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We derive closed form of local quantum uncertainty and bounds for post-entanglement correlation
measures - geometric discord and measurement-induced nonlocality for highly symmetric orthogonal
invariant sates. This class of states includes both the Werner and Isotropic class. We provide
analytical formula for local quantum uncertainty for O⊗O invariant class of states in n⊗n systems.
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Quantum mechanics shows several counter-intuitive re-
sults when we are dealing with composite systems [1–3].
There exist peculiar type of correlations between differ-
ent parts of a composite system commonly known as
non-classical correlations. Entanglement is one of the
most powerful non-classical correlation that establishes
its importance in different information processing tasks.
However, several post entanglement correlation measures
have generated a lot of interests in recent years. Dis-
cord, quantum deficit, measurement-induced nonlocal-
ity(in short, MIN) [4–7] are a few of them. Even there
are different non equivalent versions of discord [8]. Re-
cently Girolami et. al.[9] introduced the concept of local
quantum uncertainty which quantifies the uncertainty in
a quantum state due to measurement of a local observ-
able. Nevertheless, such quantifier has strong reasons
to be considered as a faithful measure of quantumness
in quantum states. But due to inherent optimization,
finding closed formula is a difficult problem for most of
the correlations measures. The value of quantum dis-
cord is not even known for general bipartite qubit sys-
tem. In higher dimensional bipartite systems, the results
are known for only some special classes of states [10, 11].
Geometric discord has explicit formula for qubit-qudit
system and its lower bound is calculated in [12, 13] for
higher dimensions. MIN has a closed formula for qubit-
qudit systems and it has tight upper bound in higher
dimensions [6]. It is possible to derive closed formula
for MIN, geometric discord and also for quantum discord
for Werner and Isotropic classes of states due to their
highly inherent symmetry in the structures. However, lo-
cal quantum uncertainty (LQU) has analytical form only
for any qubit-qudit system.

Here, we will consider orthogonal invariant class of
states which is a larger class of symmetric states and
it contains both Werner and Isotropic classes. We will
derive closed form of LQU for this class of states in
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two qudit system. We will also evaluate bounds of geo-
metric discord and MIN for this symmetric class of states.

Classically, it is possible to measure any two observable
with arbitrary accuracy. However, such measurement is
not always possible in quantum systems. Uncertainty
relation gives the statistical nature of errors in these kind
of measurement. Measurement of single observable can
also help to detect uncertainty of a quantum observable.
For a quantum state ρ, an observable is called quantum
certain if the error in measurement of the observable is
due to only the ignorance about the classical mixing in
ρ. A good quantifier of this uncertainty of an observable
is the skew information, defined by Wigner and Yanase
[14] as

I(ρ,K) := −1

2
tr{[√ρ,KA]2} (1)

Wigner and Yanase introduced this quantity as a mea-
sure of information content of the ensemble ρAB skew
to a fixed conserved quantity KA. Since it quantifies
non-commutativity between a quantum state and an ob-
servable so it serves as a measure of uncertainty of the
observable KA in the state ρAB . This type of measure
helps to quantify the quantum part of error in measuring
an observable. I = 0 indicates quantum certain nature of
the observable KA. It is also convex and non-increasing
under classical mixing. For a bipartite quantum state
ρAB , Girolami et.al. [9] introduced the concept of local
quantum uncertainty(LQU) and it is defined as

UΛ
A := min

KΛ
I(ρAB,K

A) (2)

The minimization is performed over all local maximally
informative observable (or non-degenerate spectrum Λ)
KΛ = KΛ

A ⊗ I. This quantity quantifies the minimum
amount of uncertainty in a quantum state. Non-zero
value of this quantity indicates the non existence of any
quantum certain observable for the state ρAB . This quan-
tity also possess many interesting properties, such as:

• it vanishes for all zero discord state w.r.t. measure-
ment on party A.
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• it is invariant under local unitary.

• it reduces to entanglement monotone for pure state.
In fact, for pure bipartite states it reduces to linear
entropy of reduced subsystems. So, LQU can be
taken as a measure of bipartite quantumness.

LQU is believed to be the reason behind quantum
advantage in DQC1 model and it also works as a lower
bound of quantum Fisher Information in parameter
estimation. It has geometrical significance in terms of
Hellinger distance. LQU is inherently an asymmetric
quantity and explicit its closed form is available only for
some simple system. For a quantum state ρ of 2 ⊗ n
system, LQU reduces to 1 − λmax(W) where λmax is
the maximum eigenvalue of the matrix W = (wij)3×3,
wij = tr{√ρ(λi ⊗ I)√ρ(λj ⊗ I)} and λi’s are standard
Pauli matrices in this case.

Now any state of a n⊗n quantum system can be writ-
ten in general, as of the form:

ρ =
1

n2
[In ⊗ In + xtλ⊗ In + In ⊗ ytλ+∑

tijλi ⊗ λj ]
(3)

where λ = (λ1, λ2, ..., λn2−1)
t and λi’s are the generators

of SU(n). For n = 2, Pauli matrices can be used as the
generators of SU(2). While for n = 3, generallly, Gell-
Mann matrices are taken as the generators of SU(3).
In this way we can construct traceless, orthogonal
generators (generalized Gell-Mann matrices) for SU(n),
containing n2 − 1 elements. The generators satisfy some
commutation and anti-commutation relations.

Any O⊗O invariant state from a n×n system can be
taken as

ρ = a In2 + b F+ c F̂ (4)

with n(na + b + c) = 1 (trace condition) and proper
positivity constraints. This is an important class of
states of bipartite systems. This class can have both
PPT(positive partial transpose) and NPT(negative par-
tial transpose) states depending on the extra constraints
on the parameters. When b = c the positivity condi-
tions of ρ implies the corresponding positivity of par-
tial transpositions ρTA or ρTB . In case of b ̸= c we
can find NPT states. We can choose any A-observable
KA=s.λ with s = (s1, s2, ..., sn2−1), |s| = 1 and λ =

(λ1, λ2, ..., λn2−1)
t. From the definition of local quantum

uncertainty(LQU), we can derive the value of Λ depen-
dent UA in terms of maximum eigenvalue λmax of W as

UA =
2

n
− λmax(W) (5)

The above result (5) also holds for the large class of
states with tr(ρλi ⊗ In) = 0, i = 1, 2, ..., n2 − 1. Hence,
closed form of LQU is possible for a large class of
bipartite states, depending on the previous condition.
Here, we will deal with the orthogonal invariant class
of states for our purpose. However, for qubit-qudit
system(with observable on the qubit system) our result
recovers the result of [9].

For a general O⊗O invariant state (4) we have, x = 0
and the correlation matrix elements,

tkk =
n2

2

{
(b+ c) for k = 1, 2, ..., n2+n−2

2

(b− c) for k = n2+n
2 , ..., n2 − 1

(6)

Now, we can evaluate the bounds for the geometric
discord and measurement-induced nonlocality. Since,
x = 0, the extra constraints in the definition of MIN is
automatically satisfied. Hence, discord and MIN becomes
minimum and maximum value of the same optimization
problem respectively. So, D(ρ) ≤ N(ρ). It follows, if
bc ≤ 0

0 ≤ (n2 − n)(b2 + c2) + 4(n− 1)bc ≤ D(ρ)

≤ N(ρ) ≤ (n2 − n)(b2 + c2)
(7)

and if bc ≥ 0

0 ≤ (n2 − n)(b2 + c2) ≤ D(ρ) ≤ N(ρ)

≤ (n2 − n)(b2 + c2) + 4(n− 1)bc
(8)

Thus, we obtain bounds for both geometric discord and
MIN for O ⊗ O invariant class of states. The bounds
saturate when at least one of b and c is zero. It is also
interesting to note that whenever b ̸= 0 or c ̸= 0 the lower
bounds are strictly positive. Hence, all O ⊗ O invariant
class of states possess quantum correlation.

For full technical details we refer our arXiv ver-
sion entitled, “Local Quantum Uncertainty and
Bounds on Quantumness for O⊗O invariant class
of states”, arXiv:1304.7019
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