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In the task of quantum state exclusion we consider a quantum system, prepared in a state chosen
from a known set. The aim is to perform a measurement on the system which can conclusively
rule that a subset of the possible preparation procedures can not have taken place. We ask what
conditions the set of states must obey in order for this to be possible and how well we can complete
the task when it is not. Interestingly, the task of quantum state discrimination forms a subclass of
this set of problems. Within this paper we formulate the general problem as a Semidefinite Program
(SDP), enabling us to derive sufficient and necessary conditions for a measurement to be optimal.
Furthermore, we obtain a necessary condition on the set of states for exclusion to be achievable with
certainty. This task of conclusively excluding states has recently been considered with respect to the
foundations of quantum mechanics in a paper by Pusey, Barrett and Rudolph (PBR). Motivated by
this, we use our SDP to derive a bound on how well a class of hidden variable models can perform
at a particular task, proving the necessity of a bound given by PBR in the process.

Introduction. Suppose we are given a single-shot de-
vice, guaranteed to prepare a system in a quantum state
chosen at random from a finite set of k known states. In
the quantum state discrimination problem, we would at-
tempt to identify the state that has been prepared. It is a
well known result [1] that this can be done with certainty
if and only if all of the states in the set of preparations are
orthogonal to one another. By allowing inconclusive mea-
surement outcomes [2–4] or accepting some error proba-
bility [5], strategies can be devised to tackle the problem
of discriminating between non-orthogonal states. For a
recent review of quantum state discrimination, see [6].
What however, can we deduce about the prepared state
with certainty?

Through state discrimination we effectively attempt to
increase our knowledge of the system so that we progress
from knowing it is one of k possibilities to knowing it is
one particular state. We reduce the size of the set of pos-
sible preparations that could have occurred from k to 1.
A related, and less ambitious task, would be to exclude
m preparations from the set, reducing the size of the set
of potential states from k to k − m. If we rule out the
m states with certainty we say that they have been con-
clusively excluded. Conclusive exclusion of a single state
has previously been considered with respect to quantum
state compatibility criteria between three parties [7] and
investigating the plausibility of ψ-epistemic theories de-
scribing quantum mechanics [8].

As recognized in [8] for the case of single state exclu-
sion, the problem of conclusive exclusion can be formu-
lated in the framework of Semidefinite Programs (SDPs).
As well as being efficiently numerically solvable, SDPs
also offer a structure that can be exploited to derive
statements about the underlying problem they describe
[9, 10]. This has already been applied to the problem of
state discrimination [11–13]. Given that minimum error
state discrimination forms a subclass (m = k − 1) of the

general exclusion framework, it is reasonable to expect
that a similar approach will pay dividends here.

State Exclusion SDP. More formally, what does it
mean to be able to perform conclusive exclusion? We
first consider the case of single state exclusion and then
show how it generalizes to m-state exclusion. Let the
set of possible preparations on a d dimensional quantum
system be P = {ρi}ki=1 and let each preparation occur
with probability pi. For brevity of notation we define
ρ̃i = piρi. Call the prepared state σ. The aim is to per-
form a measurement on σ so that, from the outcome, we
can state j ∈ {1, . . . , k} such that σ 6= ρj .

Such a measurement will consist of k measurement op-
erators, one for attempting to exclude each element of P.
We want a measurement, described by M = {Mi}ki=1,
that never leads us to incorrectly produce j such that
σ = ρj . We need, ∀i : Tr [ρiMi] = 0, or equivalently,
since ρi and Mi are positive semidefinite matrices and pi
is a positive number: α =

∑k
i=1 Tr [ρ̃iMi] = 0. There

will be some instances of P for which an M can not be
found to satisfy this equation. In these cases our goal is
to minimize α. The value we achieve is the probability of
failure of the strategy, ‘If outcome j occurs say σ 6= ρj ’.

Therefore, to obtain the optimal strategy for single
state exclusion, our goal is to minimize α over all possible
M subject to M forming a valid measurement. Such an
optimization problem can be formulated as an SDP:

Minimize:
M

α =

k∑
i=1

Tr [ρ̃iMi] .

Subject to:

k∑
i=1

Mi = I,

Mi ≥ 0, ∀i.

(1)

Here I is the d by d identity matrix and A ≥ 0 implies
that A is a positive semidefinite matrix.
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Part of the power of the SDP formalism lies in how it is
possible to construct a related ‘dual’ problem to this ‘pri-
mal’ problem given in Eq. (1). Details on the formation
of the dual problem to the exclusion SDP can be found in
the full version of the paper (submitted separately) and
we state it here:

Maximize:
N

β = Tr (N) .

Subject to: N ≤ ρ̃i, ∀i,
N ∈ Herm.

(2)

For single state exclusion, the problem is essentially to
maximize the trace of a Hermitian matrix N subject to
ρ̃i −N being a positive semidefinite matrix, ∀ i.

What of m-state conclusive exclusion? Define Y(k,m)

to be the set of all subsets of the integers {1, . . . , k} of
size m. The aim is to perform a measurement on σ such
that from the outcome we can state a set, Y ∈ Y(k,m),
such that σ /∈ {ρy}y∈Y . Such a measurement, denoted

Mm, will consist of
(
k
m

)
measurement operators and we

require, for each set Y : Tr [ρ̃yMY ] = 0, ∀y ∈ Y . If we
define ρ̂Y =

∑
y∈Y ρ̃y, then this can be reformulated as

requiring: ∀Y ∈ Y(k,m) : Tr [ρ̂YMY ] = 0. Hence we can
view m-state exclusion as single state exclusion on the
set Pm = {ρ̂Y }Y ∈Y(k,m)

. Furthermore, we can generalize
this approach to an arbitrary collection of subsets that
are not necessarily of the same size. With this in mind
we restrict ourselves to considering single state exclusion
in all that follows.

Let us define the optimum solution to the primal prob-
lem to be α∗ and the solution to the corresponding dual
to be β∗. It is a property of all SDPs, known as weak
duality, that β∗ ≤ α∗. Furthermore, for SDPs satisfying
certain conditions, α∗ = β∗ and this is known as strong
duality. The exclusion SDP does fulfill these criteria, as
shown in the full version of the paper.

Optimal exclusion measurement. We obtain the fol-
lowing characterization of the optimal solutions of the
primal and dual SDPs.

Theorem 1. LetM∗ = {M∗i }ki=1 be an optimal solution
to the primal SDP (1) and N∗ be an optimal solution to

the dual SDP (2). Then, N∗ =
∑k
i=1 [ρ̃iM

∗
i ] .

The proof of Theorem 1 (and of subsequent results
in this work) is given in the full version of the pa-
per. This result provides us with a method for prov-
ing a measurement M = {Mi}ki=1 is optimal; show that

N =
∑k
i=1 [ρ̃iMi] is feasible for the dual problem. We

use this technique in the proof of Theorem 3 mentioned
later.

Necessary condition for single state conclusive exclu-
sion. We note that for any feasible solution N of the
dual SDP (2) we will have Tr (N) ≤ β∗ = α∗. In partic-
ular if, for a given P, we can construct a feasible N with
Tr (N) > 0, then we have α∗ > 0 and hence conclusive

exclusion is not possible. We construct one such N and
it gives rise to the following necessary condition.

Theorem 2. Suppose a system is prepared in the state σ
using a preparation chosen at random from the set P =
{ρi}ki=1. Single state conclusive exclusion is possible only
if:

k∑
j 6=l=1

F (ρj , ρl) ≤ k(k − 2), (3)

where F (ρj , ρl) is the fidelity between states ρj and ρl.

Note that the probability with which states are pre-
pared, {pi}ki=1, does not impact on whether conclusive
exclusion is possible or not.

This is only a necessary condition for single state con-
clusive exclusion and there exist sets of states, P, that
satisfy Eq. (3) for which it is not possible to perform con-
clusive exclusion. Nevertheless, there exist sets of states
on the cusp of satisfying Eq. (3) for which conclusive ex-
clusion is possible. For example, the set of states of the
form: |ψi〉 =

∑k
j 6=i

1√
k−1 |j〉, for i = 1 to k, can be conclu-

sively excluded by the measurement in the orthonormal
basis {|i〉}ki=1 and yet

∑k
j 6=l=1 F (|ψj〉〈ψj |, |ψl〉〈ψl|) =

k(k − 2).
Furthermore, if we consider state discrimination as (k−

1)-state exclusion, we reproduce the following result:

Corollary 1. Conclusive state discrimination on the set
P = {ρi}ki=1 is possible only if P is an orthogonal set.

PBR game. As an application of our SDP and its prop-
erties we consider a game, motivated by the argument,
due to PBR [8], against a class of hidden variable the-
ories. Assume that we have a physical theory, not nec-
essarily that of quantum mechanics, such that, when we
prepare a system, we describe it by a state, χ. If our the-
ory were quantum mechanics, then χ would be identified
with |ψ〉, the usual quantum state. Furthermore, suppose
that χ does not give a complete description of the sys-
tem. We assume that such a description exists, although
it may always be unknown to us, and denote it λ. As χ is
an incomplete description of the system, it will be com-
patible with many different complete states. We denote
these states λ ∈ Λχ. PBR investigate whether for dis-
tinct quantum descriptions, |ψ0〉 and |ψ1〉, it is possible
that Λ|ψ0〉 ∩ Λ|ψ1〉 6= ∅. Models that satisfy this criteria
are called ψ-epistemic, see [14] for a full description.

Consider the following game. Alice gives Bob n sys-
tems whose preparations are encoded by the string ~x ∈
{0, 1}n. The state of system i is χxi

. Bob’s goal is to
produce a string ~y ∈ {0, 1}n such that ~x 6= ~y.

In the first scenario, where Bob can only observe each
system individually and we consider a general theory, we
can represent his knowledge of the global system by: Ω =
λ1 ⊗ . . . ⊗ λn, where λi ∈ {Λ0,Λ1,Λ?}, representing his
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three possible observation outcomes. If λi ∈ Λ0 he is
certain the system preparation is described by χ0, if λi ∈
Λ1 he is certain the system preparation is described by χ1

and if λi ∈ Λ? he remains uncertain whether the system
was prepared in state χ0 or χ1 and he may make an error
in assigning a preparation to the system. We denote the
probability that Bob, after performing his observation,
assigns the wrong preparation description to the system,
q. Provided Λ? 6= ∅, q > 0.

Bob will win the game if for at least one individual sys-
tem he assigns the correct preparation description. His
strategy is to attempt to identify each value of xi and
choose yi such that yi 6= xi. Bob’s probability of out-
putting a winning string is hence: PSwin = 1− qn.

Now consider the second scenario where the theory
is quantum and entangled measurements on the global
system are allowed. We can write the global state that
Alice gives Bob, labeled by ~x, as: |Ψ~x〉 =

⊗n
i=1 |ψxi

〉.
Bob’s task can now be regarded as attempting to per-
form single state conclusive exclusion on the set of states
P = {|Ψ~x〉〈Ψ~x|}~x∈{0,1}n ; he outputs the string associated
to the state he has excluded to have the best possible
chance of winning the game.

To calculate his probability of winning, PEwin, we need
to construct and solve the associated SDP. Without loss
of generality, we can take the states |ψ0〉 and |ψ1〉 to be
defined as:

|ψ0〉 = cos

(
θ

2

)
|0〉+ sin

(
θ

2

)
|1〉,

|ψ1〉 = cos

(
θ

2

)
|0〉 − sin

(
θ

2

)
|1〉,

(4)

where 0 ≤ θ ≤ π/2. The global states, |Ψ~x〉, are then
given by:

|Ψ~x〉 =
∑
~r

(−1)
~x·~r
[
cos

(
θ

2

)]n−|~r| [
sin

(
θ

2

)]|~r|
|~r〉,

(5)
where ~r ∈ {0, 1}n and |~r| =

∑n
i=1 ri.

From [8], we know that single state conclusive exclu-
sion can be performed on this set of states provided θ
and n satisfy the condition: 21/n − 1 ≤ tan

(
θ
2

)
. When

this relation holds, PEwin = 1. What however, happens
outside of this range? Whilst strong numerical evidence
is given in [8] that it will be the case that PEwin < 1, can
it be shown analytically? Indeed we show it is true.

Theorem 3. If 21/n − 1 > tan
(
θ
2

)
then,

PEwin = 1− 1

2n

[
cos

(
θ

2

)]2n(
2−

[
1 + tan

(
θ

2

)]n)2

< 1.

The result above can be seen as similar in spirit to
Tsirelson’s bound [15] in describing how well quantum
mechanical strategies can perform at the CHSH game.

What is the relation between PSwin and PEwin? If, in
the separable scenario, we take the physical theory as
being quantum mechanics and Bob’s error probability as
arising from the fact that it is impossible to distinguish
between non-orthogonal quantum states, we can write
q =

(
1
2

)
(1− sin (θ)) [5]. With this substitution we find

that PSwin ≤ PEwin, ∀n. This is unsurprising as the first
scenario is essentially the second but with a restricted set
of allowable measurements.

Of more interest however, is if we view q as arising from
some hidden variable completion of quantum mechanics.
If Λ? = ∅, then if an observation of each |ψxi

〉 were to
allow us to deduce λxi then q = 0 and PSwin = 1 ≥ PEwin.
However, if Λ? 6= ∅, then we have q > 0 and PSwin will
have the property that Bob wins with certainty only as
n → ∞. On the other hand, PEwin = 1 if and only if
21/n − 1 ≤ tan

(
θ
2

)
. Hence, we have defined a game that

allows the quantification of the difference between the
predictions of general physical theories, including those
that attempt to provide a more complete description of
quantum mechanics, and those of quantum mechanics.

Conclusion. In this paper we have introduced the task
of state exclusion and shown how it can be formulated as
an SDP. Using this we have derived conditions for mea-
surements to be optimal and a criteria for the task to be
performed conclusively on a given set of states. Further-
more, we have applied our SDP to a game which helps
to quantify the differences between quantum mechanics
and a class of hidden variable theories.

It is an open question, posed in [7], whether a POVM
ever outperforms a projective measurement in conclu-
sive exclusion of a single pure state. Whilst it can be
shown from the SDP formalism that this is not the case
when conclusive exclusion is not possible to the extent
that Tr [Miρi] > 0, ∀i, further work is required to ex-
tend it and answer the above question. It would also be
interesting to see whether it is possible to find further
constraints, similar to Theorem 2, to characterize when
conclusive exclusion is possible.

Finally, our SDP, as given in Eq. (1), is just one method
for analyzing state exclusion in which we attempt to min-
imize the average probability of error. Alternative for-
mulations would be unambiguous state exclusion and at-
tempting to minimize the worst case error. We give the
primal and dual problems for these SDPs in the full ver-
sion of the paper and it would be interesting to study the
relationships between them and that defined in Eq. (1).
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