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5Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, Singapore 117543

(Dated: June 13, 2013)

Maximally entangled states are an important resource in quantum information protocols such

as quantum key distribution (QKD) [1] or teleportation [2]. Another application is entanglement

swapping [3], a protocol involving three parties, Alice, Charlie and Bob. Alice and Charlie initially

share a maximally entangled state. A second maximally entangled state is shared between Charlie

and Bob who are equipped with a classical line of communication, as well. If Charlie and Bob then

use their state and the classical line to teleport Charlie’s part of the state he shares with Alice to

Bob, Alice and Bob end up with a maximally entangled state, with no need of having interacted.

Entanglement swapping is an essential ingredient in a quantum repeater [4], which is necessary

to distribute maximally entangled states over long absorptive channels, such as optical fibers: As

absorption usually scales exponentially with the length of the channel, states cannot simply be sent

through an arbitrarily long channel. Instead, maximally entangled states are first distributed over

short segments of the channel. The final state is obtained by repeated entanglement swapping steps

between the nodes. Apart from maximally entangled states, entanglement swapping has also been

studied for Werner states [4]. It has been shown that the singlet fraction decreases exponentially

with the number of steps, requiring entanglement distillation before each swapping operation, a

technique called nested purification. Examples of mixed states where distillation is not necessary

in order to maintain entanglement have also been discovered [5, 6].

An important application of quantum repeaters is the distribution of maximally or nearly max-

imally entangled states between distant parties who then extract cryptographic key from them.

However, it has been shown [7] that maximally entangled states are not the only states that can

be used for that purpose. In fact, there exists a much larger class of so called private states which
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can serve as a source of key. Surprisingly there exist bound entangled states that are arbitrarily

close to private states in trace distance [7]. This shows that privacy is a truly different property of

a quantum state than its distillable entanglement, motivating the definition of a quantity known

as distillable key (KD)[7], which is defined in the same way as distillable entanglement but with

the maximally entangled state replaced by a private state.

A natural question arising now is how such nearly bound entangled private states can be distributed

between distant parties. Of course it would be possible to distribute maximal entanglement using

a conventional repeater and then distill the state needed. This would, however, have no advantage

over using the maximal entanglement directly for QKD. Here, we deal with the question whether

there are other, not maximally entangled, possibly even bound entangled states that could be

initially distributed between the nodes and then swapped yielding a state useful for cryptography.

We call this quantum privacy swapping. The question of swapability of bound entangled states

has been addressed before [8, 9]. In the following, we consider a protocol where Alice and Charlie

initially share a state ρ1
AC1

and Charlie and Bob share a state ρ2
C2B

. Charlie and Bob then perform

a general LOCC protocol, during which Charlie’s subsystems are being discarded, resulting in a

state τAB̃ shared by Alice and Bob. Alice’s subsystem remains untouched during the protocol.

Note that this is a generalisation of the entanglement swapping protocol described above. Our

main result is an upper bound on the classical squashed entanglement [10] of τAB̃, which in turn

is an upper bound on the distillable key [11, 12]. Namely

KD(τAB̃) ≤ Esq,c(τAB̃) ≤ 1

2
ED(ρ2

C2B) +
1

2
EF (ρ1

AC1
) (1)

If the protocol performed by Charlie and Bob is limited to Charlie performing a POVM on C1C2

and classically communicating the result to Bob who then performs some local operation on his

subsystem, we can also show that

KD(τAB̃) ≤ Esq,c(τAB̃) ≤ 1

2
EC1→A

D (ρ1
AC1

) +
1

2
EF (ρ2

C2B) (2)

where EC1→A
D describes the one way distillable entanglement. Hence, if we intend to use τ for QKD,

bound entangled input states have to be ’compensated for’ by a large entanglement of formation

of the other input state.

Let us now give an example of a state where our results provide a significant reduction of the key

rate. Assume that ρ1
AC1

and ρ2
C2B

are flag states as introduced in [13]:

ρflag
ABA′B′ =

1

2
|Φ+〉〈Φ+|AB ⊗ σ+

A′B′ +
1

2
|Φ−〉〈Φ−|AB ⊗ σ−A′B′ (3)
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where σ± are the separable hiding states [17] introduced in [14]. In [15], it was shown that, as

σ± are almost orthogonal, KD(ρflag) ≈ 1 but ED(ρflag) almost vanishes. The intuition behind this

is that, instead of bits, the entanglement is ’hidden’ away from LOCC observers. Since σ± are

separable, ρflag can be obtained from |Φ+〉〈Φ+| by LOCC, hence EF (ρflag) ≤ 1. By our results,

swapping results in a state with distillable key at most slightly larger than 1
2 , which is a significant

reduction.

In conclusion, we have provided an upper bound on the distillable key of states resulting from

entanglement swapping. In case of a bound entangled input state, this bound is given by half the

entanglement of formation of the other input state, which can be seen as a limitation on the use of

bound entangled states in a privacy swapping protocol. Further investigation might either yield a

stronger result, showing that the key rate always decreases when bound entangled input states are

used as input or provide examples bound entangled states that can be used for privacy swapping.
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[3] M. Żukowski, A. Zeilinger, MA Horne, and AK Ekert. Event-ready-detectors, Bell experiment via

entanglement swapping. PRL, 71(26):4287–4290, 1993.

[4] W. Dür, H.J. Briegel, JI Cirac, and P. Zoller. Quantum repeaters based on entanglement purification.

PRA, 59(1):169–181, 1999.

[5] J. Mod lawska and A. Grudka. Increasing singlet fraction with entanglement swapping. PRA,

78(3):032321, Sep 2008.
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