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When a communication channel N from Al-
ice (A) to Bob (B) can be used to simulate an-
other channel M that is also from A to B? We
can abstractly represent the simulation process
as the FIG.1. This problem has many variants
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FIG. 1. A general simulation network: a). We have
abstractly represented the general simulation proce-
dure for implementing a channel M using another
channel N just once, and the correlations between A
and B; b). This is just an equivalent way to redraw
a), and we have highlighted all correlations between
A an B, and their pre- and/or post- processing as Π,
a quantum non-signalling correlation.

according to the resources available to A and
B. In particular, the case when A and B can ac-
cess unlimited amount of shared entanglement
has been completely solved. Let CE(N ) denote
the entanglement-assisted classical capacity of
N [1]. It was shown that, in the asymptotic set-
ting, to optimally simulate M, we need to ap-
ply CE(M)/CE(N ) times of N [2]. In other
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words, the entanglement-assisted classical ca-
pacity uniquely determines the property of the
channel in the simulation process.

We are interested in the zero-error case first
studied by Shannon in 1956 [3]. It is well known
that determining the zero-error classical capac-
ity is generally extremely difficult even for clas-
sical channels. Remarkably, by allowing a feed-
back link from the receiver to the sender, Shan-
non proved that the zero-error classical capacity
is given by an interesting quantity which was
later called the fractional packing number. This
number only depends on the bipartite graph in-
duced by the classical channel under consid-
eration, and has a simple linear programming
characterization. Recently Cubitt et al intro-
duced classical non-signalling correlations into
the zero-error simulation problems for classical
channels, and proved that the well-known frac-
tional packing number gives precisely the zero-
error classical capacity of the channel [4].

A class of quantum non-signalling correla-
tions has been introduced as a natural gener-
alization of classical non-signalling correlations
[5] [6]. Any such correlation is described by
a two-input and two-output quantum channel
with non-signalling constraints between A and
B (refer to Π : L(Ai ⊗ Bi) → L(Ao ⊗ Bo) in
FIG.1). We imitate the approach in [4] to study
the zero-error classical capacity of a general
noisy quantum channels and the reverse prob-
lem of simulation, both assisted by this more
general class of quantum non-signalling corre-
lations. We show below that both problems can
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be completely solved in the one-shot scenar-
ios, and the solutions are given by semi-definite
programmings (SDPs). To describe these re-
sults, we need to introduce a few notations.
Let N be a quantum channel with a Kraus op-
erator sum representation N (ρ) =

∑
k EkρE

†
k,

where
∑

k E
†
kEk = 11. Let K = span{Ek} de-

note the Kraus operator space of N . The Choi-
Jamiołkowski matrix of N is given by JAB =
(idA ⊗ N )ΦAA′ with ΦAA′ the unnormalized
maximally entangled state. Let PAB denote the
projection on the support of JAB .

The one-shot zero-error classical capacity of
N assisted by quantum non-signalling correla-
tions only depends on the Kraus operator space
K, and is given by the integer part of following
SDP

Υ(K) = max TrSA s.t. 0 ≤ UAB ≤ SA ⊗ 11B,
TrA UAB = 11B,

TrPAB(SA ⊗ 11B − UAB) = 0.

Similarly, the exact simulation problem has
a SDP formulation. The one-shot zero-error
classical cost of simulating a quantum chan-
nel N with Choi matrix JAB is given by
d2−Hmin(A|B)J e messages per channel realiza-
tion, where Hmin(A|B)J is the conditional min-
entropy defined as follows [7]:

2−Hmin(A|B)J = min Tr ΓB, s.t., JAB ≤ 11A ⊗ ΓB.

Since the conditional min-entropy is addi-
tive, it follows immediately that the asymp-
totic simulation cost of a channel is given by
−Hmin(A|B)J bits per channel realization. As
a direct consequence, the asymptotic zero-error
classical simulation cost of the cq-channel 0 →
ρ0 and 1 → ρ1, is given by log(1 + D(ρ0, ρ1)),
where D(ρ0, ρ1) = ||ρ0 − ρ1||1/2 is the trace dis-
tance between ρ0 and ρ1. This provides a new
operational interpretation of the trace distance
between ρ0 and ρ1 as the asymptotic exact sim-
ulation cost for the above cq-channel.

Since there might be more than one chan-
nels with Kraus operator spaces included in K,
we are interested in the exact simulation cost
of the cheapest channel. The exact simulation
cost Σ(K) of the cheapest channel N such that

K(N ) < K (supporting on PAB), is given by the
integer part of

Σ(K) = min TrTB s.t. 0 ≤ VAB ≤ 11A ⊗ TB,
TrB VAB = 11A,

Tr(11− P )V = 0.

Let us now introduce the asymptotic zero-
error channel capacity and simulation cost of K
as follows,

C0,NS(K) = sup
n≥1

log Υ(K⊗n)

n
,

G0,NS(K) = inf
n≥1

log Σ(K⊗n)

n
.

In general, one-shot solutions do not give the
asymptotic results, and feasible formulas for the
asymptotic capacity and simulation cost remain
unknown.

Nevertheless, for the case K corresponds to
a cq-channel N : i→ ρi, we show that the zero-
error classical capacity is given by the solution
of the following simplified SDP

A(K) = max
∑
i

si, s.t. 0 ≤ si,
∑
i

siPi ≤ 11,

and Pi is the projection on the support of ρi.
A(K) was introduced by A. Harrow as a natural
generalization of the Shannon’s classical frac-
tional packing number [8], and can be named
as semidefinite (fractional) packing number associ-
ated with a set of projections {Pi}. Then our
result can be summarized as

C0,NS(K) = logA(K).

This capacity formula naturally generalizes the
result in [4], and has two interesting corollaries.
First, it implies that the zero-error classical ca-
pacity of cq-channels assisted by quantum non-
signalling correlations is additive, i.e.,

C0,NS(K0 ⊗K1) = C0,NS(K0) + C0,NS(K1),

for any two Kraus operator spaces K0 and K1

corresponding to cq-channels.
Second, and more importantly, we show that

for any undirected classical graph G = (V,E)
with vertices V = {1, ..., n} and edges E ⊂
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V × V , the Lovász ϑ function ϑ(G) [9], is an
achievable lower bound of the zero-error classi-
cal capacity assisted by quantum non-signalling
correlations of any quantum channelN that has
G as its non-commutative graph in the sense
of [11]. For simplicity, we denote the non-
commutative graph generated by the graph G
as

G = span{|i〉〈j| : (i, j) ∈ E or i = j, i, j ∈ V }.

We also define the zero-error classical capac-
ity of a graph G assisted by quantum non-
signalling correlations as

C0,NS(G) = min{C0,NS(K) : K†K = G}.

Then we have

C0,NS(G) = log ϑ(G).

Thus the Lovász ϑ function of a graph G can
be operationally interpreted as the zero-error
classical capacity of the graph assisted by quan-
tum non-signalling correlations. To the best of
our knowledge, this is the first complete oper-
ational interpretation of the Lovász ϑ function
since 1979. Previously it was shown that the
Lovász ϑ function is an upper bound for the
zero-error entanglement-assisted classical ca-
pacity of a graph [10][11]. It would be quite in-
teresting to know whether the use of quantum
non-signalling correlations could be replaced
by shared entanglement.

Note that for a classical channel with bipar-
tite graph Γ, such that

K = span{|j〉〈i| : i→ j edge in Γ},

it was shown in [4] that

C0,NS(K) = G0,NS(K) = logA(K) = logα∗(Γ).

In fact, there it was shown that

Υ(K) = Σ(K) = A(K).

That is, in the presence of classical non-
signalling correlations, the zero-error commu-
nication and simulation for a bipartite graph are
reversible. However, this is not true even for
a simple cq-channel N with two pure output
states |ψ0〉 = α|0〉+ β|1〉 and |ψ1〉 = α|0〉 − β|1〉,

with α ≥ β =
√

1− α2. We can assume α > β >
0 since the two equality cases are trivial. Note
|〈ψ0|ψ1〉| = α2− β2 = 2α2− 1. We can work out
all the SDPs introduced above:

Υ(K) = 1,

Υ(K ⊗K) ≥ max

{
1,

1

2α4

}
,

Υ(K⊗n) ≥ 1

α2n + β2n
for n� 1,

A(K) =
1

α2
=

2

1 + |〈ψ0|ψ1〉|
,

Cmin,E(K) = H(α2, β2),

2−Hmin(A|B)J = 1 +
1

2
‖ψ0 − ψ1‖1 = 1 + 2αβ = Σ(K),

where Cmin,E(K) is the minimum of the
entanglement-assisted classical capacity of N
such that K(N ) < K.

We get

C0,NS(K) = logA(K) = −2 logα

Cmin,E(K) = H(α2, β2),

G0,NS(K) = log(1 + 2αβ).

Clearly, we have

C0,NS(K) < Cmin,E(K) < G0,NS(K),

for any α > β > 0. This demonstrates the ir-
reversibility of zero-error communication and
simulation even for such a simple cq-channel.

FIG. 2. Comparison between C0,NS (green), Cmin E

(red) and G0,NS (blue) for the cq-channel of two pure
states, as a function of 0 ≤ β2 ≤ 1

2 .
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