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Abstract—The secret-key capacity of a quantum broad-
cast channel NA→BE is the information theoretic limit at
which two parties A and B can generate shared keys per
use of the channel that are kept secret from an eavesdrop-
per E, while A and B may also have unlimited classical
communication over an insecure, but authenticated, public
channel. Since light is fundamentally quantum, ultimate
limits on secret-key generation over an optical channel
must be treated quantum-mechanically. The most powerful
passive eavesdropper for a lossy bosonic channel is one who
collects all the photons that do not reach the intended
receiver, could store all such collected light over many
channel uses (i.e., over the duration of the entire protocol)
perfectly in a quantum memory, and make an arbitrary
collective quantum measurement on her memory. For a key
to be secure, E must have vanishingly small information
about the key. In this paper, we propose three new
protocols for the lossy bosonic channel, which are secure
to the most general passive quantum eavesdropper. One of
the explicit protocols we propose—inspired by a classical
proposal by Maurer [1]—is readily implementable with
standard optical technology, and can generate secret keys
for any amount of channel loss. We also propose a well-
informed conjecture on the ultimate secret-key capacity
of the lossy bosonic channel, and compare the secret-key
rates of one-way and two-way protocols.

The Private capacity (Cp) of a discrete memoryless
classical broadcast channel PY Z|X (X = Alice, Y =
Bob and Z = Eve) is the maximum rate at which
Alice can send data reliably to Bob while leaking
asymptotically zero information to Eve in the limit of
communicating over many channel uses. The private
capacity of a classical broadcast channel PY Z|X can
be expressed exactly in terms of entropic quantities
involving the channel’s inputs and outputs [2], [3], and
there are explicit error-correcting strategies known that
achieve the private capacity [4]. A similar statement
could be made for the private capacity of a quantum
broadcast channel NA→BE , although the expression for

private capacity for a general quantum channel requires
a regularization over channel uses [5], [6]. Recently,
explicit codes were found that in principle could achieve
the private capacity of a quantum channel [7]. The secret
key capacity (Cs) of a (classical or quantum) broadcast
channel on the other hand is less well understood. We
define the (one-way) secret-key capacity is defined as
the maximum rate at which Alice and Bob can generate
a shared secret key using the (classical or quantum)
broadcast channel (one way) with unlimited classical
communication over a two-way authenticated public
channel. It is clear that Cs ≥ Cp, since one way to
generate a shared secret key is for Alice to generate a
random bit string locally and send it privately to Bob.
Lower and upper bounds on the secret-key capacity are
known for classical and quantum channels. However,
an exact information theoretic characterization of the
secret-key capacity for a general channel still eludes us,
even for classical channels. The secret-key capacity is
however exactly known for a few classical channels.

In this paper, we explore the secret-key capacity,
and explicit key-generation protocols, of the single-
mode lossy bosonic channel Nη with transmissivity η ∈
(0, 1]—such as an optical fiber or a finite-aperture-size
diffraction-limited free-space optical channel—where the
eavesdropper is assumed to be able to collect all the pho-
tons that do not reach Bob, and to have arbitrarily power-
ful quantum (memory and measurement) resources. This
is a channel whose private capacity is exactly known,
and is equal to zero when the channel loss is higher
than 3 dB (η < 1/2) [8]. The secret-key capacity on the
other hand is not known, but is positive for any amount
of channel loss [9], [10]. Finally, one may also define
a two-way secret-key capacity C

(2)
s as the maximum

secret-key generation rate permissible when a (classical
or quantum) broadcast channel is used in both directions,



with the assistance of a two-way insecure authenticated
public channel. For a classical broadcast channel, a lower
bound for C(2)

s was recently proposed [11]. Not much is
known about C(2)

s for quantum broadcast channels, even
for simple quantum channel instantiations. However,
key-generation protocols have recently been proposed for
the two-way lossy bosonic channel [12], [13], which can
achieve a non-zero secret-key rate for any channel loss.

The highlights of our main accomplishments in this
paper are summarized below:

1. A key generation protocol with one-way laser-
light optical and two-way public communication: We
propose a new secret-key-generation protocol for the
lossy bosonic channel Nη, and show that it can generate
shared secret keys at any amount of channel loss. When
the channel loss is greater than 3 dB (η < 1/2),
Eve has a better channel from Alice than what Bob
has. The two-way public discussion helps give Alice
and Bob an edge over Eve. Our protocol is inspired
by a key-generation protocol proposed by Maurer for
the binary-symmetric classical broadcast channel [1].
The protocol starts with Alice preparing a stream of
binary-phase shift keyed (BPSK) coherent state pulses,
chosen randomly from {|α〉, | − α〉}, and sending them
to Bob over the lossy channel (see Fig. 1). Bob receives
coherent states

{
|√η α〉, | − √η α〉

}
, where η ∈ (0, 1]

is the channel’s power transmissivity. Bob then makes
a balanced homodyne detection measurement, followed
by a binary hard decision. He then adds to it modulo
2 a locally generated binary-valued random variable V ,
and sends it over the public channel. Alice retrieves V
(the shared secret key) by another modulo-2 addition
and a classical decoder. We show that, even if Eve is
allowed to collect all the photons that do not reach Bob,
and receive Bob’s transmission on the public channel,
Alice and Bob can generate shared keys securely at a
rate given by, C(BPSK,hom)

s = 1 − h(ε) − h
(

1+κ
2

)
+

h

(
1+
√

1−4ε(1−ε)(1−κ2)

2

)
, where h(·) is the binary en-

tropy function, ε = 1
2erfc(

√
2ηn̄) and κ = e−2(1−η)n̄.

The key rates are plotted in Fig. 2. Our protocol can be
readily extended to Alice using an M -ary PSK alphabet{
|αej2πk/M 〉

}
, 0 ≤ k ≤ M − 1, Bob using heterodyne

detection, and adding V—chosen uniformly at random
in {0, 1, . . . ,M − 1}—modulo M to the hard-decision
heterodyne output, which he broadcasts over the public
channel. The key rate of this M -ary PSK protocol will
be higher than the BPSK protocol, and can be calculated
following the same method illustrated in [18].

Fig. 1. A schematic diagram of our key generation protocol over the
lossy optical channel, which uses one-way quantum communication
and a two-way insecure, but authenticated, public classical channel.

A couple of things to note about the above result are
as follows:

(a) First exact secret-key capacity evaluation of a
quantum channel with a constrained transceiver: Under
simple, and implementable, structural constraints on Al-
ice’s transmitter and Bob’s receiver, we exactly computed
the secret-key capacity of the lossy bosonic channel. We
first characterized the achievable rate versus loss perfor-
mance of our protocol using [5]. We then evaluated an
upper bound to the achievable secret key rate under the
structural assumptions that the transmitter uses binary-
phase laser-light modulation and that Bob uses an ideal
homodyne detection measurement, using the intrinsic
information [16]. We showed that the achievable rate
exactly matches the upper bound, thereby showing it
cannot be exceeded by any other protocol operating with
the same transceiver structural constraints.

(b) Ease of implementation of our protocol: Our
protocol does not need non-classical or entangled optical
states (unlike Shapiro’s two-way quantum-illumination
protocol [13] and Pirandola et al.’s two-way proto-
col [12]), but it can still beat the most general passive
quantum eavesdropping. We need a BPSK laser transmit-
ter, near-unity detection-efficiency homodyne detection
(which is fairly standard), and a good binary code
for a symmetric error channel (for the reverse clas-
sical communication). Assuming Alice uses an ideal
laser transmitter with 100 ps (10 GHz) binary phase
modulated pulses with roughly 0.08 photons per pulse,
and while Bob uses a LO-shot-noise-limited homodyne
detection measurement, our protocol can generate shared
secret keys at a rate of roughly 1 Mbps at an end-



to-end channel loss of ∼ 27 dB (≈ 135 km of 0.2
dB/km telecom fiber). Garcia-Patron and Cerf [9], and
Pirandola et al. [10] proposed a less-explicitly defined
strategy which uses an entangled two-mode squeezed
vacuum transmitter and homodyne detection. However,
that strategy can be implemented on the lossy bosonic
channel using coherent states generated from a Gaussian
distribution and public communication. The key rate of
this reverse-reconciliation strategy is shown in Fig. 2.

2. A key generation protocol with two-way optical
communication: We propose an explicit implementable
protocol that uses the optical channel in both directions,
but does not make use of the two-way public channel.
This protocol uses laser-light BPSK modulation (Alice),
homodyne detection (Bob), and phase-matched local-
oscillator lasers at both Alice’s and Bob’s stations (for
applying phase-space displacement operations, D̂(α)). It
is similar in spirit to the one-way protocol in Fig. 1,
except that Bob, instead of making a measurement,
‘adds’ V by a coherent amplitude translation and uses
the optical channel for sending the quantum state back
to Alice. We find that the achievable key rate—secure
against the general passive quantum eavesdropper—is
non zero for channel transmissivities η > 1/3. This is in-
triguing since key extraction purely by using the one-way
wiretap-channel protocol (which also doesn’t use public
communication)—even when using the channel in both
directions—cannot generate secret keys for η < 1/2 [8].

3. A key generation protocol with one-way
entangled-light transmission and two-way public
communication: We propose a (not-so-practical yet)
protocol that uses a bipartite temporal-mode-entangled
optical state in a hybrid single-photon-polarization
coherent-state qubit state given by C[|1〉H|α〉A′

+|1〉V|−
α〉A′

] at Alice’s end. Alice sends the optical modes
(A′) on the lossy channel to Bob, and Bob makes a
collective measurement over many channel uses using a
joint-detection receiver (JDR). The achievable key rate
for this protocol exceeds that of the one-way protocol,
and is given by: CBPSK−entangled

s = h
(
[1 + e−2n̄]/2

)
−

h
(
[1 + e−2(1−η)n̄]/2

)
.

4. Conjecture on the secret-key capacity: Finally,
we conjecture that the secret-key capacity of the lossy
bosonic channel Nη is given by Cs = ln(1/(1 − η)).
The reverse coherent information of a quantum chan-
nel is known to be an achievable secret key distilla-
tion rate [5]. The reverse coherent information for the
lossy bosonic channel NA→BE was found by Pirandola
et al., and is given by ER(NA→BE) = ln(1/(1 −
η)) [10]. An upper bound on the distillable secret key

Fig. 2. Secret key generation rate as a function of channel’s
transmissivity η. One-way private capacities, used for key generation,
multiplied by 2 for fair comparison with two-way protocols.

rate from (ρABE)⊗n was found by Christandl et al.
in terms of the intrinsic information, I(A;B↓E) ≡
infΛE→E′ I(A;B|E′) [16]. We evaluated a potentially
loose upper bound I(A;B|E) for Nη under i.i.d.
coherent-state transmissions from a Gaussian ensemble,
and found it to equal maxn̄ [g(n̄)− g((1− η)n̄)] =
ln(1/(1− η)), which matches the achievable rate. How-
ever, the analysis in Ref. [16] was done for finite
dimensional channels, whereas the unconstrained optical
channel (no structural assumptions on the transmitter,
receiver and protocol) is infinite dimensional. Further-
more, it is not clear whether an alternative (non i.i.d.,
non-classical) transmission strategy might increase the
intrinsic information upper bound.

The secret-key rates of all the above protocols and
the conjectured secret-key capacity of the lossy bosonic
channel are plotted in Fig. 2. As expected, the rates of
all the BPSK protocols go to 1 bit (2 bit per round for
one-way private protocols) at η = 1. For details, see [18].

CONCLUSIONS

The information-theoretic limits on the rate of secret-
key generation over a noisy channel (either classical
or quantum), with unlimited public discussion are not
known for general channels. We proposed new key-
generation protocols for the lossy bosonic channel (such
as lossy fiber or a diffraction-limited free-space optical
channel), two of which can be implemented easily. We
also presented a conjecture, backed by strong evidence,
on the ultimate secret key capacity of the lossy bosonic
channel. In continuing work, we are investigating explicit
protocols, codes, and structured realizations of optical
receivers to achieve the ultimate secret-key capacity. We
are also pursuing extensions of the security analysis of
our one- and two-way protocols to prove security under
general coherent-attacks by an active eavesdropper.
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