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Institute of Theoretical Physics and Astrophysics, University of Gdańsk, 80-952 Gdańsk, Poland

Abstract

The Anonymous Veto (or dining cryptographers) problem, which allows a voting

party in a jury to anonymously veto a decision, which is to be approved unanimously,

has a classical solution in form of a protocol, security of which is guaranteed only by

computational hardness. We present a generalization to a multi quDit case of Hardy’s

argument against local realism, which avoids statistical inequalities, and show that gen-

eralized Hardy-type correlations allow a simple quantum solution of the problem. This

is possible because Hardy-type conditions for correlations precisely determine a specific

genuine multipartite entangled state, which can satisfy them.

Ref:- arXiv:1303.0128.

Due to the existence of entanglement in quantum physics, quantum information theory
provides a means to perform some tasks that would be impossible in classical information
theory. Therefore, entanglement is considered to be the most useful resource in the context
of quantum information theory. In 1964, J.S. Bell, proved that correlations, such as the
entanglement between two or more particles in quantum mechanics, cannot be reproduced by
any local-realistic (LR) theory [1]. This was a first answer to the foundational debate “Can
quantum mechanical description of reality be considered complete” [2] started by Einstein
along with Podolsky and Rosen (EPR). Later, Hardy gave an argument which also reveals
the same non-LR character of quantum mechanics [3]. His argument, unlike Bell’s argument,
does not use statistical inequalities involving expectation values. This caused much interest
among physicists.

On the other hand, the structure of multipartite entanglement is not a simple extension
of the bipartite one. E.g., for three qubits there are two different classes of pure genuinely
three-partite entanglement, and also one may have entanglement of just two parties. Most
of features of bipartite entanglement are well understood, whereas the multipartite entan-
glement this is still not the case [4, 5, 6, 7, 8, 9, 10, 11, 12, 13]. The rich structure of the
multipartite entanglement can be used for various tasks, such as quantum computation [14],
quantum simulation [15], quantum metrology [16]. This inspired broad theoretical and exper-
imental studies, [17, 18]. In this regards, we extend the approach of Hardy [3] to an arbitrary
n-partite scenario, and show that only a genuine multipartite entangled state1 can satisfy our
generalized Hardy-type (GHt) argument. Therefore, this can be used as a wittiness for gen-
uine multipartite entanglement. For qubit systems, only a unique pure genuinely multipartite
entangled state satisfies our GHt argument for two dichotomic observables per site. Thus,
an important feature of original Hardy-type two-qubit argument is preserved. This feature is

1The state is not-biseparable with respect to any partition of subsystems.

1



missing in most other multipartite Bell-type tests and totally absent in all the proposed gen-
eralizations of Hardy-type argument for more than two-qubit case [13, 19, 20, 21, 22]. We also
find that the GHt correlations can be used to construct a quantum protocol for anonymous
veto, which is a cryptographic problem with classical solutions, security of which is based on
computational hardness, see [23] and [24]. Secure protocols for anonymous veto (or related
“dining cryptographers”), allow to take decisions, by some jury, which must be unanimous,
without ever revealing the possible vetoing party(-ies). Thus, they are important in many
aspects for functioning of human societies.

We now give an overall idea of our Quantum Anonymous Veto Protocol. All other results
on GHt argument and the detail of this protocol can be found in Ref. [25].

Quantum Anonymous Veto Protocol: Imagine a jury with N members, who need to take
an unanimous decision, but at the same time want their individual decisions to remain secret.
N-qubit Hardy argument i.e., the following set of joint probability conditions

P (û1 = +1, û2 = +1, ...., ûN = +1) = q > 0, (1)

∀ r ≤ N : P (v̂r = +1, ûr+1 = +1) = 0, (2)

P (v̂1 = −1, v̂2 = −1, ...., v̂N = −1) = 0 (3)

would allow them to achieve this. Imagine that the observables in the above conditions are,
say, ûk = σz and v̂k = −σx. In such a case only the following state has the properties (1-3)

|φN〉 =
1√

2N − 1

[
2

N
2 |1〉⊗N − |+〉⊗N

]
, (4)

where |+〉 = 1√
2

[|0〉+ |1〉]. Here the computational basis is the one of σz, and |+〉 is the
−1 eigenstate of −σx. Note, that due to the symmetry of the state with respect to any
permutation of the qubits, the condition (2) can be replaced by a more general one: ∀ r 6=
s : P (v̂r = +1, ûs = +1) = 0.

Each jury member receives one of the qubits, and can make secret measurements on them.
The local measuring devices provide a choice between the two observables mentioned above
(settings). Choosing ûk represents being “in favor”, “vetoing” is represented by v̂k.

A high repetition rate (event ready) quantum interferometric device 2, sends qubits in the
state to the jury members. Before every run, each of the members randomly chooses whether
this run would be a voting one or testing one. The testing runs may use different settings,
and their results and settings are announced (after the measurements are done). Testing
measurements in principle perform a kind of state tomography, or state witness operation,
which assures that the delivered state is indeed (4). Details can be spared. Otherwise, the jury
members choose the setting corresponding to his/her own opinion and collect the measurement
data. They send data to the referee after a certain data processing, described below.

Each jury member has a list of results under voting settings, correlated with the timing of
the measurements. Those who vetoed randomly reject the runs, which yielded the outcome
‘+1’ until the proportion between ‘+1’s and ‘−1’s in their table is 1 : (2N − 2), as such
would be the local statistics for those who were in favor. Next, all jury members randomly
further reduce their lists by a certain big enough factor to a fixed (for all the same) number
of entries. This is to hide how many results were rejected in the first step and hence again
hide members’ individual decisions. Next, each partner sends the list of their reduced samples

2For a review of such techniques see [18].
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(i.e., the timing information of the selected events, but not their results) to the referee. The
referee finds a common part of the lists of the timings. The list of common timings must be
very large. This can be guaranteed by the high repetition rate of the source.

The referee then asks a random jury member at a time about his/her result in a randomly
chosen run in the common part, and continues this procedure until in this way patiently
collects all the results related with the runs that were sharing timing. The referee has all
results for each run associated with a common timing, xi(Tk) = ±1, where i denotes a jury
member, and Tk is the timing.

If any jury member vetoes, but there was a disagreement, due to the condition (2), one
cannot have

∑N
i=1 xi(Tk) = N for any k. Thus if in the collected data the referee does not

see strings of results related with the same Tk which have all +1’s, he/she can safely (high
statistics!) conclude that somebody was vetoing. However, if such a string is occurring (many
times, we assume big statistics), the vote must be unanimous, because of (1) and the fact that
for the state P (∀ i : v̂i = +1) > 0. If there is no string related to a common Tk with all
results −1, everybody must have been against, see (3). Otherwise, the vote is unanimously
in favour, as for the state P (∀ i : ûi = −1) > 0.

In summary, our generalized Hardy-type (GHt) argument provides new and interesting
results on both the fundamental and the application level. On one side the GHt argument
can be used as a tool to study the structure of multipartite entanglement, on the other -
it provides us secure protocols for various cryptographic problems. Finally we remark that
we also studied the maximum probability of success (MPS) of the GHt argument for three
two-level systems under a generalized non-signaling theory (GNST) and in quantum theory.
We found that the maximum value of the probability for quantum theory is 0.0181938, and
for GNST it is 1

3
. Interestingly, for both cases MPS is lower than for two two-level systems.
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