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For testing the existence of the superposition of macroscopically distinct quantum states,

Leggett and Garg [1] put forward the notion of macrorealism. This notion rests on the classi-

cal paradigm [2, 3] that (i) physical properties of a macroscopic object exist independent of the act

of observation and (ii) any observable can be measured non-invasively, i.e., the ideal measurement

of an observable at any instant of time does not influence its subsequent evolution.

These original assumptions of [1], namely the assumptions of ‘macroscopic realism’ and ‘nonin-

vasive measurability’, have been generalized to derive a temporal version of the Bell-CHSH inequal-

ity irrespective of whether the system under consideration is macroscopic or not [4, 5]. Unlike the

original Bell-CHSH scenario [6] where correlations between measurement results on two distantly

located physical systems are considered, temporal Bell-CHSH inequalities are derived by focusing

on one and the same physical system and analyzing the correlations between measurement out-

comes at two different times under the following two assumptions: (i) Realism: The measurement

results are determined by hidden properties of the particles carried prior to and independent of ob-

servation and (ii) Locality in time: The result of measurement performed at time t2 is independent

of any measurement performed at some earlier or later time t1.

These inequalities get violated in Quantum Mechanics and thereby give rise to the notion of

entanglement in time which has been a topic of current research interest [3, 4, 7–11]. Interestingly,

the original argument of Hardy, which establishes the incompatibility of Quantum Theory with the

notion of local-realism [12, 13], can also be used to reveal this time-nonlocal feature of quantum

states [7–9]. Recently, Hardy’s argument has been studied in the case of two observables setting at

each time of measurement [7, 8]. It has been shown there that the maximum probability of success

of this argument can assume up to 25% for a spin-1
2
particle [7–9], the experimental verification of

the above fact followed soon after in [9].
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Hardy’s argument was generalized by Clifton and Niemann [14] to show the spatial nonlocal

feature of two spin-s systems. This argument was later reduced to its minimal form by Kunkri

and Choudhary [15]. Inspired by [15], we write below the temporal version of Hardy’s nonlocality

conditions for d-level systems.

Consider a single d-level physical system on which an observer (Alice) chooses to measure one

of two observables Â1 or Â2 at time t1, whereas at a later time t2, another observer (Bob) [16]

measures either of the two observables B̂1 and B̂2. Consider now the following set of conditions on

the probabilities for Alice and Bob to obtain outcomes ai and bj when measuring observables Âi

and B̂j respectively; i, j ∈ {1, 2}:

prob(Â1, a1 ; B̂1, b1) = 0, (1)

prob(Â1,¬a1 ; B̂2, b2) = 0, (2)

prob(Â2, a2 ; B̂1,¬b1) = 0, (3)

prob(Â2, a2 ; B̂2, b2) > 0. (4)

The first condition says that if Alice chooses to measure the observable Â1 and Bob chooses observ-

able B̂1, he will not obtain b1 as measurement result whenever Alice has detected the measurement

value a1. The remaining equations can be analyzed in a similar manner (¬ai denotes a measure-

ment with any result other than ai and similarly ¬bj denotes a measurement with any result other

than bj). These four conditions together form the basis of the temporal version of Hardy’s argu-

ment for d-level physical systems. This version of Hardy’s argument makes use of the fact that

not all of the conditions (1)-(4) can be simultaneously satisfied in a time-local realistic theory, but

they can be in quantum mechanics (see ref. [17] for the details).

In this work, we study the above mentioned version of Hardy’s argument for arbitrary observ-

ables of the system and find that the maximum success probability of this argument remains 25%

irrespective of the dimension of the system (for details, we refer to [17]). This is in sharp contrast

with the findings of reference [7] where for spin observables it has been stated that the maximum

probability of success of Hardy’s argument decreases with increase in spin value of the system

involved. We also discuss the reason of this discrepancy.

Thus this temporal nonlocality persists as opposed to the idea that quantum systems with

higher dimensional state space behave more classical which was put forward in [14]. Our result is

at par with the findings for spatially separated systems where the success probability for Hardy’s

argument is also independent of the dimension of systems’ Hilbert space [18, 19]. Moreover, con-

trary to the implications from [7], our result yields the possibility to probe the existence of quantum
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superpositions for macroscopic systems by means of Hardy’s argument and thus independent of

the Leggett-Garg inequality.
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[11] Brukner Č, Zukowski M arXiv:quantph/0909.2611

[12] Hardy L 1992 Phys. Rev. Lett. 68 2981

[13] Hardy L 1993 Phys. Rev. Lett. 71 1665

[14] Clifton R and Niemann P 1992 Phys. Lett. A 166 177

[15] Kunkri S, Choudhary S K 2005 Phys. Rev. A 72 022348.

[16] Alice and Bob may be one and the same observer, but the randomness in the choice of Â1 or Â2 and
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