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Starting with this issue, I am taking over the editing of this column from Jacobo

Torán. First of all, I thank Jacobo for a wonderful job of running this column.

He has covered a wide range of topics in it, in articles that re�ect the current

trends and developments in the �eld. My aim is to continue in the direction set

by Jacobo and the previous editors.

My �rst column is on some results in noncommutative arithmetic circuit com-

plexity based on automata theory.

Noncommutative Arithmetic

Circuits meet Finite Automata

V. Arvind ∗

Abstract

Ideas and tools from automata theory have often played a signi�-
cant role in computational complexity. A prominent and well-known
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example is the �ne structure of NC1 which was discovered using au-
tomata theory and the classi�cation of �nite monoids [11].

In this article we discuss some recent applications of basic automata
theory to noncommutative arithmetic circuit complexity. The results
described here are from [6, 5, 2, 7].

1 Introduction

Let X = {x1, x2, · · · , xn} be a set of n noncommuting variables. The free
monoid X∗ consists of all words, i.e. monomials, over these variables. For
a �eld F, let F〈X〉 denote the free noncommutative polynomial ring over
F generated by the variables in X. Polynomials in the ring F〈X〉 are F-
linear combinations of words (or monomials) in X∗. For a given polynomial
f ∈ F〈X〉, the setM(f) = {m ∈ X∗ | coe�cient of m in f is nonzero} of its
nonzero monomials is a �nite subset of X∗.

An arithmetic circuit C over a �eld F and variables x1, x2, · · · , xn is a directed
acyclic graph (DAG) with each node of indegree zero labeled by a variable or a
scalar constant from F: the indegree 0 nodes are the input nodes of the circuit.
Each internal node of the DAG is of indegree two and is labeled by either
a + or a × (indicating that it is a plus gate or multiply gate, respectively).
A node of C is designated as the output gate. Each internal gate of the
arithmetic circuit computes a polynomial (by adding or multiplying its input
polynomials), where the polynomial computed at an input node is de�ned
to be its label. The polynomial computed by the circuit is the polynomial
computed at its output gate. An arithmetic circuit is a formula if the fan-out
of every gate is at most one.

An arithmetic circuit computes a polynomial in the commutative ring F[X]
when × is a commutative operation and the xi are commuting variables. In
noncommutative circuits, the xi are free noncommuting variables, and each
× gate in the circuit has a left and right child. The circuit then computes a
polynomial in the noncommutative ring F〈X〉.
Proving superpolynomial size lower bounds for commutative arithmetic cir-
cuits (or commutative arithmetic formulas) that compute �explicit� polyno-
mials such as the Permanent polynomial is an outstanding open question in
computational complexity. This problem has been well-studied for over four
decades (see e.g. [39, 37]). The best known superpolynomial lower bounds
are for depth-3 arithmetic circuits over �nite �elds [22, 24]. More recent
lower bound results for multilinear formulas can be found in [34].

In his seminal paper [33] Nisan �rst systematically studied lower bounds for



noncommutative computation. The focus of his study was noncommutative
arithmetic circuits, noncommutative arithmetic formulas and noncommuta-
tive algebraic branching programs.

De�nition 1.1. [33, 35] An Algebraic Branching Program (ABP) is a di-
rected acyclic graph with one vertex of in-degree zero, called the source, and
a vertex of out-degree zero, called the sink. The vertices of the graph are
partitioned into levels numbered 0, 1, · · · , d. Edges may only go from level i
to level i + 1 for i ∈ {0, · · · , d− 1}. The source is the only vertex at level 0
and the sink is the only vertex at level d. Each edge is labeled with a homoge-
neous linear form in the input variables. The size of the ABP is the number
of vertices.

Nisan's main result in [33], based on a rank argument, is that the noncom-
mutative permanent and the noncommutative determinant polynomials, in
the ring F〈x11, x12, . . . , xnn〉, require exponential size noncommutative alge-
braic branching programs. Proving superpolynomial size lower bounds for
noncommutative arithmetic circuits remains an open problem. The recent
paper of Hrubes, Wigderson, and Yehudayo� [26] o�ers interesting insights
into this problem.

Polynomial Identity Testing and Interpolation

Two fundamental algorithmic problems in the area of arithmetic circuits
are polynomial identity testing and polynomial interpolation (or polynomial
reconstruction). We focus on these problems for polynomials (given as ABPs
or circuits or by black-box access) in the noncommutative polynomial ring
F〈X〉.

Given a polynomial f in F〈X〉, either as an arithmetic circuit or by black-box
access, the Polynomial Identity Testing problem is to determine whether f is
identically zero. By black-box access to a polynomial f we mean that to each
variable xi we can assign a k× k matrix Mi over the �eld F (or an extension
of F) and query the black-box for the k × k matrix f(M1,M2, . . . ,Mn). We
assume that we can do this evaluation for any choice of matrices and for any
dimension k (of course k will be a factor in the running time).

We discuss why this notion of black-box access is appropriate. Now, we can
evaluate a polynomial f ∈ F〈X〉 over di�erent domains to get information
about the polynomial (or the domain). For instance, consider the �commu-
tator� polynomial xy− yx ∈ F〈x, y〉. If we evaluate this over a commutative



domain (like the �eld F) it is always zero. On the other hand, it is nonzero
in the domain of all 2× 2 matrices.

A natural question is, which noncommutative polynomials vanish on all k×k
matrices for a given k? The Amitsur-Levitzki theorem [3], a celebrated result
in algebra answers this question.

Theorem 1.2 (Amitsur-Levitzki). [3, 19] No nonzero polynomial in F〈X〉
of degree less than 2k vanishes on all k × k matrices. Furthermore, there
is (essentially) a unique degree 2k polynomial that vanishes on all k × k
matrices.

The Amitsur-Levitzki theorem justi�es our black-box access model which
allows evaluation of f on k × k matrices for any k.

Bogdanov and Wee [12] give a randomized algorithm whose running time is
polynomial in n and deg(f) for testing if f ∈ F〈X〉 is identically zero. Their
algorithm is a direct application of the Amitsur-Levitzki theorem. For, by
the Amitsur-Levitzki theorem it follows that a nonzero degree d polynomial
f cannot vanish on k × k matrices over F for k > d/2. The Schwartz-Zippel
lemma can now be applied to argue that f will not vanish on a random
assignment of k × k matrices (over F or a suitable extension �eld) to the
variables xi.

Raz and Shpilka [35] give a deterministic polynomial-time algorithm when
the noncommutative polynomial is input as an algebraic branching pro-
gram. Since noncommutative formulas can be e�ciently transformed into
algebraic branching programs (e.g. see [33]), this also yields a deterministic
polynomial-time identity testing algorithm for noncommutative formulas.

Given black-box access to a polynomial f ∈ F〈X〉, the Polynomial Interpo-
lation problem is to e�ciently reconstruct the polynomial f . If f is a sparse
polynomial the reconstruction algorithm can output f explicitly. Otherwise,
if f has a small formula, ABP or arithmetic circuit, the algorithm can be
required to output such a representation for f . Interpolation is essentially
like exact learning with membership queries (as in Angluin's model of exact
learning [4]).

2 Enter Automata

For a polynomial f ∈ F〈X〉 its monomial set M(f) is a set of words in
X∗. A new idea introduced in [6] is to design �nite automata that allow us



to distinguish between di�erent words in M(f) and, using the connection
between automata, monoids and matrix rings to evaluate the polynomial f
at suitably chosen matrices. This will allow us to design new polynomial
identity testing and interpolation algorithms.

We recall some automata theory (see, for example, [25]). Fix a �nite au-
tomaton A = (Q,Σ, δ, q0, qf ) which takes inputs in Σ∗, Σ is the alphabet, Q
is the set of states, δ : Q × Σ → Q is the transition function, and q0 and qf
are the initial and �nal states respectively (we only consider automata with
unique accepting states). For each letter b ∈ Σ, let δb : Q → Q be de�ned
by: δb(q) = δ(q, b). These functions generate a submonoid of the monoid of
all functions from Q to Q. This is the transition monoid of the automaton
A [38, page 55]. For each b ∈ Σ de�ne the following matrix Mb ∈ F|Q|×|Q|:

Mb(q, q
′) =

{
1 if δb(q) = q′,
0 otherwise.

Clearly,Mb is the adjacency matrix of the graph of δb. AsMb is a 0-1 matrix,
we can consider it as a matrix over any �eld F.
Now, for a string w = w1w2 · · ·wk ∈ Σ∗ we de�ne the matrix Mw in F|Q|×|Q|
to be the matrix product Mw1Mw2 · · ·Mwk

. If w is the empty string, de�ne
Mw to be the identity matrix of dimension |Q| × |Q|. Let δw denote the
natural extension of the transition function to w; if w is the empty string, δw
is simply the identity function. We have

Mw(q, q′) =

{
1 if δw(q) = q′,
0 otherwise.

(1)

Thus, Mw is also a matrix of zeros and ones for any string w. Also,
Mw(q0, qf ) = 1 if and only if w is accepted by the automaton A.

Running Automata on Noncommutative Polynomials

Let f ∈ F〈X〉 be a polynomial of degree bounded by d, where f is given by
black-box access. We can consider monomials in variables X = {x1, · · · , xn}
as strings over the alphabet {x1, x2, · · · , xn}.
Let A = (Q,X, δ, q0, qf ) be a �nite automaton over the alphabet X. We have
matrices Mxi

∈ F|Q|×|Q| as de�ned above. We are interested in the output
matrix obtained when each input xi to the polynomial f is replaced by the
matrix Mxi

. The output matrix of f on automaton A, denoted Mout, is the
matrix f(Mx1 , . . . ,Mxn).

If f is given by a circuit C (instead of black-box access), the circuit inputs
are Mxi

and Mout is the circuit output. Clearly, given the polynomial f



and automaton A, the matrix Mout can be computed in time polynomial in
n, size(A) and size(C) (if f given by a circuit C).

The matrix output Mout of C on A is determined completely by the polyno-
mial f computed by C; the structure of the circuit C is otherwise irrelevant.
In particular, the output is always 0 when f ≡ 0.

Suppose f(x1, · · · , xn) = cxj1 · · ·xjk , with a non-zero coe�cient c ∈ F.
Clearly, Mout = cMxj1

· · ·Mxjk
= cMw, where w = xj1 · · ·xjk . Thus, by

Equation 1 above, the matrix entry Mout(q0, qf ) is 0 when A rejects w, and c
when A accepts w. Now, suppose f =

∑t
i=1 cimi with t nonzero monomials,

where ci ∈ F\{0} andmi =
∏di

j=1 xij , where di ≤ d. Let wi denotes the string

representing monomial mi. Finally, let S
f
A = {i ∈ {1, · · · , t} | A accepts wi}.

Then, by linearity, we have

Theorem 2.1. [6] For any polynomial f ∈ F〈X〉 and any �nite automa-
ton A = (Q,X, δ, q0, qf ), the output Mout matrix of f on A is such that
Mout(q0, qf ) =

∑
i∈Sf

A
ci.

Now, suppose A is an automaton that accepts exactly one monomial among
all the nonzero monomials of f . Then Mout(q0, qf ) is the nonzero coe�cient
of the unique monomial accepted by A. More precisely, we have the following
corollary.

Corollary 2.2. [6] Given any arithmetic circuit C computing polynomial
f ∈ F〈X〉 and any �nite automaton A = (Q,X, δ, q0, qf ), then the output
Mout of C on A satis�es:

(1) If A rejects every string corresponding to a monomial in f , then
Mout(q0, qf ) = 0.

(2) If A accepts exactly one string corresponding to a monomial in f , then
Mout(q0, qf ) is the nonzero coe�cient of that monomial in f .

Moreover, Mout can be computed in time poly(|C|, |A|, n).

Another important corollary is the following.

Corollary 2.3. [6] Given any noncommutative arithmetic circuit C com-
puting a polynomial in F〈X〉, and any monomial m of degree dm, we can
compute the coe�cient of m in C in time poly(|C|, dm, n).

Proof. Apply Corollary 2.2 with A being any standard automaton that
accepts the string corresponding to monomial m and rejects every other



string. Clearly, A can be chosen so that A has a unique accepting state and
|A| = O(ndm).

Corollary 2.3 is unlikely to hold in the commutative ring F[x1, · · · , xn]. For,
in the commutative case, the coe�cient of the monomial x1 · · ·xn in the
polynomial

∏n
i=1(Σ

n
j=1Aijxj) is the permanent of A. Hence, computing the

coe�cient of x1 · · ·xn in this polynomial is #P-complete when F = Q.

Remark 2.4. Corollary 2.2 also yields an automata-theoretic proof of a
weaker form of the Amitsur-Levitzki theorem (Theorem 1.2). It implies that
all d×d matrices over the �eld F do not satisfy any nontrivial identity of de-
gree < d: Suppose f =

∑t
i=1 cimi ∈ F〈X〉 is a nonzero polynomial of degree

< d. Clearly, we can construct an automaton B with at most d states over
the alphabet X that accepts exactly one string, namely one nonzero mono-
mial, say m1, of f and rejects all the other strings over X. By Corollary 2.2,
the output matrix Mout of the polynomial f on B is non-zero which proves
the claim.

3 A noncommutative polynomial identity test

Building on the observations in the previous section, we now describe a
new polynomial identity test for noncommutative circuits based on �nite
automata and the Mulmuley-Mulmuley-Vazirani Isolation Lemma [32].

Theorem 3.1. [5] Let f ∈ F{x1, x2, · · · , xn} be a polynomial given by an
arithmetic circuit C of size m. Let d be an upper bound on the degree of f .
Then there is a randomized algorithm which runs in time poly(n,m, d) and
can test whether f ≡ 0.

Proof. Let [d] = {1, 2, · · · , d} and [n] = {1, 2, · · · , n}. Consider the set of
tuples U = [d]× [n]. Let v = xi1xi2 · · ·xit be a nonzero monomial of f . Then
the monomial can be identi�ed with the following subset Sv of U :

Sv = {(1, i1), (2, i2), · · · , (t, it)}

Let F denotes the family of subsets of U corresponding to the nonzero mono-
mials of f i.e,

F = {Sv | v is a nonzero monomial in f}

By the Isolation Lemma we know that if we assign random weights from [2dn]
to the elements of U , with probability at least 1/2, there is a unique minimum



weight set in F . Our aim will be to construct a family of small size automata
which are indexed by weights w ∈ [2nd2] and t ∈ [d], such that the automaton
Aw,t will precisely accept all the strings (corresponding to the monomials) v
of length t, such that the weight of Sv is w. Then from the Isolation Lemma
we will argue that the automaton corresponding to the minimum weight
will precisely accept only one string (monomial). Now for w ∈ [2nd2], and
t ∈ [d], we describe the construction of the automaton Aw,t = (Q,Σ, δ, q0, F )
as follows: Q = [d] × [2nd2] ∪ {(0, 0)}, Σ = {x1, x2, · · · , xn}, q0 = {(0, 0)}
and F = {(t, w)}. We de�ne the transition function δ : Q× Σ→ Q,

δ((i, V ), xj) = (i+ 1, V +W ),

where W is the random weight assign to (i + 1, j). Our automata family A
is simply,

A = {Aw,t | w ∈ [2nd2], t ∈ [d]}.
For each of the automata Aw,t ∈ A, we mimic the run of the automaton Aw,t
on the circuit C as described in Section 2. If the output matrix corresponding
to any of the automaton is nonzero, our algorithm declares f 6= 0, otherwise
declares f ≡ 0.

The correctness of the algorithm follows easily from the Isolation Lemma.
By the Isolation Lemma we know, on random assignment, a unique set S in
F gets the minimum weight wmin with probability at least 1/2. Let S cor-
responds to the monomial xi1xi2 · · · xi` . Then the automaton Awmin,` accepts
the string (monomial) xi1xi2 · · ·xi` . Furthermore, as no other set in F get
the same minimum weight, Awmin,` rejects all the other monomials. So the
(q0, qf ) entry of the output matrix Mout, that we get in running Awmin,` on
C is nonzero. Hence with probability at least 1/2, our algorithm correctly
decide that f is nonzero. The success probability can be boosted to any
constant by standard independent repetition of the same algorithm. Finally,
it is trivial to see that the algorithm always decides correctly if f ≡ 0.

4 Sparse Noncommutative Polynomials

De�nition 4.1. Let W ⊂ X∗ be a �nite subset of monomials and A be
a �nite collection of deterministic �nite automata over alphabet X. We say
that A is isolating for W if there exists a string w ∈ W and an automaton
A ∈ A such that A accepts w and rejects all w′ ∈ W \ {w}.
We say that A is an (m, s)-isolating family if A is isolating for every subset
W = {w1, · · · , ws} of s many strings in X∗, each of length at most m.



Fix parameters m, s ∈ N. We construct an (m, s) isolating family of au-
tomata A, where |A| and the size of each automaton in A is polynomially
bounded in m and s. Then, applying Corollary 2.2, we get deterministic
identity testing and interpolation algorithms in the sequel.

It is convenient to encode the variables xi in the alphabet {0, 1}. We do this
by encoding the variable xi by the string vi = 01i0, which is unary encoding
with delimiters. For a string w = xi1 . . . xik ∈ X∗, let nw denote the positive
integer represented by the binary numeral 1vi1 . . . vik . For each prime p and
each integer i ∈ {0, · · · , p − 1}, we can easily construct an automaton Ap,i
that accepts exactly those w such that nw ≡ i (mod p). Moreover, Ap,i can
be constructed so as to have polynomially many states and with exactly one
�nal state.

Our collection of automata A is just the set of Ap,i where p runs over the
�rst few polynomially many primes, and i ∈ {0, · · · , p − 1}. Formally, let
N denote (m + 2)

(
s
2

)
+ 1; A is the collection of Ap,i, where p runs over the

�rst N primes and i ∈ {0, · · · , p − 1}. Notice that, by the prime number
theorem, all the primes chosen above are bounded in value by N2, which is
clearly polynomial in m and s. Hence, |A| = poly(m, s), and each A ∈ A is
bounded in size by poly(m, s).

Lemma 4.2. The family of �nite automata A de�ned as above is an (m, s)-
isolating automata family.

Proof. Consider any set of s binary strings W of length at most m each.
By the construction of A, Ap,i ∈ A isolates W if and only if p does not
divide nwj

− nwk
for some j and all k 6= j, and nwj

≡ i (mod p). Clearly,
if p satis�es the �rst of these conditions, i can easily be chosen so that the
second condition is satis�ed. We will show that there is some prime among
the �rst N primes that does not divide P =

∏
j 6=k(nwj

− nwk
). This easily

follows from the fact that the number of distinct prime divisors of P is at
most log |P |, which is clearly bounded by (m+ 2)

(
s
2

)
= N − 1.

Clearly, this (m, s)-isolating family A can be constructed in time poly(m, s).

We �rst describe the deterministic identity test for sparse polynomials. Let
the polynomial f ∈ F〈X〉 be given by black-box access. Let t be an upper
bound on the number of monomials in f , and d be an upper bound on the
degree of f . Using the above construction, we �rst compute a family A of
automata such that A is isolating for any setW with at most t strings. Now,
for each A ∈ A, the algorithm computes the output Mout of the polynomial
f on automaton A. If the output matrix is such that Mout(q0, qf ) 6= 0 for



some automaton A, the algorithm concludes that f is not identically zero;
otherwise, the algorithm concludes that f is identically zero.

The correctness follows from Corollary 2.2. The matrices Mxi
for each A

(all of which are of size poly(d, n, t)) can be constructed in polynomial time.
Hence, the entire algorithm runs in time poly(d, n, t). We have proved the
following theorem.

Theorem 4.3. [6] Given as input a black-box noncommutative polynomial
f ∈ F〈X〉 of degree d with at most t monomials, we can check, in time
poly(d, n, t), if f is identically zero. In particular, if f is polynomially sparse
and of polynomial degree, then we have a deterministic polynomial-time iden-
tity testing algorithm.

We can easily generalize the above identity test to a deterministic interpo-
lation algorithm that, given black-box access to a sparse noncommutative
polynomial f ∈ F〈X〉 makes matrix-valued queries to f and reconstructs the
entire polynomial. The idea is to �nd all the nonzero monomials by a pre�x
search using the (m, s)-isolating automata family. Let A denote the (m, s)-
isolating automata family {Ap,i} as constructed before. For each A ∈ A let
[A]w denote the automaton that accepts those strings that are accepted by
A and in addition, contain w as a pre�x. Let [A]w denote the collection of
all such [A]w for A ∈ A. Clearly, w is a pre�x of a nonzero monomial in f
if and only if for some automaton in [A]w ∈ [A]w the output of [A]w on f is
nonzero. Using this property we can easily design a polynomial-time pre�x
search to �nd all the t monomials of f along with their coe�cients in time
polynomial in n, d and t. We have sketched the proof of the following:

Theorem 4.4. [6] Given as input a black-box noncommutative polynomial
f ∈ F〈X〉 of degree at most d and with at most t monomials, we can com-
pute all the monomials of f , and their coe�cients, in deterministic time
poly(d, n, t). In particular, if f is a polynomially sparse polynomial of poly-
nomial degree, then f can be reconstructed in deterministic polynomial time.

5 Interpolation of Algebraic Branching Pro-

grams

Let f ∈ F〈X〉 be a noncommutative polynomial given by black-box access
such that f has an ABP of size s. The interpolation problem we consider in
this section is to compute an ABP for the polynomial f in time polynomial



in n and s. Now, if we have an algorithm for this interpolation problem we
can compute an ABP P for f in time polynomial in n and s. We can then
invoke the Raz-Shpilka deterministic identity test to check if P ≡ 0 in poly-
nomial time. Hence, polynomial identity testing for black-box noncommu-
tative ABPs is deterministic polynomial-time reducible to the interpolation
problem.

This interpolation problem is closely related to exact learning of DFAs in
Angluin's model (of membership and equivalence queries) [4], and its gen-
eralization by Beimel at al [10] to exact learning of multiplicity automata
in polynomial time. Since noncommutative ABPs are easily seen to be a re-
stricted form of multiplicity automata, it follows from [10]'s results that ABPs
can be exactly learnt in polynomial time with membership and equivalence
queries. More precisely, let f =

∑
w∈A fww be noncommutative polynomial

of degree d in F{x1, x2, . . . , xn}, where fw ∈ F. In the model of [10], a mem-
bership query is a monomial w and the teacher returns its coe�cient fw in
the polynomial f . An equivalence query made by the learning algorithm is
a hypothesis ABP P computing a polynomial h =

∑
w∈A hww, and if h 6= f

the teacher gives a counterexample monomial m such that hm 6= fm. The
algorithm of [10] will output a multiplicity automaton (which actually gives
an ABP).

It turns out that we can combine the algorithm of [10] with results explained
in Section 4 to give a randomized polynomial-time algorithm for interpolat-
ing black-box ABPs. This is because we can simulate a membership query
with black-box access to the ABP in deterministic polynomial time, and
we can simulate an equivalence query with black-box access to the ABP in
randomized polynomial time.

Theorem 5.1. [6] The interpolation problem for black-box ABPs has a ran-
domized polynomial-time algorithm.

Proof. It su�ces to show how membership and equivalence queries can be
simulated e�ciently with black-box access to the polynomial f which has
an ABP of size s. Then the entire exact learning algorithm of [10] can be
simulated in polynomial time with black-box access to f . Given a monomial
m as a membership query, by Corollary 2.3 we can compute its coe�cient fm
in the polynomial f in deterministic polynomial time. Hence, membership
queries are easy to simulate.

Now consider an equivalence query where the hypothesis polynomial h is
given by an ABP P . We need to test if P computes the polynomial f and,
if not, �nd a monomial m such that hm 6= fm. Testing if h 6= f is reducible



to polynomial identity testing for black-box ABPs which can be done in
randomized polynomial time by substituting randomly picked s× s matrices
over F for the variables xi using the algorithm in [12].

With black-box access to f , we can compute a monomial m such that hm 6=
fm in randomized polynomial time. We apply ideas from the noncommutative
polynomial identity test of Theorem 3.1. Suppose f is of degree d (which is
bounded above by the ABP size s). For 1 ≤ i ≤ n and 1 ≤ j ≤ d we pick
independent random weights wij ∈ [2dn], where wij is the weight assigned
to variable xi when it occurs in position j of a monomial. The weight of a
monomial is de�ned as the sum of weights of the variables occurring in it. By
the isolation lemma [32], if h 6= f then with probability at least 1/2 there is
a unique minimum weight monomial m such that hm 6= fm. We can design a
DFA Aw,i,j of size polynomial in n and d such that Aw,i,j accepts a monomial
m i� m has weight w and xi occurs in the jth position. Suppose w0 ∈ [2d2n]
is the weight of the unique minimum weight monomial. By Theorem 2.1 we
can evaluate f − h, using the black-box for f , on each automaton Aw,i,j for
w ∈ [2d2n], 1 ≤ i ≤ n, and 1 ≤ j ≤ d. Conditioned on the event that
there is a unique monomial m of weight w0, for the choice w = w0, the
evaluation of f−h on Aw0,i,j will output fm−hm if xi is the j

th variable in m
and 0 otherwise. Hence, we can compute m in randomized polynomial time,
implying that equivalence queries can be simulated in randomized polynomial
time.

It is an open question if interpolation (or even polynomial identity testing)
of black-box ABPs can be done in deterministic polynomial time. Suppose
we assume a stronger black-box access in which the polynomial f is given by
an unknown ABP P , and the interpolating algorithm is allowed to evaluate
P at any speci�c gate for a matrix-valued input. In this case there is a
deterministic polynomial time interpolation algorithm [6].

6 Hadamard Product of Polynomials

We know that the intersection of two regular languages is regular. Is there
an analogue of the �intersection� of two noncommutative polynomials f, g ∈
F〈X〉? We de�ne the Hadamard product of polynomials which turns out to
be a useful operation.

De�nition 6.1. Let f, g ∈ F〈X〉 where X = {x1, x2, · · · , xn}. The
Hadamard product of f and g, denoted f ◦ g, is the polynomial f ◦ g =



∑
m ambmm, where f =

∑
m amm and g =

∑
m bmm, where the sums index

over monomials m.

Analogous to regular languages being closed under intersection, the noncom-
mutative branching program complexity of the Hadamard product f ◦ g is
upper bounded by the product of the branching program sizes for f and g.
There is an NC2 algorithm (in fact a logspace algorithm) for computing an
ABP for f ◦ g.
We apply this to polynomial identity testing. Raz and Shpilka [35] have
shown that polynomial identity testing of noncommutative ABPs is in deter-
ministic polynomial time. A simple divide and conquer yields a deterministic
NC3 algorithm. What then is the precise complexity of the problem? For
noncommutative ABPs over rationals, using the hadamard product we can
put it in NC2. In fact, the problem is logspace equivalent to the problem of
testing if a rational square matrix is singular [2].

Let f, g ∈ F〈X〉 where X = {x1, x2, · · · , xn}. Clearly, M(f ◦ g) = M(f) ∩
M(g). Our de�nition is also motivated by the Hadamard product A ◦ B of
two m× n matrices A and B. We recall the following bound for the rank of
the Hadamard product.

Proposition 6.2. Let A and B be m × n matrices over a �eld F. Then
rank(A ◦B) ≤ rank(A) rank(B).

It is known [33] that the ABP complexity B(f) of a polynomial f ∈ F〈X〉
is closely connected with the ranks of the communication matrices Mk(f),
where Mk(f) has its rows indexed by degree k monomials and columns by
degree d − k monomials and the (m,m′)th entry of Mk(f) is the coe�cient
of mm′ in f . Nisan showed that B(f) =

∑
k rank(Mk(f)). Indeed, Nisan's

result and the above proposition easily imply the following bound on the
ABP complexity of f ◦ g.

Lemma 6.3. For f, g ∈ F〈X〉 we have B(f ◦ g) ≤ B(f)B(g).

Proof. By Nisan's result B(f ◦ g) =
∑

k rank(Mk(f ◦ g)). The above
proposition implies∑

k

rank(Mk(f ◦ g)) ≤
∑
k

rank(Mk(f)) rank(Mk(g))

≤ (
∑
k

rank(Mk(f))(
∑
k

rank(Mk(g))).

We now show an algorithmic version of this upper bound.



Theorem 6.4. [2] Let P and Q be two given ABP's computing polynomials f
and g in F〈x1, x2, . . . , xn〉, respectively. Then there is a deterministic logspace
(hence NC2) algorithm that will output an ABP R for the polynomial f ◦ g
such that the size of R is a constant multiple of the product of the sizes of P
and Q.

Proof. Let fi and gi denote the ith homogeneous parts of f and g respec-
tively. Then f =

∑d
i=0 fi and g =

∑d
i=0 gi. Since the Hadamard product is

distributive over addition and fi◦gj = 0 for i 6= j we have f ◦g =
∑d

i=0 fi◦gi.
Thus, we can assume that both P and Q are homogeneous ABP's of degree
d. Otherwise, we can easily construct an ABP to compute fi ◦ gi separately
for each i and put them together. Note that we can easily compute ABPs
for fi and gi in logspace given as input the ABPs for f and g.

By allowing parallel edges between nodes of P and Q we can assume that
the labels associated with each edge in an ABP is either 0 or αxi for some
variable xi and scalar α ∈ F. Let s1 and s2 bound the number of nodes in
each layer of P and Q respectively. Denote the jth node in layer i by 〈i, j〉
for ABPs P and Q. Now we describe the construction of the ABP R for
computing the polynomial f ◦ g. Each layer i, 1 ≤ i ≤ d of R will have s1 · s2

nodes, with node labeled 〈i, a, b〉 corresponding to the node 〈i, a〉 of P and
the node 〈i, b〉 of Q. We can assume there is an edge from every node in layer
i to every node in layer i+ 1 for both ABPs. For, if there is no such edge we
can always include it with label 0.

In the new ABP R we put an edge from 〈i, a, b〉 to 〈i+1, c, e〉 with label αβxt
if and only if there is an edge from node 〈i, a〉 to 〈i+1, c〉 with label αxt in P
and an edge from 〈i, b〉 to 〈i+1, e〉 with label βxt in ABP Q. Let 〈0, a, b〉 and
〈d, c, e〉 denote the source and the sink nodes of ABP R, where 〈0, a〉, 〈0, b〉
are the source nodes of P and Q, and 〈d, c〉, 〈d, e〉 are the sink nodes of P and
Q respectively. It is easy to see that ABP R can be computed in deterministic
logspace. Let h〈i,a,b〉 denote the polynomial computed at node 〈i, a, b〉 of ABP
R. Similarly, let f〈i,a〉 and g〈i,b〉 denote the polynomials computed at node
〈i, a〉 of P and node 〈i, b〉 of Q. We can easily check that h〈i,a,b〉 = f〈i,a〉 ◦ g〈i,b〉
by an induction argument on the number of layers in the ABPs. It follows
from this inductive argument that the ABP R computes the polynomial f ◦g
at its sink node. The bound on the size of R also follows easily.

Applying the above theorem we can improve the NC3 upper bound for iden-
tity testing of noncommutative ABPs over rationals.

Theorem 6.5. [2] The problem of polynomial identity testing for noncom-
mutative algebraic branching programs over Q is in NC2.



Proof. Let P be the given ABP computing f ∈ Q〈X〉. We apply the
construction of Theorem 6.4 to compute a polynomial sized ABP R for the
Hadamard product f ◦f (i.e. of f with itself). Notice that f ◦f is nonzero i�
f is nonzero. Now, we crucially use the fact that f ◦ f is a polynomial whose
nonzero coe�cients are all positive. Hence, f ◦ f is nonzero i� it evaluates to
nonzero on the all 1's input. The problem thus boils down to checking if R
evaluates to nonzero on the all 1's input.

By Theorem 6.4, the ABP R for polynomial f ◦ f is computable in deter-
ministic logspace, given as input an ABP for f . Furthermore, evaluating
the ABP R on the all 1's input can be easily converted to iterated integer
matrix multiplication (one matrix for each layer of the ABP), and checking
if R evaluates to nonzero can be done by checking if a speci�c entry of the
product matrix is nonzero. It is well known that computing the iterated
integer matrix product is in NC2 which completes the proof.

With a more careful argument we can show that the problem is, in fact,
logspace equivalent to testing if a rational matrix is singular.

Can we give a similar tight complexity characterization for identity testing
of noncommutative ABPs over �nite �elds?

We note that identity testing noncommutative ABPs over any �eld is hard
for NL by a reduction from directed graph reachability. Let (G, s, t) be a
reachability instance. Without loss of generality, we assume that G is a
layered directed acyclic graph. The graph G de�nes an ABP with source s
and sink t as follows: label each edge e in G with a distinct variable xe and
for each absent edge put the label 0. The polynomial computed by the ABP
is nonzero if and only if there is a directed s-t path in G.

Theorem 6.6. [2] The problem of polynomial identity testing for noncom-
mutative algebraic branching programs over any �eld is hard for NL.

7 The Noncommutative Determinant

We consider polynomials over an arbitrary �eld F (for the algorithmic results
F is either rational numbers or a �nite �eld). The main result of this section
is that if there is a polynomial-time algorithm to compute the 2n×2n Cayley
determinant over inputs from MS(F) for S = c ·n2 (for a suitable constant c)
then there is a polynomial-time algorithm to compute the n× n permanent
over F.
Throughout this section let X denote {xij | 1 ≤ i, j ≤ 2n}, and Y denote



{yij | 1 ≤ i, j ≤ n}. Our aim is to show that if there is a polynomial-time
algorithm for computing Cdet2n(X) where xij takes values in MS(F) then
there is a polynomial-time algorithm that computes Cpermn(Y ) where yij
takes values in F.
The 2n × 2n determinant has 2n! many signed monomials of degree 2n of
the form x1,σ(1)x2,σ(2) · · ·x2n,σ(2n) for σ ∈ S2n. We will identify n! of these
monomials, all of which have the same sign. More precisely, we will design a
small ABP with which we will be able to pick out these n! monomials of the
same sign.

We now de�ne these n! many permutations from S2n which have the same
sign and the corresponding monomials of Cdet2n that can be picked out by
a small ABP.

De�nition 7.1. Let n ∈ N. For each permutation π ∈ Sn, we de�ne a
permutation ρ(π) in S2n, called the interleaving of π, as follows:

ρ(π)(i) =

{
π( i+1

2
), if i is odd,

n+ π( i
2
), if i is even.

That is, the elements ρ(π)(1), ρ(π)(2), · · · , ρ(π)(2n) are simply π(1), (n +
π(1)), π(2), (n+ π(2)), · · · , π(n), (n+ π(n)).

Lemma 7.2. The sign of the permutation ρ(π) is independent of π. More
precisely, for every π ∈ Sn, we have sgn(ρ(π)) = sgn(ρ(1n)), where 1n denotes
the identity permutation in Sn.

Proof. For each π ∈ Sn we can de�ne the permutation π2 ∈ S2n as π2(i) =
π(i) for 1 ≤ i ≤ n and π2(n + j) = n + π(j) for 1 ≤ j ≤ n. It is easy to
verify that sgn(π2) = sgn(π)2 = 1 for every π ∈ Sn. To see this we write
π2 as a product of disjoint cycles and notice that every cycle occurs an even
number of times. Furthermore, we can check that ρ(π) = ρ(1n)π2, where we
evaluate products of permutations from left to right. Hence it follows that
sgn(ρ(π)) = sgn(ρ(1n))sgn(π2) = sgn(ρ(1n)).

We will denote by ρ0 the permutation ρ(1n), where 1n denotes the identity
permutation in Sn.

For σ ∈ S2n, we will denote by mσ the monomial x1,σ(1)x2,σ(2) · · ·x2n,σ(2n) ∈
X∗. There is an ABP that �lters out all monomials not of the form mρ(π)

from among the mσ.

Lemma 7.3. There is an ABP P of size O(n2) and width n that computes a
homogeneous polynomial F ∈ F〈X〉 of degree 2n such that for any σ, τ ∈ S2n,



F (mσ) = 1 if σ = ρ(π) for some π ∈ Sn, and 0 otherwise. Moreover, the
ABP P can be constructed in time poly(n).

Proof. The ABP is essentially a �nite automaton over the alphabet X with
the following properties: for input monomials of the form mσ it accepts only
those monomials that are of the form mρ(π). Further, for input monomials of
the form mσ,τ it accepts only those monomials of the form m12n,τ . We give
the formal description of this ABP P below.

The ABP P contains 2n + 1 layers, labelled {0, 1, . . . , 2n}. For each even
i ∈ {0, 1, . . . , 2n}, there is exactly one node qi at level i; for each odd i ∈
{0, 1, . . . , 2n}, there are n nodes pi,1, pi,2, . . . , pi,n at level i. We now describe
the edges of P : for each even i ∈ {0, 1, . . . , 2n − 2} and j ∈ [n], there is
an edge from qi to pi+1,j labelled xi+1,j; for each odd i ∈ {0, 1, . . . , 2n} and
j ∈ [n], there is an edge from pi,j to qi+1 labelled xi+1,n+j.

Before we proceed we need one more analogy to a well-known closure property
in formal language theory, namely, that the intersection of a context-free lan-
guage with a regular language is context-free. We show something similar for
noncommutative polynomials, where the analogue of context-free languages
is noncommutative circuits.

Theorem 7.4. [2] Let Z = {z1, z2, . . . , zm} be a set of noncommuting vari-
ables. Given a noncommutative circuit of size S ′ for a polynomial f ∈ F〈Z〉
and an ABP of size S for a homogeneous polynomial g ∈ F〈Z〉, we can
e�ciently compute a noncommutative circuit of size poly(S ′, S) for f ◦ g.

Proof. We present the proof given in [7]. Let P be the ABP of size
S, with nodes named {1, 2, . . . , S}, computing the homogeneous polynomial
g ∈ F〈Z〉, where the source node of P is 1 and the sink node is S. We describe
a polynomial-time algorithm for constructing n S×S matrices A1, A2, . . . , An
over F such that f ◦ g = f(A1z1, A2z2, . . . , Anzn)(1, S).

De�ne the matrices A1, A2, . . . , An ∈ MS(F) as follows: Ai(k, l) is the coef-
�cient of the variable zi in the linear form labelling the edge that goes from
vertex k to vertex l; if there is no such edge, the entry Ai(k, l) = 0. For any
monomial m = zi1zi2 · · · zid ∈ Zd, let Am denote the matrix Ai1Ai2 · · ·Aid .



We see that

f(A1z1, A2z2, . . . , Anzn) =
∑

i1,i2,...,id∈[n]

f(zi1zi2 · · · zid)(Ai1zi1)(Ai2zi2) · · · (Aidzid)

=
∑

i1,i2,...,id∈[n]

f(zi1zi2 · · · zid)(Ai1Ai2 · · ·Aid)(zi1zi2 · · · zid)

=
∑
m∈Zd

f(m)Amm.

Note that the coe�cient g(m) of a monomial m = zi1zi2 · · · zid in
g is just Am(1, S) =

∑
k1,k2,...,kd−1∈[S]

∏d
j=1Aij (kj−1, kj), where k0 =

1 and kd = S. Putting the above observations together, we
see that f(A1z1, A2z2, . . . , Anzn)(1, S) =

∑
m∈Zd f(m)Am(1, S)m =∑

m∈Zd f(m)g(m)m = f ◦ g. Since the entries of the matrices A1, A2, . . . , An
can be read o� from the labels of P , it can be seen that A1, A2, . . . , An can
be computed in polynomial time given the ABP P .

Now, given a noncommutative circuit of size S ′ for f ∈ F〈Z〉 and an ABP
of size S for g ∈ F〈Z〉, by applying the above construction we can e�ciently
compute a noncommutative circuit of size poly(S ′, S) for f ◦ g.

We are now ready to prove that if there is a small noncommutative arith-
metic circuit that computes the Cayley determinant polynomial, then there
is a small noncommutative arithmetic circuit that computes the Cayley per-
manent polynomial.

Theorem 7.5. [7] For any n ∈ N, if there is a circuit C of size s computing
Cdet2n(X), then there is a circuit C ′ of size polynomial in s and n that
computes Cpermn(Y ).

Proof. Assuming the existence of the circuit C as stated above, by Theo-
rem 7.4, there is a noncommutative arithmetic circuit C ′′ of size poly(s, n)
that computes the polynomial F ′′ = Cdet2n ◦ F , where F is the polynomial
referred to in Lemma 7.3. For any monomial m, if m 6= mσ for any σ ∈ S2n,
then Cdet2n(m) = 0 and hence, in this case, F ′′(m) = 0; moreover, for
m = mσ, we have F (m) = 1 if σ = ρ(π) for some π ∈ Sn, and 0 otherwise.
Hence, we see that

F ′′(X) =
∑
π∈Sn

sgn(ρ(π))mρ(π) = sgn(ρ0)

(∑
π∈Sn

mρ(π)

)

where the last equality follows from Lemma 7.2.



Let C ′ be the circuit obtained from C ′′ by substituting xij with y 1+i
2
,j if i is

odd and j ∈ [n], and by 1 if i is even or j /∈ [n], and by multiplying the output
of the resulting circuit by sgn(ρ0). Let F

′ denote the polynomial computed
by C ′. Then, we have

F ′(X) =
∑
π∈Sn

m′ρ(π)

where m′ρ(π) denotes the monomial obtained from mρ(π) after the substi-
tution. It can be checked that for any π ∈ Sn, the monomial m′ρ(π) =
y1,π(1)y2,π(2) · · · yn,π(n). Hence, the polynomial F ′ computed by C ′ in indeed
Cpermn(Y ). It is easily seen that the size of C ′ is poly(s, n).

8 Bibiographic Notes

Polynomial identity testing (PIT) is a well-studied algorithmic problem, both
when the input polynomial f is given as a circuit and when it is given via
black-box access that allows the evaluation of the polynomial f at any point
in F′n for a �eld extension F′ of F. The problem is in randomized polynomial
time [17, 40, 36, 1], and most of these algorithms work even in the black-box
setting, as long as |F| is suitably larger than deg(f). It is a major challenge to
obtain deterministic polynomial time algorithms even for restricted versions
of the problem. The results of Kabanets and Impagliazzo [27] show that
the problem is as hard as proving superpolynomial circuit lower bounds.
Indeed, the problem remains open even for depth-3 arithmetic circuits with
an unbounded + gate as output [18, 30].

As shown by Nisan [33], it can be easier to prove lower bounds for noncommu-
tative algebraic computation. Nisan has shown exponential size lower bounds
for noncommutative formulas (and noncommutative algebraic branching pro-
grams) that compute the noncommutative permanent or determinant poly-
nomials. Chien and Sinclair, in [15], explore the problem for other noncom-
mutative algebras. They re�ne Nisan's rank argument to show exponential
size lower bounds for formulas computing the permanent or determinant over
the algebra of 2× 2 matrices over F and several other examples.

Raz and Shpilka [35] have shown that for noncommutative formulas (and
algebraic branching programs) there is a deterministic polynomial-time al-
gorithm for polynomial identity testing. For noncommutative circuits [12]
show using the Amitsur-Levitzki theorem that identity testing for polyno-
mial degree noncommutative circuits is in randomized polynomial time. It
is open whether there is a similar algorithm for unrestricted degree circuits.



Sparse polynomial identity testing and polynomial interpolation problems in
the setting of commuting variables (i.e. for polynomials in the commutative
ring F[x1, x2, . . . , xn]) have been studied over several years [21, 11, 23, 13, 29].

An important motivation for studying the noncommutative determinant is
an approach to designing randomized approximation algorithms for the 0−1
permanent by designing good unbiased estimators based on the determinant.
This approach has a long history starting with [20, 28]. Of speci�c inter-
est are the works of Barvinok [9], Chien, Rasmussen, and Sinclair [16], and
Moore and Russell [31]. Barvinok [9] de�nes a variant of the noncommuta-
tive determinant called the symmetrized determinant and shows that given
inputs from a constant dimensional matrix algebra, the symmetrized deter-
minant over these inputs can be evaluated in polynomial time. He uses these
to de�ne a series of algorithms that he conjectures might yield progressively
better randomized approximation algorithms for the (commutative) perma-
nent. Chien, Rasmussen, and Sinclair [16] show that e�cient algorithms
to compute the determinant over Cli�ord algebras of polynomial dimension
would yield e�cient approximation algorithms for the permanent. Moore
and Russell [31] provide evidence that Barvinok's approach might not work,
but their results also imply that computing the symmetrized or standard
noncommutative determinant over polynomial dimensional matrix algebras
would give a good estimator for the permanent. The recent results in [7, 14]
show that the noncommutative determinant is, for most noncommutative
algebras, as hard as computing the permanent.
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