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Abstract

One of the many interesting features of quantum nonlocality is that the states

of a multipartite quantum system cannot always be distinguished as well by local

measurements as they can when all quantum measurements are allowed. In this

work we address a basic question, which is how much can be learned about a

given quantum system using separable measurements � those which contain the

class of local measurements but nevertheless are free of entanglement between the

component systems. We consider two quantities: The separable �delity � a truly

quantum quantity � which measures how well we can �clone� the input state, and

the classical probability of success, which simply gives the optimal probability in

identifying the state correctly.

We obtain lower and upper bounds on the separable �delity and give sev-

eral examples in the bipartite and multipartite settings where these bounds are

optimal. Moreover the optimal values in these cases can be attained by local

measurements. We further show that for distinguishing orthogonal states under

separable measurements, a strategy that maximizes the probability of success is

also optimal for separable �delity. We point out that the equality of �delity and

success probability does not depend on an using optimal strategy, only on the

orthogonality of the states. To illustrate this, we present an example where two

sets (one consisting of orthogonal states, and the other non-orthogonal states) are

shown to have the same separable �delity even though the success probabilities

are di�erent.
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Suppose a composite quantum system is known to be in one of many states, not nec-
essarily orthogonal, such that its parts are distributed among spatially separated ob-
servers. The goal is to learn about the state of the system using only local quantum oper-
ations and classical communication between the parties (LOCC). This problem, known
as local state discrimination, is of considerable interest [1, 2, 3, 4, 9, 13, 14, 16, 18, 21, 28],
as in many instances the information obtainable by LOCC is strictly less than that
achieved with global measurements [4, 6, 7, 8]. This gives rise to a new kind of non-
locality [4, 13, 28], conceptually di�erent from that captured through the violation of
Bell inequalities [22, 23]. Thus the problem of local state discrimination and the phe-
nomenon of nonlocality serve to explore fundamental questions related to local access
of global information [3, 11, 12], and the relationship between entanglement and local
distinguishability [4, 10, 13, 17]. Moreover, it has found novel applications such as
quantum/classical data hiding [30, 31, 32] and secret sharing [33].

There are many celebrated results identifying sets of states for which perfect local
discrimination is possible and sets for which it is not. In particular: any two pure
states can be optimally distinguished with LOCC [1, 37] but no more than d maximally
entangled states on Cd ⊗ Cd can be [14, 15]; a complete basis of a composite space
which can be distinguished with separable measurements must be a product basis but
this condition is not su�cient in general [4, 6, 13]; and sometimes increasing the average
entanglement in a set can enable state discrimination [13]. More recent studies include
distinguishing states (pure or mixed) when many copies are provided [27, 28, 29, 35, 36].

The class of LOCC measurements does not have a simple mathematical character-
ization, and optimization is often analytically intractable. In this paper, we will focus
on the class of separable measurements � those which are free of entanglement between
the component systems. These comprise a strict superset of LOCC measurements and
are much more amenable to analytic results (as in [19, 24]). It should be noted however
that while every LOCC protocol can be realized by a rank one separable measurement,
the converse is known not to be true [4, 5].

The focus of this work is in quantifying imperfect local discrimination, a question
which has been settled in the case of a pair non-orthogonal pure states [37] but has
generally not been explored as deeply. In [14] bounds on the error probability in dis-
tinguishing bipartite orthogonal states were obtained, and in [15] upper bounds on
the maximum probability of perfect local discrimination were derived for special sets of
maximally entangled states. In a di�erent approach, a complementary relation between
locally accessible information and �nal average entanglement was observed [11, 12]
which provides upper bounds on the locally accessible information and are known to be
optimal for some classes of states. Other approaches used measurements with positive
partial transpose [15, 29]; the set of such measurements contains the separable ones as
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a strict subset.
We will use two measures of distinguishability, the average �delity and the success

probability. The notion of average �delity, �rst considered by Fuchs and Sasaki in the
theory of the so called �quantumness of Hilbert space� [25, 26] and later by Navascués
in the problem of state estimation and separability [24] can be understood as follows:
Suppose a state |ψi〉 is drawn with some probability pi from a known collection of states
{pi, |ψi〉}, and the goal is perform a measurement to maximize our knowledge of the
input state. The average �delity is de�ned as the expected value of the overlap between
the input state and the �best-guess� state that we prepare following the measurement
outcome. In our restricted problem, the objective is to maximize the average �delity
over all separable measurements, yielding the separable �delity [24]. We derive lower
and upper bounds on the separable �delity and provide examples in bipartite and
multipartite settings where the bounds are shown to be optimal. This is shown by an
explicit local strategy for each example. These general bounds are useful, as explicit
expressions for �delity and success probability are hard to �nd even in speci�c cases.

The second �gure of merit that we consider is the probability of identifying the
state which was prepared. Note that, while the �delity is truly a quantum quantity, the
probability of success is a classical measure of how well a quantum protocol encodes and
decodes classical information. We show that, when the states are mutually orthogonal,
the separable �delity coincides with the maximum success probability, which relates our
results to bounds obtained in [14]. We point out that this equality between separable
�delity and probability of success depends crucially on the orthogonality of the states.
To illustrate this, we present an example where two sets (one consisting of orthogonal
states, and the other non-orthogonal states) are shown to have the same separable
�delity even though the success probabilities are di�erent.

There remain many open problems in the area of local discrimination and the re-
lationship between separable and local operations. We have established that if our set
of possible states is orthogonal, then probability of success and separable �delity are
equal but that in general they diverge with non-orthogonal states. It would be useful to
quantify this complementarity relation in the separable realm. There also remains much
work in understanding the gap between optimal global measurements and optimal sep-
arable measurements in the presence of non-orthogonality, which seems to a�ect global
bounds faster than separable ones. Finally, we look forward to understanding the im-
plications of these bounds in the asymptotic context of many copies of our multipartite
systems.
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