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Abstract

In quantum mechanics, the uncertainty is fundamental concept, so its underlying meaning has been argued in-
tensively due to its weird properties. On this account, there has been various fomulations expressing the uncertainty
principle in different ways. In this paper, the new entropic uncertainty relations will be suggested showing different
aspects of uncertainty as we consider successive measurements. Already, Deutsch and Uffink suggested entropic un-
certainty relations, so our work will be to modify it as focusing on another aspect (error-disurbance) of uncertainry.

• The uncertainty relations

Heisenberg is the first man who suggested the uncertainty principle. In 1927 [1], he proposed the uncertainty
relation,

ε(Q)η(P ) ≥ ~
2

(1)

where ε(Q) is the mean error occurring when an observer measures the position of a particle, and η(Q) is the disturbance
caused by the position measruement Q and ~ is Planks constatnt divided by 2π. The equation (1) shows that we can
not measure position exactly without disturbing momentum.

The Heisenberg’s relation (1) was later generalized to arbitrary pair of observables by Robertson [2]. Instead of
position and momentum, he considered the generalized observables A and B. Additionally, the lower bound was also
generalized to commutator of the observables, as follows.

σ(A)σ(B) ≥ 1

2
|〈ψ|[A,B]|ψ〉| (2)

where σ(Q) is standard deviation defined by σ(Q)2 = |〈ψ|(Q − 〈Q〉)2|ψ〉| and [A,B] represents the commutator,
[A,B] = AB −BA. This above relation (2) claims that in an arbitrary state |ψ〉 a pair of noncommuting observables
can not be well localized simultaneously . In other words, it can be siad that we can not prepare well localized states
simultaneously for noncommuting observables.

Afterwards Heisenberg’s relation (1) was revised and improved in 2004 by M. Ozawa [7], which is called a universally
valid error-disturbance uncertainty relation,

ε(A)η(B) + ε(A)σ(B) + σ(A)η(B) ≥ 1

2
|〈ψ|[A,B]|ψ〉|. (3)

In 2012 [3], it is proved that the old relation (1) is violated in spin measurements, but the improved one (3) is valid.
Consequently, nowdays we can summerize the interpretatioin of the uncertainty principle in three statements, [4]

(i) It is impossible to prepare states in which position and momentum are simultaneously arbitrarily well localized.
(ii) It is impossible to measure simultaneously position and momentum.
(iii) It is impossible to measure position without disturbing momentum.

In these statements, position and momentum represent conjugate variables.
According to the statements, we can classify the above relations. Firstly, the Robertson’s (2) relation is equivalent

with the statement (i), since from these relations we can conclude that there is a limitation of preparation of states
in which noncommuting observables are well localized. Secondly, the error-disturbance relations (1)(3) are equivalent
with the statement (iii), since they describe a situation that a measurement for observable A can not avoid the dis-
turbance about B caused by the measurement A, when we consider two noncommuting observables A and B.

• Entropic uncertainty relations

In quantum informtion theory, in 1983 the entropic uncertainty relation was firstly introduced by Deustch [5] and
improved by Uffink[6] in 1988. When probability distribution is defined as X = {p1, p2...pn} and Y = {q1, q2...qn} and
H(X) is Shannon entropy described as H(X) = −Σipi log pi, the entropic uncertainty relation is

H(X) +H(Y ) ≥ −2 log c, where c = |max
i,j
〈xi|yj〉| (4)
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where {|xi〉} and {|yj〉} are the corresponding complete sets of normalized eigenvectors with respect to operators X
and Y , and then pi, qj is defined as |〈xi|ψ〉|2 and |〈yi|ψ〉|2. In the relation (4), the lower bound −2 log c is independet
of the initial state |ψ〉, but contrastively the relations (2)∼(3) in the previous section is dependent. That means the
lower bound, |〈ψ|[A,B]|ψ〉|, is varied with an initail state, so in a specific state it is diminishing.

• Entropic uncertainty relation for successive measurements

In order to deal with unavoidable disturbance, we have to consider successive measurements, liks as the relation
(3). In successive measurements, we obtain results about X and Y , in regular sequence. That means we observe the
result of measurment X and the outcome will be measured for observable Y , so we get the results of X and Y finally.
This situation is described in Fig 1.

|ψ〉
initial 
state

 |x₁〉 with Px1

 |x₂〉 with Px2

 |xn〉 with Pxn

 |y₁〉 with Px1P(x1,y1)

 |y2〉 with Px1P(x1,y2)

 |yn〉 with Px1P(x1,yn)

 |y₁〉 with Px2P(x2,y1)

 |y2〉 with Px2P(x2,y2)

 |yn〉 with Px2P(x2,yn)

 |y₁〉 with PxnP(xn,y1)

 |y2〉 with PxnP(xn,y2)

 |yn〉 with PxnP(xn,yn)

After Measurement
X 

After Subsequent 

Measurement Y 

Figure 1: Probability distribution in
successive measurements X and Y .
Eigenvalue set of X,Y is {xi},{yi}
and each eigenvector that corre-
sponds to the eigenvalues xi, yi is
|xi〉 and |yi〉. In this assumption,
Pxi is defined as |〈ψ|xi〉|2 and P(xi,yj)

means |〈xi|yj〉|2

According to the Fig 1, a probability to obtain an eigenvalue xi of eigenvector |xi〉 after the measurement X
is pxi. Thus, the successive outcomes xi and yj are obtained with the product of each probabilty, PxiP(xi,yj) =
|〈ψ|xi〉|2|〈xi|yj〉|2. The probability distribution of whole possible outcomes is depicted in Fig 1.

Thus, the entropy of the probability distribution for the successive measuremnts is

H(X,Y ) = −
∑
i,j

pxip(xi,yj) log pxip(xi,yj) (5)

= H(X)−
∑
i,j

pxip(xi,yj) log p(xi,yj). (6)

H(X,Y ) quantifies naturally occuring uncertainty when a state is measured for observables X and Y in succession. In
the situation, from the statement (iii) and the noise-disturbance relations, it can be easily conjectured that it is also
limited by a lower bound, likewise with the entropic uncertainty relation. Hence, by simple calculation, the relation is

H(X)−
∑
i,j

pxip(xi,yj) log p(xi,yj) ≥ −2 log c, (7)

where c = maxi,j |〈xi|yj〉|.
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