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Abstract

We show that it is possible to clone quantum states to arbitrary accuracy in the presence
of a Deutschian closed timelike curve (CTC), with a fidelity converging to one in the limit
as the dimension of the CTC system becomes large—thus resolving an open conjecture from
[Brun et al., Physical Review Letters 102, 210402 (2009)]. This result follows from a CTC-
assisted scheme for producing perfect clones of a quantum state prepared in a known eigenbasis,
and the fact that one can reconstruct an approximation of a quantum state from empirical
estimates of the probabilities of an informationally-complete measurement. Our results imply
more generally that every continuous, but otherwise arbitrarily non-linear map from states to
states can be implemented to arbitrary accuracy with Deutschian CTCs.

The possible existence of closed timelike curves (CTCs) in certain exotic spacetime geometries
[1, 2, B] has sparked a significant amount of research regarding their ramifications for computation
[4, 15 6] and information processing [7,[§]. One of the well known models for CTCs is due to Deutsch
[9], who had the keen insight to abstract away much of the space-time geometric details and use
the tools of quantum information to address physical questions about causality paradoxes. One
consequence is that quantum computers with access to “Deutschian” CTCs would be able to answer
any computational decision problem in PSPACE [6], a powerful complexity class containing the
well-known class NP, for example. Also, quantum information processors with access to Deutschian
CTCs could distinguish non-orthogonal states perfectly [7], thus leading to the strongest violation
of the uncertainty principle that one could imagine. From the perspective of Aaronson [10], we
might take these results to be complexity- and information-theoretic evidence against the existence
of CTCs that behave according to Deutsch’s model.



In order to avoid “grandfather-like” paradoxes, Deutsch’s model imposes a boundary condition
in which the density operator of the CTC system before it has interacted with a chronology-
respecting system should be equal to the density operator of the CTC system after it interacts.
More formally, let pg denote the state of the chronology-respecting system and let o denote the
state of the CTC system before a unitary interaction Ugc (acting on systems S and C') takes place.
The first assumption of Deutsch’s model is that the state of the chronology-respecting system S
and the chronology-violating system C' is a tensor-product state, since presumably they have not
interacted before the CTC system comes into existence. Furthermore, Deutsch’s model imposes
the following self-consistency condition:

oc=®,(00) = TI"S{USC(PS ® Uc)Ugc}a (1)

so that potential grandfather paradoxes can be avoided. Computationally, one can take the view
that nature is finding a fixed-point of the map ®, [9, 6], which depends on the state pg of the
chronology-respecting system. The chronology-respecting system’s state evolves by

pPS — Pout = TTC{USC’(PS ® Gc)Ugvc},

where the partial trace is over the CTC system. Since o¢ depends on pg, such an evolution is
nonlinear and as a result is a non-standard quantum evolution. If one views a density operator
as a statistical ensemble or as a state of knowledge, then Deutsch already realized that his model
still leads to grandfather-like paradoxes [9], as was elaborated further in later work [I1]. However,
if one considers a density operator to be the fundamental object which characterizes a quantum
state, then Deutsch’s model indeed resolves these paradoxes.

Since quantum processors with access to CTCs can perfectly distinguish pure quantum states
[7], one might conclude that such CTC-assisted processors could also approximately clone any pure
quantum state, in violation of the celebrated no-cloning theorem [12,[13]. In fact, Deutsch suggested
that quantum cloning should be possible when one has access to CTCs behaving according to (/1)
[9], and Brun et al. conjectured that “a CTC-assisted party can construct a universal cloner with
fidelity approaching one, at the cost of increasing the available dimensions in ancillary and CTC
resources” [7].

In this paper, we give an approach to quantum state cloning with CTCs that is conceptually
simple and appealing. We show how to clone any quantum state, such that the fidelity of each
clone approaches one as the dimension of the assisting CTC system becomes large. Details of our
argument appear in Ref. [14].

One can quickly grasp the main idea behind our construction by taking a glance at the circuit
in Figure(l] The first step is to perform an informationally-complete measurement on the incoming
state pg. Such a measurement is well known in quantum information theory [I5] 16, [17]—the
probabilities of the outcomes are in one-to-one correspondence with a classical density operator
description of the quantum state. (Le., if one knew these probabilities, or could estimate them from
performing this kind of measurement on many copies of the given state, then one could construct
a classical description of the state.) Let w denote the state resulting from the measurement:

d—1
w= Y Tr{M,p}|z)(], (2)
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Figure 1: An example circuit for quantum state cloning using N = 3 CTC systems. The unknown
state p is fed into a unitary operation Uicn, whose effect is to implement an informationally-
complete measurement with measurement operators { M, } such that M, > 0and > M, =1I. The
resulting state w = > Tr{M_ p}|x)(z| is combined with N CTC systems and cyclically permuted
with them. (For the CTC systems, the past mouth of the wormhole on the left, indicated by vertical
double lines, is identified with the future mouth on the right.) Finally, modular addition circuits
(depicted here as CNOT gates) “read out” N copies of the state w, from which we can estimate
the original state p to arbitrarily good accuracy as the number N of CTC systems becomes large
(of course, one would require N to be much larger than three).

where each M, is an element of the informationally-complete measurement (so that M, > 0 for all
x and ) M, = I), dis the number of possible measurement outcomes, and {|z)} is the standard
computational basis.

Next, we feed the state w into a circuit that cyclically permutes it with N CTC systems that
each have the same dimension as w. Such an operation on its own (after tracing over all systems
except for the N CTC systems) has as its unique fixed point the state w®", so that, in some sense,
the cyclic shift produces N “temporary” clones.

Finally, we copy the value of x from each of the N CTC systems to one of a set of ancillary
systems in order to “read out” NN copies of the state w. In Figure [1| we’ve drawn this as a sequence
of controlled-not (CNOT) gates, but in fact it will generally be a higher-dimensional analogue of a
CNOT, like a modular addition circuit:

[©)ly) = U(l)|y)) = |z)|z +y  mod d). 3)

The fixed point of the overall circuit, after tracing over all systems except for the N CTC systems,
is still w®V, because these modular addition gates do not cause any disturbance to the CTC
systems. As a result, the reduced state on the N ancillas is equal to w®", and we can then
estimate the eigenvalues of w simply by counting frequencies—the estimates become better and
better as N becomes larger due to the law of large numbers. Since these eigenvalues result from an
informationally-complete measurement, we can construct a classical description of the state p and
produce as many approximate copies of it as we wish.

Our results imply more generally that every continuous, but otherwise arbitrarily non-linear
map f from states to states can be implemented to arbitrary accuracy with Deutschian CTCs.
This follows because we can estimate the incoming state p to arbitrary accuracy and then prepare

f(p) at will.
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