
Floating Point Representations in Quantum Circuit Synthesis

Nathan Wiebe1,2, Vadym Kliuchnikov1,3

1 Institute for Quantum Computing, 200 University Ave. West, Waterloo, ON, Canada
2 Department of Combinatics & Opt., University of Waterloo, Waterloo, ON, Canada and

3 Department of Computer Science, University of Waterloo, Waterloo, ON, Canada

We provide a non–deterministic quantum protocol that approximates Rx(φ2
1φ

2
2) using Rx(φ1) and

Rx(φ2) and a constant number of Clifford and T operations. We then use this method to construct
a “floating point” implementation of a small rotation wherein we use the aforementioned method
to construct the exponent part of the rotation and also to combine it with a mantissa. This causes
the cost of the synthesis to depend more strongly on the relative (rather than absolute) precision
required. We analyze the mean and variance of the T–count required to use our techniques and
show that, with high probability, the required T–count will be lower than lower bounds for the
T–count required to do ancilla–free circuit synthesis. We also discuss the T–depth of our method
and show that the vast majority of the cost of the resultant circuits can be shifted offline.

The ability to inexpensively perform single–qubit rotations is vital for quantum computing. These rotations form the
core of several quantum algorithms including the quantum Fourier transform, quantum simulation and the synthesis
of multi–qubit unitaries, among many others. Optimizing the cost of synthesizing single–qubit rotations is vitally
important for designing practical algorithms on the first generation of fault–tolerant quantum computers. Until very
recently, the Solovay–Kitaev theorem [1] was the best known technique for synthesizing such rotations. A revolution
has occurred in the last several months in the field of circuit synthesis, providing a polynomial improvement over
the Solovay–Kitaev theorem, causing the cost of circuit synthesis to approach information theoretic bounds for the
optimal scaling [2–4]. The question that remains is: “how efficient can we make the task of synthesizing single–qubit
rotations?”

We address this question by providing a new paradigm for synthesizing small single–qubit rotations that is not only
more efficient than existing methods, but is also more efficient than any method that does not use ancillas to assist
the synthesis. The key insight behind this method is that a floating point representation of the rotation angle can be
used to simplify the synthesis of small rotations. Traditional circuit synthesis methods, in effect, treat every leading
zero in a decimal representation of a small rotation as a significant digit. This makes synthesizing these rotations
costly in cases where a small rotation angle is needed, but the number of digits of precision that are required of the
rotation is small. Our floating point representation solves this problem by providing a way to multiply small rotation
angles, which addresses the issue of extraneous digits of precision for circuit synthesis in exactly the same way that
floating point representations of decimal numbers remove the need to keep track of irrelevant digits of precision in
arithmetic problems.

There are two central components to our method. The first component is a non–deterministic circuit that can
combine two rotations Rx(α) and Rx(β) to approximate Rx(α2β2). The second component is a non–deterministic
circuit that can inexpensively generate small X–rotations. The intuition behind how these two components combine to
form our floating point representation is demonstrated in the following example. Imagine that we want to implement
the rotation Rx(a × b−γ), where b ≈ 0.029, γ is an integer and 1 > a > b. This rotation can be approximated
using the first component of our method to combine the rotations Rx(

√
a) and Rx(b−γ/2), which we call the mantissa

and exponent unitaries respectively. The mantissa unitary can be synthesized inexpensively using traditional circuit
synthesis methods because it requires relatively few digits of precision; whereas the exponent unitary is implemented
using the non–deterministic circuits that are the second component of our method.

It should be noted that although our circuits are non–deterministic, any failures that occur can be corrected using
Clifford operations. This means that our circuits will always succeed, although the total cost of implementing our
circuits will vary. We show that, despite the uncertainty in the cost of synthesizing the rotation, our floating point
method will be less expensive than the best known techniques with high probability.

We consider three different scenarios in which to assess the cost of our algorithm. In all three scenarios, we assume
that the most expensive gate in the {Clifford, T} gate library is the T gate and assume for simplicity that Clifford
operations are free. In the first scenario, we measure the cost by counting the total number of T gates required to
synthesize the rotation. This cost analysis is appropriate in situations where a serial quantum computer is used to
execute the floating point circuits. The second scenario assumes that the quantum computer is massively parallel
and hence the T–depth of the circuit best represents the time required to execute the circuit. Finally, we consider
the online cost of our algorithm, which is an appropriate measure in cases where “factories” can be employed that
constantly produce resource states that can be consumed cheaply throughout the protocol. All three scenarios show
that our approach has substantial advantages over the best known synthesis methods.

The reduction in the T–count is perhaps the strongest result that arises from our method. We show that, on

2

average, floating point synthesis of a small rotation θ using a fixed number of digits of precision requires a number of
T gates that approximately scales as 1.14 log2(1/θ). This is significant because an information theoretic lower bound
gives that O(log2(1/θ)) scaling is optimal for the T–count required to synthesize a small rotation [5]. Apart from
achieving optimal scaling, we actually can show that floating point synthesis is superior to the best possible circuit
synthesis method that only uses single–qubit Clifford at T gates, which we show requires a number of T gates that
scales approximately as 2.98 log2(1/θ). To the best of our knowledge, this is the first conclusive demonstration that
synthesis methods that use ancillas and classical feedback are more powerful those that do not.

As a particular example of the performance of our method, we compare the cost of synthesizing the rotation

e−iZπ/2
16

(which is used in the quantum Fourier transform) using the {Clifford, T} gate library with our floating
point synthesis method to the best possible method for synthesizing the rotation using only single–qubit Clifford and
T gates.

Mantissa Unitary (Floating Point Synthesis) Mean Variance 95% Confidence Relative
T–count Interval Error

HZTHZTHZTH 24.2 11.8 [21,33] 0.35
HTHTHTHTHTHTH 30.3 14.0 [27,39] 0.13

Circuit (Optimal single–qubit Synthesis) T–count – – Relative
Error

Non–Trivial Approximation With Smallest T–Count 57 0.17
Non–Trivial Approximation With 2nd Smallest T–Count 60 0.058

This shows that floating point synthesis can provide advantages for synthesizing even modestly small rotations that
appear in important quantum algorithms. Additionally, the classical algorithm for finding the optimal quantum circuit
(drawn from the single–qubit Clifford and T library) is inefficient. This prevents the optimal synthesis method from
synthesizing rotations smaller than 10−16 rad. Floating point synthesis suffers no such drawback.

We find that the T–depth and the online cost of floating point synthesis for Rx(θ), for a fixed number of digits of
precision, scales as Θ(log log(1/θ)). In contrast, traditional circuit synthesis leads to T–depths and online costs that
scale as O(polylog(1/ε)), where ε is the absolute error tolerance and ε < θ. This is significant because it shows that
massive parallelism can be used to exponentially speed up the implementation of these rotations, which means that
performing the small rotations required in quantum simulation algorithms or Shor’s algorithm on a parallel quantum
computer is far cheaper than existing methods, such as the Solovay–Kitaev algorithm, would suggest.

Now that we have discussed the improvements that floating point synthesis can bring, we will now describe in
greater detail how our method achieves these performance improvements. Our circuit for combining the mantissa
unitary, Um, with the exponent unitary, Ue, to form the floating point representation is surprisingly simple:

|0〉 Um • U†
m

|0〉 Ue • U†
e

|ψ〉 −iX

If both measurements yield zero, then the circuit will implement

|ψ〉 → e−i tan
−1(tan2(sin−1(|Um1,0||Ue1,0|)))X ≈ e−i|Um1,0|2|Ue1,0|2X .

In all other cases the circuit implements eiXπ/4, which can be inverted using Clifford operations. The success probabil-
ity for implementing small rotations using this circuit is nearly 100%; furthermore, the cost of failure is minimal using
this circuit because errors can be corrected using Clifford operations which are typically assumed to be inexpensive
in circuit synthesis problems. This means that this circuit cannot possibly fail, although it may have to be applied
several times before success is achieved in rare cases.

Our method for generating small rotations uses similar principles. The intuition behind the method is that it
generates a small rotation by (approximately) iteratively squaring the rotation angle. To see how this works, let
us assume for simplicity that a circuit is known that implements an X–rotation: exp(−iθX) for some value of
θ. The circuit in Figure 1 (a) then, upon measurement of zero, enacts exp(−i tan−1(tan2(θ))) ≈ exp(−iθ2X) and
failure results in the application of a Clifford operation, which can be corrected inexpensively. By using this circuit

recursively d–times, it is possible to generate a rotation that is approximately exp(−iθ2dX) when the outcome of
every measurement is zero. An example of this recursively constructed circuit for d = 3 is given in Figure 1 (b). We
take U = HTH, rather than choosing it to be an X–rotation. This leads to the circuit implementing, upon success,

3

|0〉 Rx(θ) • Rx(−θ)

|ψ〉 −iX

(a)

|0〉 U • U† |0〉 U • U† |0〉 U • U† |0〉 U • U†

|0〉 −iX • iX |0〉 −iX • iX

|0〉 −iX • iX

|ψ〉 −iX

(b)

FIG. 1: Circuits for implementing small rotations by (approximate) repeated squaring of the rotation angle. (a) shows the basic
circuit for recursion depth d = 1. (b) shows the analogous circuit for recursion depth d = 3, where U represents an arbitrary
unitary operation (typically taken to be HTH in practice).

a rotation that is approximately exp(−i8.67 × 10−4X). Continuing the same recursive pattern to d = 9 results in a
rotation that is smaller than 10−200 radians. Although the error correction process is more involved in this case, it is
conceptually identical, and any fault can be corrected using Clifford operations.

The rotation angles constructed by this method with U = HTH approximately scale as tan−1(tan2d(π/8)), which
means that recursing to a depth d ∈ Θ(log log(1/θ)) is necessary to achieve a rotation through an angle of size θ or
smaller. This method alone is insufficient to generate the exponent unitary because it does not give precise control
over the resultant rotation. We increase the precision of the exponent unitary by combining D ∈ Θ(log log(1/θ))

such rotations together to form a rotation through an angle that is approximately tan(π/8)4(2
D−1), for any D ≥ 1.

This allows us to construct an exponent unitary that shrinks as powers of tan(π/8)4 ≈ 0.029, which enables the
construction of a floating point rotation of the form Rx(a× b−γ), where b ≈ 0.029 and a ∈ (b, 1).

This work is significant because it provides a new approach to quantum circuit synthesis that is not only more
efficient than existing circuit synthesis approaches for synthesizing small rotations, and because it reveals that the
cost of circuit synthesis depends more strongly on the number of digits of precision required, rather than the absolute
precision. Our work also shows that the use of ancillas allows rotations to be synthesized at lower cost than the best
possible ancilla–free single–qubit synthesis algorithm that does and that parallelism can be exploited to exponentially
reduce the time required to synthesize a given rotation. The performance improvements offered by our floating point
synthesis method are especially important because they can be used to substantially reduce the costs of performing
quantum simulation algorithms and Shor’s algorithm fault–tolerantly, and in turn allow us to get one step closer to
the dream of performing a practical quantum computation.

[1] Christopher M. Dawson and Michael A. Nielsen. The solovay-kitaev algorithm. Quantum Info. Comput., 6(1):81–95, January
2006.

[2] Alex Bocharov and Krysta M. Svore. Resource-optimal single-qubit quantum circuits. Phys. Rev. Lett., 109:190501, 2012.
[3] P. Selinger. Efficient Clifford+T approximation of single-qubit operators. arXiv:1212.6253, December 2012.
[4] Vadym Kliuchnikov, Dmitri Maslov, and Michele Mosca. Practical approximation of single-qubit unitaries by single-qubit

quantum Clifford and T circuits. arXiv:1212.6964, December 2012.
[5] A. W. Harrow, B. Recht, and I. L. Chuang. Efficient discrete approximations of quantum gates. Journal of Mathematical

Physics, 43:4445–4451, September 2002.

	References

