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Abstract

In this paper, we study efficient algorithms towards the construction of any arbitrary Dicke state.
Our contribution is to use proper symmetric Boolean functions that involve manipulations with
Krawtchouk polynomials. Deutsch-Jozsa algorithm, Grover algorithm and the parity measurement
technique are stitched together to devise the complete algorithm. Further, motivated by the work of
Childs et al (2002), we explore how one can plug the biased Hadamard transformation in our strategy.
Our work compares fairly with the results of Childs et al (2002).

Multipartite entanglement is one of the important areas in the field of quantum information that has
many applications including quantum secret sharing. In this paper, we focus on the Dicke states [5], which
are useful building blocks in realizing multipartite entanglement. The n-qubit weight w Dicke state, |Dn

w〉,
is the equal superposition of all n-qubit states of weight w. We refer to [1, 9, 10, 12, 13, 17, 18] and the
references therein for detailed discussion.

After the invention of quantum information, many experimental setups have been proposed and tested
to verify some theoretical properties. Most of experiments have been focused on the test of multipartite
entanglement such as EPR, GHZ, and W states. Since the result of experimental tests depends on the
steps for preparing, processing, and measuring, all steps should be refined as much as possible. Among
them, the first priority is to prepare the target state with very high fidelity and with efficiency. In this
work, therefore, we also focus on the efficient way to prepare certain multipartite quantum state.

In line of GHZ and W states, we have the Dicke state, |Dn
w〉, which an equal superposition state of all

n-qubit states of weight w. Actually, Dicke state is more general state than GHZ and W states since W
state is |Dn

1 〉 and GHZ state is the superposition of |Dn
0 〉 and |Dn

n〉. Therefore, the preparation method for
Dicke state can be utilized for other general case as well. At the same time, similar to the above reason,
Dicke state can be utilized for many applications such as secret sharing [18] and quantum networking [2].
Related to this, some previous works have been done that focussed on the experimental ways to prepare
six-qubit Dicke state [18, 16] with fidelity 0.654± 0.024 and 0.56± 0.02, respectively.

While the main focus from the viewpoint of experimental physics is to actually provide the implemen-
tation of specific Dicke states, our focus is from theoretical algorithmic angle and the only result presented
in this direction appeared in [1]. In this work, we show how one can efficiently construct Dicke states by
using the combinatorial properties of symmetric Boolean functions, two well-known quantum algorithms,
and the generalized parity measurement. By efficient, we mean that the resource requirements in terms of
quantum circuits and number of execution steps is poly(n) to obtain |Dn

w〉.
Let us consider n-qubit states in the computational basis {0, 1}n that can be written in the form∑

x∈{0,1}n ax|x〉, where
∑

x∈{0,1}n |ax|2 = 1. Thus, x can also be interpreted as a binary string and the
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number of 1’s in the string is called the (Hamming) weight of x and denoted as wt(x). Based on this an
arbitrary Dicke state can be expressed as follows:

|Dn
w〉 =

∑
x∈{0,1}n,wt(x)=w

1√(
n
w

) |x〉.
Let us also define a symmetric n-qubit state as

|Sn〉 =
∑

x∈{0,1}n
awt(x)|x〉, where

n∑
i=0

(
n

i

)
|ai|2 = 1.

First, we show how one can prepare a symmetric n-qubit state with the property that
(
n
w

)
|aw|2 is Ω( 1√

n
)

by using Deutsch-Jozsa algorithm [4]. This requires certain novel combinatorial observations related to
symmetric Boolean functions. Then the quantum state out of Deutsch-Jozsa algorithm is measured using
the parity measurement technique [9] to obtain |Dn

w〉 with a probability Ω( 1√
n
). Thus, O(

√
n) runs are

sufficient to obtain the required Dicke state. Note that a direct approach to construct a symmetric state
has been presented in [1] using biased Hadamard transform. While the order of probability to obtain Dicke
state by ours and that of [1] are the same, enumeration results show that the exact probability values are
better in our case than that of [1].

Further, motivated by the idea in [1], we improve our algorithm further with a modified Deutsch-Jozsa
operator that involves the biased Hadamard transform. Since biased Hadamard transform also helps to
generate the target symmetric state, the overall probability to obtain the Dicke state increases.

Finally, we can also apply the Grover operator [8] before the measurement. Since Grover algorithm
amplifies the amplitude of target symmetric state, this helps to reduce the necessary number of steps into
O( 4
√
n).

The brief non-technical description of the complete algorithm is as follows:

• We use combinatorial properties of Boolean functions, to be specific, symmetric Boolean functions
and Krawtchouk polynomials [3, 6, 7, 11].

• We refer to the relationship [14] of Deutsch-Jozsa algorithm [4] with Walsh spectrum of Boolean
functions to produce the symmetric states.

• Based on our combinatorial construction, we produce symmetric states with higher amplitudes for
weight w states.

• We apply Grover’s algorithm [8] to obtain quadratic improvement in the run time.

• We use parity measurement techniques [9] to obtain the Dicke state asked for.

In summary, we study several quantum algorithms to construct arbitrary Dicke state in a disciplined
manner. The key idea is to find a suitable symmetric Boolean function for Deutsch-Jozsa algorithm for the
given n and w, use of the Grover algorithm and the generalized parity measurement strategy. Further, we
show that it is possible to obtain improved results using biased Hadamard transform suitably. Our results
improve the probabilities obtained in [1] and thus provide faster method to construct Dicke states.

The problem open in this area is to characterize the enumeration results in case of modifying the
Deutsch-Jozsa algorithm with biased Hadamard transform. Obtaining the exact bias in biased Hadamard
transform with the corresponding symmetric function to optimize the probability corresponding to the
Dicke state seems to be an interesting problem.
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Though we look at the problem from theoretical angle, the algorithmic blocks used by us have experi-
enced major advancement towards actual implementation. One may refer to [15, Section 7] for literature
related to implementation of quantum gates as well as Deutsch-Jozsa algorithm, Grover algorithm and
several measurement techniques. As example, the idea of implementing biased Hadamard transform is
related to the Fabry-Perot cavity [15, Page 299].
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