connect to DLL algorithms? There is a su-
per�cial similarity in that processes involve variables being set incrementally,
but in fact the connection goes deeper. In both processes, the notion of �sim-
pli�cation� is important. A DLL algorithm stops when the formula simpli�es
to �true� and backtracks when it simpli�es to �false�. The hope is that not
too much backtracking is required before �nding a satisfying assignment, if
one exists. In the case of random restrictions, simpli�cation of the formula is
key to the technique being usable to prove lower bounds. The more drastic
the simpli�cation, the more limited the circuit class is, in some sense, and
hence the better the lower bounds that can be shown. Quick simpli�cation
is also useful for DLL algorithms, as it means less backtracking and hence
better savings over brute-force search.

This intuition can be made precise in the analysis of the DLL algorithm
described above for FormulaSAT. We analyze a slightly di�erent kind of ran-
dom restriction - an adaptive restriction. In a pure restriction, the choice of
which variables to set is made uniformly at random, and so too which val-
ues to set variables to. In an adaptive restriction, while the choice of values
remains uniform, the choice of which variables to set is done adaptively de-
pending on which variables are already set and how this setting has simpli�ed
the formula. It makes sense to study adaptive restrictions where the variables
are set in the same order as they are set in the algorithm for FormulaSAT,
as this gives a natural correspondence between properties of the restriction
and e�ciency of the algorithm. Subbotovskaya's analysis of pure random
restrictions can be re�ned to show a concentration bound for simpli�cation
of formulae under such adaptive restrictions, and this concentration bound
can then be used to bound the running time of the DLL algorithm. Details
can be found in the paper [34].

As with the results in Section 4, the analytical technique exposes a struc-
tural property of small formulae - they have decision trees that are not too
large. This property can be exploited to prove Corollary 13, as it is easy
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to see that Parity requires decision trees of size 2n. Indeed, any leaf of a
decision tree that is not at depth n is uncorrelated with Parity, which is why
this argument gives a strong correlation lower bound.

The random restriction method and the DLL algorithmic paradigm have
both been the subject of much interest, so it is natural to wonder whether
the connection between them can be exploited further. Santhanam conjec-
tured that an analogous argument to his could yield an improved algorithm
for AC0-SAT, as well as new correlation bounds against AC0 circuits. There
has been a spate of recent work on this. Beame, Impagliazzo and Srinivasan
(manuscript) have considerably improved an old correlation bound of Aj-
tai [3], and designed the current best deterministic algorithm for AC0-SAT.
Independently, Impagliazzo, Matthews and Paturi [21] came up with a prob-
abilistic DLL algorithm for AC0-SAT achieving savings close to linear.

Theorem 14. [21] AC0-SAT has probabilistic savings Ω(n/(log(m/n))d−1).

The analysis of the Impagliazzo-Matthews-Paturi algorithm extends and
re�nes the Hastad switching lemma, and gives a new structural character-
ization of AC0 functions in terms of partitions of the Hamming cube into
subcubes where the function is constant. An optimal correlation bound for
Parity against constant-depth circuits follows from this characterization, in
a similar way to how Corollary 13 follows from Theorem 12.

Corollary 15. [21] AC0 circuits of size s fail to compute Parity correctly on
at least a 1/2− 1/2Ω(n/(log(m/n))d−1) fraction of inputs, for n large enough.

A similar correlation bound was obtained independently by Hastad (manuscript).
The above results exploit a connection between DLL algorithms and ran-

dom restrictions. Are there other lower bound techniques that can be har-
nessed algorithmically? This is an intriguing question about which little
is known. Santhanam's algorithm for formulae over an arbitrary basis can
be interpreted as utilizing a connection between the algorithmic paradigm of
memoization and the Neciporuk lower bound technique in complexity theory,
but I do not know of any other results along this direction.

6 Speculation

The recent papers on SAT algorithms and lower bounds have opened up what
promises to be a very fruitful area of research. There are many research
directions that look interesting, and in this section I will give a personal
selection.
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Perhaps the most exciting questions arise from the work of Williams. His
lower bound against ACC0 circuits is for a Boolean function in NEXP. The
lower bounds we know against weaker classes are all for functions in P. This
is a major discrepancy - can we prove a similar lower bound for a much
more explicit function? It seems that techniques somewhat di�erent from
Williams' will be required. Perhaps the limitations of the circuit class ACC0

which are exposed by his algorithm for ACC0-SAT could be exploited in a
more direct fashion, giving a more explicit bound.

Another very natural question is to derive lower bounds against larger
classes of circuits. This motivates the exploration of new algorithmic paradigms
for SAT, such as dynamic programming and graph sparsi�cation.

In terms of the reverse connection from lower bounds to algorithms, it
would be interesting to identify if there is any �algorithmic content� in other
common lower bound techniques such as the polynomial method and the
Khrapchenko method. New analyses for DLL algorithms have been found by
constructivizing the proofs that random restrictions simplify formulae, and
perhaps other lower bound proofs could be constructivized in a similar way.
In an optimistic scenario, this would lead to new algorithmic methods that
could be used elsewhere.

In the Boolean complexity world, the connections between algorithms
and lower bounds have only been studied so far in the context of the Satis�-
ability problem. There are various other NP-hard problems, such as Clique,
Colouring, Subset Sum etc. for which improved algorithms beating brute-
force search are an active topic of study. Could any of the lower bound
connections help in analyzing these problems? An immediate obstacle to
doing this is that none of these problems are inherently meta-algorithmic,
unlike SAT. But maybe the use of alternative notions of complexity, such as
graph complexity, could provide some insight here.

Connections analogous to those in the Boolean complexity setting could
exist in the arithmetic complexity setting as well. Speci�cally, it is quite
conceivable that algorithms for the Polynomial Identity Testing problem
marginally beating brute force search could lead to new arithmetic com-
plexity lower bounds, and this possibility ought to be explored further.

To reiterate, the complicity between lower bounds and algorithms could
provide a way around the obstacles to which complexity theorist, and to a
lesser extent algorithmists, are so accustomed. But the maps we can draw at
this stage are of necessity rough, unformed. All we can do is to believe that
the deep mysteries mask a deeper sense.
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