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Hardy’s nonlocality argument as a witness for postquantum correlations
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Recently, Gallego et al. [Phys. Rev. Lett. 107, 210403 (2011)] proved that any future information principle
aiming at distinguishing between quantum and postquantum correlation must be intrinsically multipartite in
nature. We establish similar results by using the device-independent success probability of Hardy’s nonlocality
argument for tripartite quantum systems. We construct an example of a tripartite Hardy correlation which is
postquantum but satisfies not only the all-bipartite information principle but also the guess-your-neighbor’s-input
(GYNI) inequality.
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I. INTRODUCTION

Recently, understanding the correlations among distant
observers which are compatible with our current description
of nature based on quantum mechanics has generated much
interest. It has been shown that some general physical prin-
ciples can restrict the set of no-signaling correlations among
distant observers to a significant degree. Information theo-
retic principles like information causality [1] and nontrivial
communication complexity [2,3] are novel proposals to single
out the quantum correlations from the rest of the no-signaling
correlations when two distant observers (or in some cases, even
when more than two observers [5]) are involved. However,
by applying the known information principles to the bipartite
case, it has not been possible to derive the full set of quantum
correlations resulting from the Hilbert space structure of
quantum mechanics.

For a multipartite (more than two subsystems) scenario,
the situation becomes even more complex and extremely
challenging. Very recently, some interesting results [4,5]
have been produced when more than two distant observers
are involved. In [4], Gallego et al. provide an example of
the tripartite no-signaling correlation, which is time-ordered-
bilocal (TOBL) [6–8] and therefore respects any bipartite
information principle, yet this correlation is nonquantum
(unphysical) since it violates the guess-your-neighbor’s-input
(GYNI) inequality [9]. Thus this result demonstrates that in
general any biprinciple is insufficient for deriving the set of all
multiparty quantum (physical) correlations. A similar example
is also provided in the work by Yang et al. [5], where an
extremal point of the tripartite nonsignaling polytope is proved
to be nonquantum. The nonquantum nature of this correlation
is shown through violation of an inequality (Eq. (A1) in [5]),
which is satisfied by all quantum correlations; however, in
contrast with [4], this example respects the GYNI inequality.
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In the present work we give a TOBL correlation which is
nonquantum since it exceeds the maximum success probability
of Hardy argument for tripartite quantum correlations. To
show this, first we prove that in quantum mechanics the
maximum success probability of the Hardy argument for a
tripartite system is 0.125; earlier this result was known to
hold only for projective measurement on three-qubits systems
[10]. Then we explicitly construct a tripartite correlation in
a general probabilistic theory with the following properties:
(i) the correlation is TOBL and hence satisfies all bipartite
information principles, and (ii) the correlation shows Hardy
nonlocality with the success probability taking the value 0.2,

which is greater than the maximum value 0.125 that can
be achieved within quantum mechanics. Interestingly, the
example we provide respects all known GYNI inequalities [9]
and hence stands as good candidate to rule out GYNI as the
principle which distinguishes quantum from postquantum.

The paper is organized as follows. In Sec. II we prove
that the device-independent success probability for Hardy
nonlocality for tripartite quantum system is 1

8 . In Sec. III we
briefly described the TOBL correlations. In Sec. IV we present
a tripartite no-signaling probability distribution which belongs
to the TOBL set with a success probability for the Hardy
nonlocality argument greater than that for quantum systems.
Finally, in Sec. V we give our conclusions.

II. TRIPARTITE HARDY’S NONLOCALITY

Lucian Hardy first provided a simple argument for a
bipartite system which reveals nonlocality within quantum
mechanics without using any inequality [11]. Hardy’s original
argument can also be extended to multipartite systems. Hardy’s
test for tripartite systems in general probabilistic theories
can be provided by considering the set of tripartite no-
signaling correlations with binary input and binary output
for each party—the set of such correlations is known to be
points of a polytope in a 26-dimensional space with 53 856
extremal points [6]. A tripartite two-input–two-output Hardy
correlation is defined by restricting a certain choice of 5 out
of 64 joint probabilities in the correlation matrix [12–15].
Let P (abc|xyz) denote the probability of obtaining output
a,b,c ∈ {+1,−1} conditioned that inputs of the three parties
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are, respectively, x ∈ {X0,X1}, y ∈ {Y0,Y1}, and z ∈ {Z0,Z1}.
The following five conditions, for example, define a tripartite
Hardy correlation:

P (+++|X0Y0Z0) > 0,

P (+++|X1Y0Z0) = 0,

P (+++|X0Y1Z0) = 0, (1)

P (+++|X0Y0Z1) = 0,

P (−−−|X1Y1Z1) = 0,

where {X0,X1}, {Y0,Y1}, and {Z0,Z1} are respective local
observables corresponding to measurements performed by
three distant parties, say Alice, Bob, and Charlie, and ±1
are the possible measurement outcomes. One can easily show
that the above correlation cannot be reproduced by any local
realistic model.

The joint probability appearing in the first condition, in-
equality (1), is the success probability for Hardy’s nonlocality
argument. In quantum mechanics, for three-qubit systems sub-
jected to local projective measurements, the maximum value of
the success probability of the Hardy argument has been shown
to be 0.125 [10]. In view of a result first conjectured in [16]
and recently proved in [17], providing a device-independent
maximum value for the success probability of a bipartite Hardy
argument, one can ask what is the maximum probability of
success for Hardy nonlocality for tripartite quantum systems
of arbitrary local state space dimensions. In the following
proposition, we show that the result (device independent
bound) in the bipartite case can also be extended to the tripartite
Hardy test [18]:

Proposition. The maximum value of the success probability
of the Hardy argument for tripartite quantum systems is 1

8 .
Proof. As X0 and X1 are two Hermitian operators with

eigenvalues ±1 acting on a Hilbert space H, thus we write

X0 = �+|X0 − �−|X0 ,

X1 = �+|X1 − �−|X1 ,

where �a|x are projection operators for a ∈ {+,−} and x ∈
{X0,X1}. Then according to Lemma 1, stated in [17] and proved
in [19], the Hilbert spaceH can be decomposed as a direct sum
of subspacesHi of dimension at most 2, such that X0 = ⊕

i X
i
0

and X1 = ⊕
i X

i
1, where Xi

0 and Xi
1 act on Hi . Then we have

�a|x = ⊕
i �

i
a|x , where �i

a|x acts on subspaces Hi for all a

and x. We denote �i = �i
+|x + �i

−|x the projector on Hi .
Obviously, same is also true at Bob’s and Charlie’s ends with
similar notation used for Bob and Charlie.

In quantum mechanics, joint probabilities for the outcomes
of measurements performed on three spacelike separated parts
of a quantum system are given by

P (abc|xyz) = Tr(ρ�a|x ⊗ �b|y ⊗ �c|z), (2)

where ρ is the state of the system and �a|x , �b|y , and
�c|z are the measurement operators associated to outcomes
a,b,c of measurements x,y,z, respectively. In general, the
measurement operators are a positive operator-valued measure
(POVM). As the dimension of the Hilbert space is not
restricted, using Neumark’s theorem we can consider mea-
surement operators as projectors, without loss of generality.

Therefore we can write

P (abc|xyz) =
∑

i,j,k

qijkTr
(
ρijk�

i
a|x ⊗ �

j

b|y ⊗ �k
c|z

)

=
∑

i,j,k

qijkPijk(abc|xyz), (3)

where qijk = Tr(ρ�i ⊗ �j ⊗ �k) and ρijk = (�i ⊗ �j ⊗
�kρ�i ⊗ �j ⊗ �k)/qijk is, at most, a three-qubit state;
qijk � 0 for all i,j,k and

∑
i,j,k qijk = 1. The Hardy’s con-

ditions for tripartite systems [i.e., condition (1)] are satisfied
for P if and only if they are satisfied for each of the Pijk , but
then

P (+++|X0Y0Z0) =
∑

i,j,k

qijkPijk(+++|X0Y0Z0) (4)

is a convex sum of Hardy’s probabilities in each three-qubit
subspace. Being a convex sum, the success probability of
Hardy’s argument is therefore less or equal to the largest value
in the combination, which is 1

8 [10]. �

III. TIME-ORDERED BILOCAL CORRELATIONS

A tripartite no-signaling probability distribution
P (abc|xyz) belongs to TOBL correlations [6–8] if it
can be written as

P (abc|xyz) =
∑

λ

pλP (a|x,λ)PB→C(bc|yz,λ) (5)

=
∑

λ

pλP (a|x,λ)PB←C(bc|yz,λ), (6)

and analogously for B|AC and C|AB, where pλ is the
distribution of some random variable λ, shared by the parties.
The distributions PB→C and PB←C respect the conditions

PB→C(b|y,λ) =
∑

c

PB→C(bc|yz,λ), (7)

PB←C(c|z,λ) =
∑

b

PB←C(bc|yz,λ). (8)

From these equations it is clear that the distributions PB→C

allow signaling from Alice to Bob and PB←C allow signaling
from Bob to Alice. If a tripartite no-signaling probabil-
ity distribution P (abc|xyz) belongs to the set of TOBL
distributions, all possible bipartite distributions derived by
applying any local wirings on P (abc|xyz) are local, i.e.,
the probability distribution P (abc|xyz) respects all bipartite
physical principles [7].

IV. NONQUANTUM CORRELATION SATISFYING THE
BIPARTITE PRINCIPLE

Now we show that there exists a tripartite Hardy corre-
lation which lies in the TOBL set. Since this correlation
belongs to the TOBL set, it must satisfy all bipartite in-
formation principles. The probability distribution is given
in Table I. In this table, P (000|000) = 1

5 , P (000|001) =
0, P (000|100) = 0, P (000|010) = 0, P (111|111) = 0. The
success probability of Hardy argument for this correla-
tion is 1

5 , which is strictly larger than the maximum
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TABLE I. Tripartite no-signaling probability distribution
P (abc|xyz) with Hardy’s success 1/5.

abc

xyz 000 001 010 011 100 101 110 111

000 1
5 0 0 1

5 0 1
5

1
5

1
5

001 0 1
5

1
10

1
10

1
10

1
10

2
5 0

010 0 1
10

1
5

1
10

1
10

2
5

1
10 0

011 0 1
10

1
10

1
5

2
5

1
10

1
10 0

100 0 1
10

1
10

2
5

1
5

1
10

1
10 0

101 0 1
10

2
5

1
10

1
10

1
5

1
10 0

110 0 2
5

1
10

1
10

1
10

1
10

1
5 0

111 2
5 0 0 1

5 0 1
5

1
5 0

achievable quantum value 1
8 and thus this is a nonquantum

correlation.
To prove that the distribution P (abc|xyz) belongs to the

TOBL set, we show that it admits TOBL decomposition for
all bipartition. Note that the correlation considered in Table I
is symmetric under any permutation of the parties, so here it it
is sufficient to provide a TOBL model in any one bipartition,
say A|BC.

The probability distributions appearing in the TOBL de-
composition for the bipartition A|BC are such that for a given
λ Alice’s outcome a depends only her measurement settings
x. Also, for given λ, PB→C(b|y,λ) is independent of z, but for
B → C, c depends on both y and z. Similarly, for given λ,
PB←C(c|z,λ) is independent of y, but for B ← C, b depends
on both y and z. Let ax , by , and cz denote the outcomes for
Alice, Bob, and Charlie for the respective inputs x, y, and z. In
Tables II and III, the outputs are deterministic and the weights
pλ are same. For any given λ, the outcome assignments of A

in both tables are the same.
It is interesting to observe that the correlation in Table I

satisfies the most general GYNI inequality [9] (see also [20]),
whose violation certifies the nonquantum nature of a correla-
tion. Thus the postquantum nature (which is guaranteed by the
larger success probability for Hardy’s argument compared to
the quantum result) of the correlation given in Table I cannot
be witnessed by violating the GYNI inequality, as happened
for the correlation given in [4]. Therefore the nonlocality of

TABLE II. TOBL decomposition for the case A|B → C.

λ pλ a0 a1 b0 b1 c00 c01 c10 c11

1 1
10 0 0 1 1 1 0 1 1

2 1
10 0 0 1 1 1 1 0 1

3 1
10 1 0 0 0 1 1 1 0

4 1
10 1 0 1 0 0 0 1 0

5 1
5 1 0 1 0 1 0 1 0

6 1
10 0 1 0 0 0 1 1 1

7 1
10 0 1 0 1 0 1 0 0

8 1
10 1 1 1 0 0 0 0 1

9 1
10 1 1 0 1 1 0 0 0

TABLE III. TOBL decomposition for the case A|B ← C.

λ pλ a0 a1 b00 b01 b10 b11 c0 c1

1 1
10 0 0 1 0 1 1 1 1

2 1
10 0 0 1 1 0 1 1 1

3 1
10 1 0 1 1 1 0 0 0

4 1
10 1 0 0 1 0 0 1 0

5 1
5 1 0 1 1 0 0 1 0

6 1
10 0 1 0 1 1 1 0 0

7 1
10 0 1 0 0 1 0 0 1

8 1
10 1 1 0 0 0 1 1 0

9 1
10 1 1 1 0 0 0 0 1

this postquantum correlation is qualitatively different from the
nonlocality of the postquantum correlation that appeared in [4].

V. CONCLUSIONS

Distinguishing physically realized correlations from un-
physical ones by some fundamental principle is an active
area of research in the foundational perspective. Rather, it
has been proved that nonlocality is a useful resource for
device-independent cryptography [21]. So it is very important
to know which nonlocal correlations can be obtained by
physical means. Like the celebrated Bell inequality [22], the
elegant argument of Hardy [11] reveals the nonlocality of
quantum mechanics. Again, like the device independent value
of the Bell violation for bipartite quantum mechanical systems,
i.e., the Cirel’son bound [23], the optimal success probability
for Hardy’s nonlocality argument [17] in quantum mechanics
could be a potential witness for detecting postquantum
no-signaling correlations. We derive the device-independent
success probability of Hardy’s argument for tripartite quantum
systems. Then we provide an explicit tripartite correlation
which satisfies any bipartite information principles but shows
Hardy nonlocality with a probability which is postquantum.
In this way we establish that this device-independent value
is a potential witness for tripartite postquantum correlations.
Our example also satisfies most general GYNI inequalities. A
newly proposed multipartite principle, namely local orthogo-
nality (LO) [24], when applied to a single copy of tripartite
no-signaling correlations is equivalent to the GYNI game.
Of course, the witnessing power of the LO principle for
detecting unphysical correlations increases when many copies
of a correlation are considered, but the problem becomes
computationally hard with an increasing number of copies. So
it will be interesting to study multiple copies of the correlation
provided in this work under the LO principle.
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