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We study evolution of bipartite entangled quasi-Bell states in a strongly coupled qubit-

oscillator system in the presence of a static bias. The system is well-described by the

Jaynes-Cummings model [1] in the context of the rotating wave approximation that holds

for a near resonance scenario, and a small qubit-oscillator coupling compared to the os-

cillator frequency. Recently, however, a variety of experimental situations pertaining to

stronger coupling domain, where the rotating wave approximation is no longer valid, have

been investigated. Various experimental realizations such as a nanomechanical resonator

capacitively coupled to a Cooper-pair box [2], a quantum semiconductor microcavity un-

dergoing excitonic transitions [3], a flux-biased superconducting quantum circuit that uses

large nonlinear inductance of a Josephson junction to achieve ultrastrong coupling with

a coplanar waveguide resonator [4] have been recently achieved. For a superconducting

qubit an external static bias that removes the degeneracy of the effective potential of the

oscillator and avoids crossings of the energy levels [5, 6] may be easily achieved.

On the other hand, for the coupled qubit-oscillator system the nonclassical quasi-Bell

states are of much interest. They exhibit entanglement of microscopic atomic states and

the photonic coherent states that can be regarded as mesoscopic for reasonably large

values of the coherent state amplitudes. When the amplitude of the coherent states are

large enough they are often called Schrödinger cat states as they introduce entanglement

between a microscopic and a classical object. In the instance of cavity quantum electro-

dynamics they have been used [7] for generating so-called even or odd coherent states

as well as more generalized configurations of mesoscopic field superposition states. Bell

inequality tests involving these qubit-field entangled states have been recently proposed

[8]. These states also play a crucial role in the non-destructive measurement [9] of the

photon number in a field stored in a cavity. Moreover, it has been observed [6] that in

the large coupling regime a state of the generic quasi-Bell type becomes the approximate

ground state of the combined system.

To study the strongly coupled qubit-oscillator system we employ the adiabatic ap-

proximation [10, 6]. In the regime of large detuning and strong coupling, the adiabatic

approximation that relies on the separation of the time scales characterized the high

oscillator frequency and the (renormalized) low qubit frequency could be used. The fast-

moving oscillator then adiabatically adjusts to the slow changes of the state of the qubit.
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Though in the case of cavity electrodynamics the usual experimental set up is described

by an unbiased qubit operated through its degeneracy point, the static bias of a super-

conducting qubit, as stated before may be easily varied, say, by operating a magnetic flux

on a Josephson junction [11].

Using the adiabatic approximation [10], for a qubit coupled strongly with oscillator

of high frequency is studied in the presence of a static bias. In particular, starting with

Schrödinger cat state which is an entangled state of a qubit and a coherent-state of the

harmonic oscillator, we find the time-evolution of the reduced density matrices of both

the qubit and the oscillator.

The reduced density matrix for the qubit is expanded till the fourth power of cou-

pling constant and is written in closed forms comprising of linear combinations of Jacobi

theta functions [12]. The analytical results based on the theta function evaluations are

found to be in good agreement with their series counterparts. The entropy of the system

quantifying the entanglement is computed via the qubit reduced density matrix. In the

bias-free condition and under the adiabatic approximation scheme, the entropy turns out

to be time-independent. This is however the artifact of the adiabatic approximation which

eliminates the off-diagonal blocks of the Hamiltonian assuming the coupling constant is

not too large. Under these approximation, the reduced density matrix of the slow varying

qubit becomes stationary retaining high value of the entanglement.

On the other hand, the reduced density matrix of the oscillator is employed for ob-

taining the phase space distributions such as the Husimi Q-function, which, in turn, is

utilized for obtaining closed-form expressions of the expectation values of antinormally

ordered operators [13], as linear combinations of Jacobi theta functions. Our closed-

form evaluations of various physical quantities are compared with, and found to be good

approximations of, their series values in the regime characterized by strong coupling as

well as weak bias. Our present scheme of approximating the density and other physical

quantities with closed form evalutions via Jacobi theta functions has been checked for

the renormalized values of the coupling constant and the bias equaling 0.18 and 0.02,

respectively. However retaining more terms in the evaluation of the perturbative series

these results can be improved.

Our evaluation of the Husimi Q function allows as to study the complexity of the

strongly coupled system. Complexity is a measure of delocalization of the Husimi distri-

bution in phase space and it is computed, for instance by the inverse of second moment

of the Husimi distribution [14]. We evaluate complexity of the strongly coupled qubit-

oscillator system analytically, and find close agreement with the numerical evaluation.

The contour plots have features pointing towards long-living metastable states. The cor-

respondence of the complexity with the Wehrl’s classical entropy[15] is also verified and

found to be qualitatively similar.

2



References

[1] E.T. Jaynes, F.W. Cummings, Proc. IEEE 51, 89 (1963).

[2] A.D.Armour, M.P. Blencowe, K.C. Schwab, Phys. Rev. Lett. 88, 148301 (2002).

[3] Aji A. Anappara, Simone De Liberato, Alessandro Tredicucci, Cristiano Ciuti, Gior-

gio Biasiol, Lucia Sorba, and Fabio Beltram, Phys. Rev. B 79, 201303(2009)

[4] T. Niemczyk, F. Deppe, H. Huebl, E. P. Menzel, F. Hocke, M. J. Schwarz, J. J.
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