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1. Introduction

Existence of quantum entanglement is one of the fundamental theme in quantum world.
This is exploited heavily in quantum computation [NC00]. A physical system is represented
by a complex Hilbert space denoted by H. We consider only finite dimensional situations, i.e.
H = Cn. The physical states of the system are represented by ρ ∈ B(H) which is a positive
definite self-adjoint operator with unit trace (a trace class operator). A rank 1 state is called
pure state, otherwise it is mixed. The set of states forms a convex set and the extremal points
of this set are pure states which are rank 1 operators.

For composite systems, the Hilbert space is the tensor product of the Hilbert spaces of the
individual systems. State space of a bipartite system is given by B(HA ⊗ HB). A bipartite
state ρ ∈ B(HA ⊗HB) is called a separable state if it can be written as

(1) ρ =
n∑
j=1

pjρ
A
j ⊗ ρBj , pj > 0,

n∑
j=1

pj = 1.

where ρAj and ρBj are states in the systems A and B respectively. If a state B(HA⊗HB) cannot

be written in the above form, then it is an entangled state.1

The central problem in quantum information theory is that given an arbitrary (bipartite)
state, determine whether it is entangled or separable. In general the problem is NP-hard
[Gur03]. To attack this, there are different approaches based on Bell’s inequality, positive
maps, covariance matrices and so on. For a survey, see [HHHH09, GT09].

In this poster, we use the concept of positive maps which are not completely positive. We
combine it with an invertible super-positive map and construct new classes of witnesses. In this
process, we show that, applying such a super-positive map is similar to the concept of quantum
filtration considered by Gisin [Gis96].

We give the necessary definitions in the section 2 and in the section 3 we give the results.

2. Positive maps: in a nutshell

Let us consider the two qubit state

(2) ρ(λ, α) = λPψα,β +
1

2
(1− λ)(Pψ++ + Pψ−−);

where

(3) |ψα,β〉 = α|+−〉 − β| −+〉, ψ++ = |+ +〉, ψ−− = | − −〉;

1The above definitions can easily be extended to multipartite systems. However, in this work, we confine
ourselves in bipartite cases only.
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and α > β > 0 are real numbers with α2 +β2 = 1; where |+〉 and |−〉 have their usual meanings.
It can be shown that when

(4) λ ≤ 1

1 + α2β2
,

Bell inequality [Bel87, Bel64] is not violated. Using concepts of polarising optical fibers, Gisin

[Gis96] used the transformation matrix T =

(√
β
α

0

0 1

)
, we get a state ρfiltered = Tρ(λ, α)T †,

which violates Bell-CHSH inequality if λ > 1
1+2αβ(

√
2−1)

. Hence by using an invertible map a

local state is converted to a nonlocal state. Borrowing terminologies from quantum optics, such
an operation is called quantum filter.

It is interesting to note that a similar concept appearers in the theory of positive maps and
detection of entanglement. We give a few definitions in this field.

Let H, K be (finite dimensional) Hilbert spaces. For B(H), let us denote B(H)h to be the
set of all Hermitian operators and B(H)+ be the set of all positive semidefinite objects. A map
ϕ : B(H) → B(K) is said to be a positive map (P), if ϕ (B(H)+) ⊆ B(K)+. ϕ is said to be
k-positive (k-P) if the natural extension

1k ⊗ ϕ :Mk(B(H)) → Mk(B(K))

((ai,j)) 7→ ((ϕ(ai,j))), ai,j ∈ B(H);

is a positive map. It is called completely positive (CP) if it is k-P for all k ≥ 1. (B(Ck ⊗H) '
B(Ck) ⊗ B(H) ' Mk(B(H)) denotes the set of all k × k matrices with entries in B(H)). The
structure of CP maps are given by Kraus representation [SMR61, Kra71, Cho75]. A CP map
is called d super-positive, if its minimal Kraus representation consists of Kraus operators of
(matrix) rank ≤ d [SS12]. There is no representation theorem for the maps which are P but
not CP. Transpose map t is an example of P map which is not 2-P (hence not CP). Clearly,
such P but not CP maps are the ones whose extensions, as given above, can detect entangled
states. Woronowicz [Wor76] showed that, when (dim(H), dim(K)) is one of the followings,-
(2, 2) , (2, 3), (3, 2); any P map B(H)→ B(K) is decomposable i.e. can be written as a sum of
a CP and a transposed CP map. This shows that any state in C2⊗C2, C2⊗C3 (and C3⊗C2)
is separable if and only if it is positive under partial transpose (PPT). This is not the case
in higher dimensions. In all other dimensions there are PPT entangled states. These states
naturally can not be detected by (extensions of) decomposable maps. Apart from the above
mentioned cases, there exists indecomposable positive maps in all other dimensions.

3. Results

We highlight the main points of our result. The references are given below to the techni-
cal details. Most of the terms are explained in the section 2. For all others, we follow the
terminologies of [SS12].

• Given any P map (not CP and indecomposable) ϕ : B(Cn)→ B(Cn), and any n-super-
positive map h : B(Cn) → B(Cn), the compositions ϕh = ϕ ◦ h and ϕh = h ◦ ϕ are P
(not CP and indecomposable). Further if ϕ is extremal (i.e. can not be written as a
convex combination of positive maps), and h(x) = Adv(x) = V †xV , then ϕh and ϕh

are also extremal. This gives as an orbit of positive maps, as well as extremal orbit of
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positive maps. If ϕ and h are unital, so are the compositions.2 For simplicity, let us
assume that such super-positive maps are contractions (i.e. V †V ≤ I, where I is the
identity matrix).
• V is invertible, hence it can be written as V = U1DU2 where U1, U2 are unitary operators

and D is a diagonal matrix. Notice that local unitaries do not change the Bell measure
of a state. Hence the measure is changed by application of the diagonal matrix D. This
gives a potential connection of quantum filtration. Indeed, using an example we can
show that when by using filtration we can increase the Bell measure of the state and
then the state is detected by a given positive map.

Some of the results mentioned above are taken from the following paper

(1) R Sengupta and Arvind. Extremal extensions of entanglement witnesses and their
connections with UPB. arXiv:1211.3294 [quant-ph].
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