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Abstract: We develop a method of classifying LU equivalent classes of symmetric N-qubit 

mixed states based on multiaxial representation [1] of the density matrix. Bastin et.al [2] have 

defined two parameters, diversity degree and degeneracy configuration, to characterize  

symmetric N-qubit pure states using Majorana construction.  In our scheme of classification, in 

addition to these two parameters, we introduce another parameter called the rank . The power of 

our method is demonstrated using several well known examples of symmetric two, three  qubit 

pure states and two qubit mixed states. A recipe to identify the most general symmetric N-qubit 

pure separable state is also given.  

 

Introduction: 

Local unitary ( ) equivalence of multipartite pure states has received a lot of attention recently 

[3-6].  and  are said to be equivalent if  = where .  Local Operation 

and Classical Communication (LOCC) equivalence classes are defined such that all quantum 

states within the same class can be transformed to each other by transformation [3]. It is well 

known that the states belonging to the same LU equivalent class can be used for similar kind of 

quantum information processing tasks as they possess the same amount of entanglement. One 

way of classifying these states is by evaluating the LU invariants. Well known algebraic methods 

for generation of invariants already exist in literature [7-10]. As the number of subsystems 

increases, the problem of identifying and interpreting the independent invariants rapidly becomes 

very complicated. However, LU invariants associated with the symmetric states, which are 

experimentally viable and mathematically elegant, are easier to handle as the dimensionality of 

the Hilbert space involved is much less. Because of the permutational symmetry involved in the 

symmetric state,  and   are said to belong to the same equivalent class if 

where represents the rotation operator on a qubit 

[11]. invariants of the most general symmetric mixed systems have been constructed using 
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the elegant multiaxial representation of the symmetric states [12]. Different equivalent classes 

of up to 5 pure qubit states and for certain mixed states have been determined by introducing the 

standard form for multipartite states [4, 5]. Entanglement classification of mixed state under  

transformation poses a difficult problem as the definition of mixed state entanglement itself is 

poorly understood. However, an operational entanglement classification of symmetric mixed 

state for an arbitrary number of qubits under Stochastic Local Operation and Classical 

Communication (SLOCC) has been introduced by Bastin et. al[13]. In this paper we propose a 

scheme for classifying the most general symmetric N-qubit mixed states under  

transformation based on the multi-axial representation of Ramachandran and Ravishankar [1]. 

 Set of N-qubit pure states that remain unchanged by permutations of individual particles 

are called symmetric states. Symmetric states offer elegant mathematical analysis as the 

dimension of the Hilbert space reduces drastically from 2
N
 to (N+1), when N-qubits respect 

exchange symmetry. Such a Hilbert space is considered to be spanned by the eigen states  

  of angular momentum operators and , where . Fortunately, a 

large number of experimentally relevant states [14] possesses symmetry under particle exchange 

and this property allows us to significantly reduce the computational complexity. 

 

Multi-axial Representation of Density matrix: 

       The standard expression for the most general spin-j density matrix can be written in terms of 

Fano statistical tensor parameters  (k=0,1,…2j and q= -k…..+k). It has been shown by 

Ramachandran and Ravishankar[1] that any spherical tensor of rank k can be represented 

geometrically by a set of vectors  on the surface of a sphere of radius ri. As the state of  spin- 

j assembly is characterized by 2j spherical tensors, the state can be represented geometrically by 

a set of 2j spheres, one corresponding to each value of k, the kth sphere having  vectors 

specified on its surface. Thus, the spin-j system is in general characterized by j(2j+1) axes and 2j 

scalars. Since scalar product between  and  is an invariant under rotation, there 

are  invariants [12].  
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LU Classification: 

           Coming to the entanglement classification of symmetric N-qubit pure state 

 where 𝒩 is a normalization factor and the  s are single 

qubit states    with =1, Bastin et. al, [2] introduce two parameters 

diversity degree ( ) and degeneracy configuration ( ). For example, a symmetric N-qubit 

state with all  identical has a degeneracy configuration  and a diversity degree  of 1.  If all 

but one  are identical, we get the configuration and . If all but two  are identical, 

we get the configuration  or , depending on whether the two 

remaining ones are identical or not, respectively. We generalize this to symmetric N-qubit mixed 

state and define these two parameters for the spherical tensor parameters . In addition to this, 

we define another parameter called the rank  which refers to the rank of the spherical tensor 

parameter t
k
. Thus the notation becomes .  For example, in the case of a symmetric two qubit 

mixed state, the density matrix is characterized by  and . In the case of  , there is only one 

axis. Thus we have only . In the case of  , there are two axes in general. Hence the 

configurations are,   and . Thus in a two qubit system there are three different degeneracy 

configurations:  and . Similarly, a symmetric three qubit mixed system is 

characterized by ,  and . Thus the degeneracy configurations are: 

. 

 Employing the above classification scheme, a recipe for identifying N-qubit pure 

separable state is discussed in detail. Some well known examples of symmetric two and three 

qubit pure states are also investigated. Classification of uniaxial, biaxial and triaxial mixed states 

which can be produced in the laboratory is illustrated. 
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