
Asymptotic minimization of decoherence for ion

trapping

Samyadeb Bhattacharyaa and Sisir Royb

a,bPhysics and Applied Mathematics Unit, Indian Statistical Institute,

203 B.T.Road, Kolkata 700108, India

Abstract: Decoherence time has been calculated for an optical ion trap in a bistable poten-

tial model. Comparison has been made between decoherence time and Zeno time for double

well potential as a special case. Zeno time is considered as a lower limit of decoherence time

for sustainable quantum coherence. Equality of the respective timescales provides a certain

transitional temperature, below which decoherence can be asymptotically minimized.
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In recent times, optical ion traps has been prepared to construct quantum logic gates [1, 2].

In those systems, quantum decoherence plays a very significant negative role [3]. The sys-

tem loses information due to environmental interaction. Since it is impossible to disentangle

the system from the environment, decohering effect cannot be eradicated completely. Our

main effort in this work is to find the conditions, under which the decohering effect due to

environmental interaction can be minimized. Zeno dynamics plays a significant role in this

attempt of decoherence minimization [4, 5]. Quantum Zeno effect is the phenomenon of

complete freezing of decay dynamics, due to frequent (almost continuous) measurements [6].

In our understanding, these two phenomena (Decoherence and Zeno effect) have got a very

intrinsic reciprocal relation. Whenever frequent non-selective measurement dominates the

time evolution of the state, the system is forced to evolve in a subspace of the total Hilbert

space, which is called ”Zeno subspace”. Probability leakage is not possible between these

invariant Zeno subspaces. So each of these subspaces can be considered as some reduced



isolated system. Due to their isolated nature, the process of decoherence can be halted

within these Zeno subspaces. Now, if the environmental interaction is very strong, extreme

decoherence may not allow the Zeno subspaces to sustain. So Zeno effect, characterized by

it’s corresponding time scale (Zeno time), gives a certain lower limit to decoherence, below

which it is uncontrollable. If the decoherence time is smaller than the Zeno time, then the

process of decoherence dominates the scenario. Exploiting this condition, in this work, we

have formulated the procedure to compare the respective time scales of decoherence and

Zeno effect and come up with a certain transitional temperature, below which it is possible

to minimize decoherence asymptotically.

Here we have considered an asymmetric double well potential approximated as a two-state

system with considering only the ground states of the wells separated by an asymmetry

energy ǫ. We construct our model on the demonstration of a quantum logic gate prepared

by a trapped ion laser cooled to the zero point energy [1]. In this particular case, the target

qubit is spanned by two 2S1/2 hyperfine ground states (| ↑〉 and | ↓〉 states) of a single 9Be+

ion separated by ν0 = 1.250 GHz. We set these two energy levels as the ground states

of the two wells of the double well potential separated by the asymmetry energy ǫ = hν0.

The control qubit |n〉 is spanned by the first two states of trapped ion (|0〉 and |1〉), which

can be identified by the first two states of each well approximated as harmonic oscillators.

These two states are separated by νx ≃ 11 MHz. So the basic four eigenstates are given by

|n〉|S〉 = |0〉| ↑〉, |0〉| ↓〉, |1〉| ↑〉, |1〉| ↓〉.

To calculate the Zeno time, we have used the formalism of retarded Schrödinger difference

equation, originally developed by Caldirola and Montaldi [7]. Without going into the techni-

calities, now we directly come to the principal findings of our work. The ratio of decoherence

time and Zeno time is found to be
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where w, T, ǫ and m are the distance between the wells, temperature, the asymmetry energy

and the mass of the particle respectively. Preservation of quantum coherence leads us to

conclude that the Zeno time represents a certain lower limit to decoherence time, under

which the process of decoherence is uncontrollable and the system loses it’s “quantumness”.

So from eqn.(1), we find that imposition of this lower limit to decoherence time leads us to



a certain transitional temperature
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Above this temperature, the process of decoherence cannot be controlled.

Robust quantum memories are essential to realize the potential advances in quantum com-

putation. Optical ion trap can be realized as a quantum storage device. But it is also

essential to protect the information, which can be lost due to environmental interaction in

the form of decoherence. So it is very important to control the decohering effect in order

to build an effective ion trap quantum computer. In this work, we have dealt with the

question that whether and under what condition environment induced decoherence can be

minimized. As we have discussed that in our understanding, the intrinsic relation between

decoherence and Quantum Zeno effect can be exploited in this aspect. Frequent nonselec-

tive measurement forces the system to evolve in the reduced zeno subspaces, which can be

considered as some “quasi-isolated” system. If the Zeno effect is strong enough, so that the

reduced subspaces remains quasi-isolated even under the influence of environmental inter-

action, effect of decoherence can be controlled. Based on this theoretical understanding,

we have calculated a certain transitional temperature, by comparing the decoherence and

Zeno timescales. It is clear from the above analysis that below this transitional temperature

we can increase the decoherence time by controlling the parameters (w, ǫ). Hence we can

minimize the decohering effect asymptotically, though it can never be eliminated completely.
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