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There are few existing designs for reversible �oating-point adders and none suitable for

quantum computation. In this paper we propose a space-e�cient reversible �oating-point

adder, suitable for binary quantum computation, improving the design of Nachtigal et al. [8].

Our work focuses on improving the reversible designs of the alignment unit and the normal-

ization unit, which are the most expensive parts. By changing a few elements of the existing

algorithm, we have reduced the cost about 68% compared to the existing design. We also

propose fault-tolerant designs. The KQ for our fault-tolerant design is almost sixty times as

expensive as for a 32-bit �xed-point addition. We note that the �oating-point representation

makes in-place, truly reversible arithmetic impossible, requiring us to retain both inputs,

which limits the sustainability of its use for quantum computation.

Computer arithmetic is generally carried out

as either integer arithmetic, more correctly called

�xed-point arithmetic in most contexts, or �oat-

ing point arithmetic. Floating point numbers,

as the name implies, allow the decimal (binary)

point to be repositioned according to the value

of an exponent. Fixed point numbers are limited

to the range −2n..2n − 1 for an n-bit number,

but a �oating point can cover many more orders

of magnitude. The price for this �exibility is re-

duced precision within the same storage space, as

some bits are dedicated to storing the exponent,

and substantially higher execution costs. How-

ever, �oating point is the standard representa-

tion for scienti�c data, as data points often span

a broad dynamic range or a range that is di�cult

to determine a priori.

Some quantum algorithms would bene�t from

the availability of a library of �oating point

operations. Algorithms that focus on physical

phenomena, such as quantum chemistry [1, 7]

and quantum �eld theory calculations [5], seem

especially likely to be able to take advantage

of this capability. Implementations of Harrow,

Hassidim and Lloyd's algorithm for linear sys-

tems [2, 4] and Jozsa's variant of Hallgren's al-

gorithm that uses real numbers may also bene-

�t [6].

While many �xed point adder designs have

been introduced, we are aware of only one design

for a reversible �oating-point quantum adder, by

Nachtigal, Thapliyal and Ranganathan (NTR),

and this design is expensive [8]. Our proposed

design eliminates about 68% of the cost. More-

over, the NTR design as presented leaves many

temporary variables in a dirty state, making it
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unsuitable as-is for quantum computing; our de-

sign reduces this number and shows how to com-

pose this design in a fully-reversible setup.

A truly reversible circuit generally calculates

〈A,B〉 U−→ 〈A, f(A,B)〉 where each element of

the tuple is a �xed-size register and U is a uni-

tary operation that realizes f(A,B). Nachti-

gal's circuit actually calculates 〈A,B, 0, 0〉 U−→

〈A,B,A+B,G〉 where A, B and A+B are single

precision �oating point numbers and G is a large

amount of ancillary data left in a garbage state.

We adapt Bennett's original reversible formula-

tion,

〈A,B, 0, 0, 0〉 U−→〈A′, B′, f(A,B), G, 0〉 (1)

CNOT−−−−→〈A′, B′, f(A,B), G, f(A,B)〉
U†
−−→〈A,B, 0, 0, f(A,B)〉

to complete the reversibility and make the circuit

suitable for quantum computation.

This cannot solve the fundamental problem

that �oating point addition is not 1:1, requiring

us to retain both inputs as well as the output.

Thus, quantum circuits that require many �oat-

ing point operations may result in unsustainable

growth of memory resources.

In quantum computing we often use KQ [9]

as the cost metric, which helps to calculate the

demands on quantum error correction. KQ is cal-

culated by multiplying the number of qubits used

and the circuit depth. Table I shows the T -depth

of each stage. The total KQ for the whole archi-

tecture is 723,301. This compares to a KQ for a

32-bit CDKM ripple-carry adder of 12,474 [3]. A

Stage T -depth

Swap 174

Alignment 194

Addition 57

Conversion 212

Normalization 244

Rounding 0

Total 881

TABLE I: T -depth of each stage in our

fault-tolerant adder.

�oating-point addition is thus nearly sixty times

as expensive as �xed-point.

The basics of a �oating-point adder algorithm

will be brie�y summarized with attention to the

demands of reversibility. Two 32-bit IEEE-754

single-precision �oating-point numbers A and B

are to be added. Before two numbers can be

added, they must be aligned. The smaller num-

ber's exponent is incremented until its exponent

reaches the larger number's, in conjunction with

shifting the smaller number's mantissa to the

right. Once the exponents are equal, the man-

tissas can be summed. The sum is normalized

and rounded at the end. Fig. 1 shows the gen-

eral algorithm adapted to show constant inputs

and garbage outputs. The garbage outputs are

eventually cleaned by reversing this circuit using

Bennett's method.

At this stage of the execution, the system

state corresponds to 〈A′, B′, f(A,B), G〉. To

complete the reversibility of the circuit, we must

bring in an additional 32-bit register, execute



3

  

28 bits

28 bits28 bits

29 bits

29 bits

28−bit Reversible Adder

28−bit Converter 28−bit Converter

29−bit Converter 28−bit Converter

28 bits 28 bits

Conditional Swap

Alignment
23 bits

24 bits

32 bits

23 bits

32 bits

0 0 0 1

9 bits
40 bits

1

sign bit
27 bits

64 bits

28 bits

31 bits

sign bit

23 bits

31 bits
sign bit

.

8
−

b
it

 e
x
p
o
n
en

t 
d
if

fe
re

n
ce

0 0 0

X+Y X

Y X

.

A B

Normalization &
Rounding

37 bits

G

1000

9 bits

G

8
−

b
it

 e
x
p
o
n
en

t

8
−

b
it

 e
x
p
o
n
en

t

sign bit

FIG. 1: Overview of our �oating point adder.

transverse CNOTs from the output value, then

run our complete circuit in reverse to clean up

all of the garbage as shown in Eq. (1). Thus,

the complete circuit uses 821 qubits: 64 variable

input qubits and 757 input ancillae. On output,

most ancillae are returned to their pristine state,

but 32 have been drafted into permanent use.

We conclude that �oating point addition is not a

�green" operation, unsustainable with repeated

use.
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