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Abstract

This contribution is based on Ref [6] where we consider completely positive maps defined
on tensor products of von Neumann algebras and taking values in the algebra of bounded
operators on a Hilbert space and particularly certain convex subsets of the set of such maps.
We show that when one of the marginal maps of such a map is an extreme point, then
the marginals uniquely determine the map. We will further prove that when both of the
marginals are extreme, then the whole map is extreme. We show that this general result
is the common source of several well-known results dealing with, e.g., jointly measurable
observables. We also obtain new insight especially in the realm of quantum instruments and
their marginal observables and channels.

1 Introduction

Quantum devices and other objects in quantum theory often consist of several pieces operating
on subsystems or on different layers of description or precision. Typical example of this are
quantum instruments that describe measurement statistics and state changes conditioned by the
outcomes. This means that a quantum instrument can be seen to consist of (at least) two parts;
a map that associates a quantum state to a probability distribution (an observable) and state
change (channel). Another example is states on multipartite systems that can be associated to
the reduced states on the subsystems. Both of these examples illustrate the fact that pieces do not
typically determine the whole; the observable and channel associated with a common instrument
do not usually have a unique joint instrument. Likewise, states on subsystems generally have
infinitely many possible joint states.

However, in some special cases pieces can be combined into a whole in a unique way. In [6], one
such condition is found to be extremality of a piece and several results are shown to fall under this
theme. By an extreme object we mean an extreme point in the convex set of all similar objects.
(This total set can be e.g. the set of states, observables, instruments or channels.) We consider
objects consisting of two pieces. Our main result, states, roughly, that when one of the pieces is
an extreme object, then pieces uniquely determine the whole. Moreover, when both of the pieces
are extreme objects, then the whole is an extreme object.

We recall the following well-known results that exemplify the previously sketched ideas.

(a) Joint state with a pure marginal state: Suppose that % is a state of a composite system
H1 ⊗H2. If one of the reduced states trH2 [%] ≡ %1 or trH1 [%] ≡ %2 is pure, then % = %1 ⊗ %2.
If both %1 and %2 are pure, then also % is pure.

(b) Joint observable with a sharp marginal observable: Suppose that M and N are jointly mea-
surable observables (POVMs). If M or N is sharp (i.e. projection valued measure), then their
joint observable J is unique and it is determined by the condition J(X × Y ) = M(X)N(Y )
for all outcome sets X, Y . (See e.g. [8] for a proof of this fact.)
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(c) Instruments related to a sharp observable: Suppose that an observable M is sharp and Γ is an
instrument such that Γ(X, I) = M(X) for all outcome sets X. Then Γ(X,A) = M(X)E(A),
where E = Γ(Ω, ·) is the total state transformation and Ω is the total set [9]. Hence the
instrument Γ is completely determined by its total state transformation E .

(d) Variant of ‘No Cloning Theorem’ : Suppose F : T (H) → T (H ⊗H) is a quantum channel
such that tr1[F(%)] = % for every state %. Then tr2[F(%)] ≡ σ for some fixed state σ, hence
the attempted copy tr2[F(%)] contains no information on the input state %.

Theorem 1 proven in [6] contains all these statements as corollaries and identifies the common
source behind the uniqueness claims as being extremality of a marginal map. Also some completely
new results are obtained. Our main theorem implies the following:

(e) Suppose that M and N are jointly measurable observables (POVMs). If M or N is extreme,
then their joint observable is unique. If both M and N are extreme, then their unique joint
observable is extreme.

(f) Suppose that an observable M and a channel E are parts of a single instrument Γ, i.e.,
Γ(X, I) = M(X) for all outcome sets X ⊆ Ω and Γ(Ω, ·) = E for the total set Ω. If M or E is
extreme, then the instrument Γ is unique. If M and E are both extreme, then Γ is extreme.

The last two consequences of the main theorem are new, since, e.g., there are extreme ob-
servables that are not sharp [7]. It is often noted that extreme quantum apparati exhibit less
noise than others because they contain no arbitrariness caused by randomization between differ-
ent preparation or measurement strategies. Still, it is unclear whether extremality has a concrete
operational meaning in quantum theory. Our result, Theorem 1 below however, gives new essence
to extremality and could be used to find what extremality of a quantum device truly means.

2 Results

We will not go into mathematical details in this exposition, but let us make some definitions (more
rigorous formulation can be found in [6]). We study completely positive (CP) maps Φ defined on
a von Neumann algebra A and taking values in the set L(H) of bounded operators on a Hilbert
space H. Complete positivity means, roughly, that we can dilate the map Φ into a positive map
Φ ⊗ idn (i.e., Φ ⊗ idn maps positive elements into positive elements) defined on a n × n-matrix
algebra over A for any value n = 1, 2, . . . and taking values in L(H⊗ Cn). In physical situations
this means that when we couple the system under study with another system of arbitrary size,
our map (observable, channel, instrument,. . . ) can be trivially dilated into a positive map on the
whole without disturbing the other system.

We further impose the condition Φ(1A) = P with a fixed positive operator P ∈ L(H) on our
CP maps. This set of P -normalized CP maps is denoted by CPP (A;H). This is a convex set:
when Φ1, Φ2 ∈ CPP (A;H) and 0 ≤ t ≤ 1 we can form a convex combination tΦ1 + (1 − t)Φ2 ∈
CPP (A;H). As usual, extreme points of CPP (A;H) are those Φ that cannot be expressed as
a convex combination of non-equal elements with weights t ∈ (0, 1). Extreme points have been
characterized, e.g., in [1], [6], [10] and [11].

When also B is a von Neumann algebra, we can define the tensor product A⊗B which is a von
Neumann algebra, too. Suppose that Ψ ∈ CPP (A⊗B;H). With inputs of the form a⊗1B, a ∈ A,
we obtain a map Ψ(1) ∈ CPP (A;H) and imputs 1A⊗b, b ∈ B, induce a map Ψ(2) ∈ CPP (B;H). We
call the maps Ψ(1) and Ψ(2) as marginals of Ψ. Moreover, if Φ1 ∈ CPP (A;H) and Φ2 ∈ CPP (B;H)
are marginals of some map Ψ ∈ CPP (A ⊗ B;H), i.e., Φ1 = Ψ(1) and Φ2 = Ψ(2), we say that Φ1

and Φ2 are compatible. Moreover, in this case the map Ψ is called as the joint map for Φ1 and Φ2.
The quantum instruments, e.g., can be viewed as (normal) CP maps defined on the tensor

product of a (commutative) function algebra and L(K) with some Hilbert space K. The first
marginal w.r.t. the commutative algebra (meaning we ignore the state changes) gives the observ-
able associated with the instrument whereas the second marginal corresponds to the total state
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change induced by the channel obtained by coarse graining over the outcomes of the measure-
ment. An observable and a channel are compatible if they can be obtained in this way from
a joint instrument. Observables M1 and M2 with outcome spaces Ω1 and, respectively, Ω2 are
compatible or jointly measurable if there exists an observable with outcomes in Ω1×Ω2 such that
coarse graining over Ω2 gives M1 and coarse graining over Ω1 produces M2. The marginals of a
state on a multipartite system are simply the reduced states on the subsystems; note that states
are automatically compatible. The definition of compatibility of CP maps briefly sketched earlier
encompasses all the above definitions of compatibility of quantum apparati.

Our main result is the following:

Theorem 1 Suppose that Φ1 ∈ CPP (A;H) and Φ2 ∈ CPP (B;H) are compatible.

(a) If Φ1 is extreme in CPP (A;H) or Φ2 is extreme in CPP (B;H), then they have a unique
joint map.

(b) If Φ1 is extreme in CPP (A;H) and Φ2 is extreme in CPP (B;H), then their unique joint
map is extreme in CPP (A⊗ B;H).

(c) If Φ1 or Φ2 is a *-representation, then Φ1 and Φ2 commute and the unique joint map Ψ ∈
CPP (A⊗ B;H) is of the form

Ψ(a⊗ b) = Φ1(a)Φ2(b), a ∈ A, b ∈ B. (1)

Since the sets of quantum states, observables, channels, and instruments can be seen as (suit-
able subsets of) CPP (A;H) with appropriate choices of the algebra and the Hilbert space, Theo-
rem 1 has all the results listed in the Introduction, especially the novel findings (e) and (f), as its
corollaries.

Theorem 1 tells that if one of the pieces is extreme, then the whole is perfectly determined by
the pieces, but, typically, we do not know the exact structure of the whole. There are, however,
situations, where we can say something about the structure of the joint map. Let us study channels
E : S(H1⊗H2)→ S(K1⊗K2) between bipartite systems where S(H) is the set of states on Hilbert
space H. These maps are CP and normal; technically, their duals E∗ : L(K1⊗K2)→ L(H1⊗H2)
are CP, unital, and normal. If E is such that if with imputs of the form ρ1 ⊗ ρ2, ρr ∈ S(Hr), and
after applying E tracing out the system K2 (resp. K1) we obtain a channel E1 : S(H1) → S(K1)
(resp. E2 : S(H2)→ S(K2)), we say, adopting the terminology introduced in [2] and [5], that E is
causal. Channels of the form E(ρ1⊗ρ2) = E1(ρ1)⊗E2(ρ2), ρr ∈ S(Hr), where Er : S(Hr)→ S(Kr)
are channels are called local. Local channels are clearly causal, but a causal channel needs not to
be even in the convex hull of local channels (see examples in [2] and [3]). However, Theorem 1
tells that if one of the subchannels of a causal channel is extreme, then the whole is local.

Theorem 2 Suppose that a causal channel E has the channels E1 and E2 as its subchannels in
the above defined way. If either of E1 or E2 is extreme, then E is local.
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