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Abstract. In this paper we consider the conditions under which a given ensemble of two-qubit states can
be optimally distinguished by local operations and classical communication (LOCC). For the well-known
task of minimum error discrimination, it is shown that almost all two-qubit ensembles consisting of three
pure states cannot be optimally discriminated using LOCC. This is quite surprising considering that any
two pure states can be distinguished optimally by LOCC. Special attention is given to ensembles that
lack entanglement, and we prove an easy sufficient condition for when a set of product states cannot be
optimally distinguished by LOCC, thus providing new examples of the phenomenon known as “non-locality
without entanglement”. We then consider an example of N parties who each share the same state but who
are ignorant of its identity. For any finite N , we prove that optimal identification of the state cannot be
achieved by LOCC; however as N → ∞, LOCC can indeed discriminate the states optimally. This is the
first result of its kind. Finally, we turn to the task of unambiguous discrimination and derive new lower
bounds on the LOCC inconclusive probability for symmetric states.

1 Introduction

The ability to distinguish one physical configuration
from another lies at the heart of information theory.
When quantum systems are used for information trans-
mission, information is encoded into quantum states, and
the processing of this information in a faithful manner
requires the encoded states to be distinguishable from
one another. Hence, a fundamental topic in quantum in-
formation is the problem of state discrimination, which
investigates how well ensembles of quantum states can be
distinguished under various physical conditions.

One important operational setting in which questions
of distinguishability emerge is the so-called “distant lab”
scenario. Here, some multiparty quantum state is dis-
tributed to spatially separated quantum labs, and the
various parties use local measurements combined with
classical communication to try and identify their state.
This operational setting is also known as LOCC (Lo-
cal Operations and Classical Communication), and the
study of LOCC operations has played an important role
in developing our understanding of not only quantum
information processing, but also the nature of quantum
entanglement itself.

As LOCC operations are just a subset of all possible
physical operations, certain state discrimination tasks be-
come impossible when the distant lab constraint is im-
posed. This limitation allows for the implementation of
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important information-theoretic objectives such as data
hiding [7, 8] and secret sharing [9, 10]. However, in gen-
eral it is a very challenging problem to decide whether
or not a particular set of states can be optimally distin-
guished using LOCC. This is due to the complex struc-
ture of a general LOCC operation in which, due to the
global communication, the choice of local measurement
by one party at one particular round can depend on the
measurement outcomes of all the other parties in previ-
ous rounds. It is thus helpful to visualize a general LOCC
operation as a tree where each node indicates a particular
choice of local measurement and each branch corresponds
to a particular sequence of measurement outcomes. De-
ciding whether or not a certain discrimination task is
feasible by LOCC therefore amounts to a consideration
of all such possible trees.

Despite its complexity, partial progress has been made
in understanding the capabilities and limitations of
LOCC state discrimination. Most notably is the discov-
ery that any two orthogonal pure states can be perfectly
distinguished using LOCC [11]. A similar result holds
for pairs of non-orthogonal states in which again, LOCC
can obtain the optimal discrimination success probability
that is physically possible [15]. This finding is particu-
larly relevant to the current paper since we will show
that, in sharp contrast, almost all triples of two qubit
states cannot be optimally distinguished by LOCC.

The fact that non-LOCC measurements can distin-
guish certain ensembles better than any LOCC strat-
egy may not be overly surprising when the ensemble



states possess entanglement. This is because entangle-
ment embodies some non-local property of two or more
system, and thus some global measurement across all sys-
tems is needed in general to discriminate among entan-
gled states. However, rather surprisingly, certain ensem-
bles exist that consist of unentangled states that cannot
be distinguished optimally using LOCC [13]. This phe-
nomenon is often called “nonlocality without entangle-
ment,” and it essentially reflects that fact that nonlo-
cality and entanglement are two different physical prop-
erties of multipartite quantum systems. Understanding
the difference between the two is an important problem in
quantum information science, and thus a main objective
of this paper is to study, in particular, LOCC discrimi-
nation of product state ensembles.

2 Summary of our results

In this paper, we begin by returning to the problem of
perfect state discrimination among two-qubit orthogonal
states. While our primary interest is LOCC discrimina-
tion, we will also consider discrimination by the more
general class of separable operations (SEP). The two-
qubit perfect discrimination problem has been solved for
almost all types of ensembles1. Our first contribution
is that we solve the missing piece of perfect discrimi-
nation between one pure state and one mixed state by
either LOCC and SEP (Theorem 1 below). Interestingly,
we find that SEP is more powerful than LOCC in the
sense certain ensembles are distinguishable by SEP but
not LOCC. This result is important since it allows us to
construct in examples of one pure product state and one
separable mixed state that cannot be optimally distin-
guished by LOCC. Thus, we obtain a class of two state
ensembles which demonstrate nonlocality without entan-
glement.

We next move on to investigate the problem of
minimum-error discrimination between linearly indepen-
dent states. However, we prove that this seemingly
more general problem actually reduces to the problem
of perfect discrimination of orthogonal states (Proposi-
tion 2). This reduction therefore allows us to apply the
results of perfect discrimination among orthogonal to-
ward the problem of minimum-error discrimination of
non-orthogonal (linearly independent) states. Conse-
quently, we obtain our main result that almost any three
states cannot be optimally distinguished by LOCC. More
precisely, if we select a three state ensemble by randomly
choosing our states, then almost surely will LOCC fail
to discriminate them as well as a more general global
measurement. We also considers two-qubit product state
ensembles. We are able to obtain a simple necessary con-
dition for when three product states cannot be distin-

1See Sec 3 of the attached full paper for detailed discussion.

guished optimally by LOCC (Theorem 5). With this re-
sult, new examples of nonlocality without entanglement
can easily be constructed.

We also move beyond two qubit ensembles and con-
sider the optimal discrimination of three symmetric N -
qubit states. The specific ensemble we analyze is the
N -copy generalization of the celebrated double trine en-
semble [19]. We prove that for any finite N , the ensemble
cannot be optimally discriminated using N -party LOCC.
However as N → ∞, we give a protocol that indeed
achieves optimal (perfect) discrimination (For proof, see
Sec. IV.B.2 of the attached supplemental material). This
is quite different from the N -copy discrimination among
two possible states which can always be accomplished
optimally by LOCC [21].

Finally, we consider the task of unambiguous discrim-
ination by LOCC. We obtain new upper bounds on the
success probability obtainable by any LOCC measure-
ment for a set of linearly independent symmetric states
as a function of the a priori state probabilities (Theo-
rem 6). With this simple examples can be found when
LOCC is insufficient for optimal unambiguous discrimi-
nation.

3 Technical Propositions and Theorems

Our first result regards the condition for perfect distin-
guishability by separable and LOCC operations between
two bipartite quantum states, one pure and the other
mixed.

Theorem 1 Let {|Ψ〉, ρ} be two orthogonal states
(tr[|Ψ〉〈Ψ|ρ] = 0) on {|Φ〉}⊥. Then |Ψ〉 and ρ are per-
fectly distinguishable if and only if i) the matrix ΨΦ−1

has two antiparallel eigenvalues; and ii) C(Ψ) ≤ C(Φ).
In particular, when Φ is a maximally entangled state, any
such |Ψ〉 and ρ are perfectly distinguishable!

For LOCC, the states are perfectly distinguishable if
and only if either |ψ〉 is a product state, or condition (i)
is satisfied and equality holds for condition (ii).

In the following, we have a series of results for the op-
timal discrimination of 2⊗ 2 linearly independent states
under the measure minimum error probability. These re-
sults are obtained based on the following powerful propo-
sition.

Proposition 2 Let E = {ρi, pi}ni=1 be an ensemble of
linear independent states; i.e. for spectral decompositions
ρi =

∑ri
j=1 λij |ψij〉〈ψij |ψij, the |ψij〉 are linearly inde-

pendent. Let S be the subspace spanned by the |ψij〉, and
let Popt be the optimal minimum error probability in dis-
crimination. Then there exists a unique decomposition of
S = S1 ⊕ S2 ⊕ ...⊕ Sn with Si having dimension ri such
that a POVM can obtain Popt on E if and only if it can



perfectly distinguish the normalized subspace projectors
1
r1

ΥS1
, 1
r2

ΥS2
,..., 1

r2
ΥSn

.

In the pure state case, the subspace projectors ΥSi cor-
respond to an orthonormal basis {|φi〉}ni=1 for the space
spanned by the |ψi〉. Thus, any LOCC POVM Πi opti-
mally distinguishes the |ψi〉 if and only if it can perfectly
distinguish the |φi〉. However for two-qubit ensembles,
the conditions for perfect discrimination among orthog-
onal states have already been proven by Walgate and
Hardy [11]. We thus obtain the following.

Proposition 3 Consider an ensemble of linearly inde-
pendent two-qubit states {|ψi〉, pi}ni=1. If n = 3, then an
LOCC protocol can optimally discriminate the ensemble
(in the minimum error sense) if and only if the states
{|φi〉}ni=1 corresponding to the projectors ΥSi = |φi〉〈φi|
described by Proposition 2 contain at least two product
states. If n = 4, then all of the |φi〉 must be product
states.

Applying this result is still rather difficult since there
appears to be no easy method for determining whether or
not the optimal POVM projectors |φi〉〈φi| have product
state form. However, by envoking a probabilistic argu-
ment, we can prove a very strong result, which is one of
the main contributions of our work. It is quite surprising
considering that any two pure states, orthogonal or not,
can be distinguished optimally by LOCC.

Theorem 4 Three randomly chosen two-qubit pure
states almost surely cannot be optimally discriminated by
LOCC.

When we restrict our attention to distinguishing only
product pure states, we can obtain a necessary condition
for optimal discrimination by LOCC.

Theorem 5 Suppose that {|ψλ〉 := |αλ〉|βλ〉, pλ}3λ=1

(pλ > 0) is some linear independent two-qubit product
state ensemble that spans {|Φ〉}⊥. Let λmin(Φ) denote
the smallest squared Schmidt coefficient of |Φ〉. If

p2iλmin(Φ) > p2j |〈ψi|ψj〉|2 + p2k|〈ψi|ψk〉|2

for every choice of i, j, k such that {i, j, k} = {1, 2, 3},
then the ensemble cannot be distinguished optimally (in
the minimum error sense) with LOCC.

Theorem 5 is very useful for constructing ensembles
that demonstrate “non-locality without entanglement”.
Despite consisting of product states, ensembles satisfy-
ing the condition of Theorem 5 possess some non-local
aspect since LOCC is insufficient for optimal discrimi-
nation. Furthermore, we can obtain examples in which
separable operations attain optimal discrimination but

LOCC cannot. For this, we rely on a result from [16]
that three states can be perfectly distinguished by sep-
arable operations iff their concurrence sums to the con-
currence of their common orthogonal complement state.
Hence, separable opreations becomes strictly more pow-
erful than LOCC for distinguishing a set of product states
|ψi〉 that satisfy Theorem 5 when their corresponding de-

tection states |φi〉 satisfy
∑3
i=1 C(φi) = C(Φ).

An important example of such an ensemble is the so-
called “double trine” ensemble [19], which is given by a
uniform distribution of the states |ψi〉 = |si〉 ⊗ |si〉 for
i = 0, 1, 2 where

|s0〉 = |0〉

|s1〉 = −1/2|0〉 −
√

3/2|1〉

|s2〉 = −1/2|0〉+
√

3/2|1〉. (1)

The inability for LOCC to optimally discriminte the dou-
ble trine states follows from Theorem 5 and the fact
that |〈ψi|ψj〉|2 = 1/16, while λmin(Φ) = 1/2. Thus,
1/2 > 1/8. On the other hand, it can be easily com-
puted that the detection states |φi〉 each have a concur-
rence of 1/3. Since the maximally entangled singlet state
lies orthogonal to each of the |ψi〉, we have indeed have∑3
i=1 C(φi) = C(Φ) = 1. Hence, a separable POVM can

optimally discriminate the double trine ensemble.
Our next major result involves generalizing the double

trine discrimination problem to N parties. Specifically,
we suppose that N copies of |si〉 are distributed to N dif-
ferent parties and their goal is to identify which state they
possess by N -party LOCC. We first show that this prob-
lem is essentially identical to the “lifted trine” problem
studied by Peter Shor [20]. We then compute the optimal
global measurement for this task and prove that for any
finite N , an LOCC measurement is unable to attain the
optimal global success probability. This result is quite in-
teresting when one considers the N -copy problem for two
pure state ensembles. It has been proven that N -party
LOCC can always obtain the optimal success probability
[21]. However, we further show that asmptotically (i.e.
N → ∞), the N -copy trine states can be discriminated
optimally by LOCC.

Our last result regards the conditions for optimal un-
ambiguously discriminating linearly independent states.
We obtain an upper bound on the LOCC conclusive
probability for three symmetric states. By symmetric
states, we mean those that are invariant under the SWAP
operation F, which acts on any product state |αβ〉 by
F|αβ〉 = |βα〉.

Theorem 6 Let {|ψi〉, pi}i=1...3 be an ensemble of lin-
early independent symmetric pure states with dual basis
|ψ̃i〉. If C(ψ̃i) ≥ |〈ψ̃i|ψi〉|2 for all i, then LOCC cannot
obtain an unambiguous probability greater than pmax.
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